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Abstract

An increasingly large percentage of natural lan-
guage processing (NLP) tasks center around the
generation of text from probabilistic language
models. Despite this trend, techniques for
improving or specifying preferences in these
generated texts rely mostly on intuition-based
heuristics. Further, there lacks a unified pre-
sentation of their motivations, practical imple-
mentation, successes and pitfalls. Practitioners
must, therefore, choose somewhat blindly be-
tween generation algorithms—like top-p sam-
pling or beam search—which can lead to wildly
different results. At the same time, language
generation research continues to criticize and
improve the standard toolboxes, further adding
entropy to the state of the field. In this tutorial,
we will provide a centralized and cohesive dis-
cussion of critical considerations when choos-
ing how to generate from a language model. We
will cover a wide range of empirically-observed
problems (like degradation, hallucination, rep-
etition) and their corresponding proposed algo-
rithmic solutions from recent research (like top-
p sampling and its successors). We will then
discuss a subset of these algorithms under a uni-
fied light; most stochastic generation strategies
can be framed as locally adapting the probabil-
ities of a model to avoid failure cases. Finally,
we will then cover methods in controlled gener-
ation, that go beyond just ensuring coherence to
ensure text exhibits specific desired properties.
We aim for NLP practitioners and researchers
to leave our tutorial with a unified framework
which they can use to evaluate and contribute
to the latest research in language generation.

1 Introduction and Motivation

With their widespread public availability, large pre-
trained language models have become a core part of
many natural language processing (NLP) pipelines.
This trend is particularly evident in language gen-
eration tasks, where prompt engineering and con-
trolled generation techniques have shown that these

models can essentially be used “out-of-the-box” for
various language generation needs. Yet, as has been
observed repeatedly, how one chooses to generate
text from these models can lead to vastly differ-
ent results; make the wrong choice and a language
model can fall into repetitive loops (Welleck et al.,
2020), generate gibberish (Holtzman et al., 2020),
or make up random facts (Maynez et al., 2020). In
the effort to circumnavigate these issues, one can
make use of a variety of relatively straightforward
methods: (i) sampling adapters, simple modifica-
tions to token-level distributions that help prevent
the generation of incoherent text; (ii) controlled
generation methods, techniques that guide these
models to output strings with a set of desired at-
tributes. While employing these methods often
does not require domain expertise, many people do
not have proper knowledge of the tools available—
and much less how and when to apply them. Hence,
without years of experience in this subfield, both
NLP researchers and practitioners may have dif-
ficulty using pretrained language models for text
generation, as they will likely encounter the prob-
lematic behaviors mentioned above.

In this cutting-edge tutorial, we aim to offer a
comprehensive introduction to techniques for gen-
erating strings from language models, discussing
both how to sample adeptly from and explicitly
control them. This tutorial will be divided in four
parts. First, we will present background knowledge
on language modeling, discussing both its mathe-
matical formulation, and the empirically-observed
shortcomings of modern models. Second, we will
cover the basics of language generation, presenting
both deterministic and stochastic decoding strate-
gies. Third, we present a unifying framework for
sampling adapters, the family of methods often
used for stochastic decoding that transform the out-
put of a model according to qualitatively motivated
rules. Finally, we will discuss several methods for
controlled text generation, i.e., methods that allow
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users to enforce constraints on the text output by
models. We believe this will equip the NLP com-
munity with the knowledge of how to better employ
these models for their downstream use-cases, thus
making them more broadly accessible.

2 Target Audience and Preferred Venue

Our tutorial is targeted at members of the NLP
community who wish to make use of language
models for various language generation tasks.
This includes researchers, interested in e.g., data
augmentation techniques, as well as practitioners
wishing to make use of pretrained language models
in their language generation pipelines. We expect
that participants are comfortable with probabilistic
formulations of NLP tasks, as well as the structure
and formulation of standard autoregressive models
e.g., transformers. While we do not require
any readings, we recommend reviewing (in no
particular order) the works cited in this proposal.
Given the rising popularity of tasks involving
language generation, we estimate an audience of
approximately 100 people. We would be willing
to present this tutorial at both ACL and EMNLP.

3 Outline

3.1 Part 1: Background
Modern natural language processing tends to
proceed by (1) framing a task in probabilistic
terms, (2) estimating a model to imitate the
task’s generative processes (typically using finite
training datasets as a proxy), and then (3) using
this generative model as a tool to accomplish the
task. More precisely, practitioners take a textual
dataset D = {yn}Nn=1—an N -sized set of strings
over some vocabulary V—and treat it as a set of
independently and identically distributed samples
from a distribution p(y), where y ∈ V∗. We will
use p to denote the true distribution—the distribu-
tion defined by the task’s hypothetical generative
process, from which we drew our samples.

In this tutorial, we’ll focus largely on autoregres-
sive models of p, meaning that we decompose the
probability of a string as p(y) =

∏T
t=1 p(yt | y<t)

and build a model of the conditional distribution
p(yt | y<t) instead. In practice, the vast majority
of these models, which we denote as pθ, are trained
to minimize the empirical KL-divergence with the
finite set of samples D.
Successes and known failures. It is hard to over-
state the improvements in modeling performance

that have occurred in the last five years, as mea-
sured simply in terms of cross entropy. Still, lan-
guage generation techniques are used both to avoid
known failure modes and to coax more desirable
properties out of language models. In our tuto-
rial, we will discuss the following failure modes of
language models, among others:

• Low-quality low-probability words. Due to
their use of the softmax to compute pθ(yt |
y<t), language models place non-zero proba-
bility on poor continuations.

• Degradation of long texts. Possibly as a re-
sult of the above, generating longer texts can
present a greater challenge, as errors tend to
propagate and accumulate.

• Repetition when searching for the mode. In
cases where highly probable text under the
training set is desired, language models’ prob-
ability estimates tend to fail and overestimate
the probability of highly repetitive text.

High- and low-entropy generation. In some dis-
cussions around language generation, tasks are of-
ten discussed as “open-ended” (for example, story
generation) or not (for example, machine transla-
tion). The techniques and histories of the corre-
sponding literatures are often somewhat separate.
We will discuss open-endedness as a scale well-
described by the entropy of the true distribution a
task specifies, as well as the entropy of the desired
output behavior of the model. So, for example, in
machine translation, the true distribution over cor-
rect translations has a relatively low entropy, even
though texts (especially long ones) have a num-
ber of roughly equivalent translations; further, it is
common to look for only the “most likely” transla-
tion. Story generation typically has more entropy
(the set of nice stories is large) and the generation
of arbitrary web text has more entropy still; further,
the notion of the “most likely” web text document
is unintuitive, to say the least. We will thus dis-
cuss models and the methods used to generate from
them with the concept of entropy in mind, rather
than using the more traditional (albeit qualitative)
notion of open-endedness.

3.2 Part 2: Language Generation

Given a pretrained language model pθ(· | y<t),
how does ones generate text from it? There is
a plethora of options available. We split these
into two subgroups: deterministic and stochastic
decoding strategies (Wiher et al., 2022).
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Deterministic decoding. In tasks with one (or
only a small number of) correct answers, re-
searchers typically rely on deterministic strategies,
which “search” over the support of the distribu-
tion pθ(· | y<t) for this correct answer. In short,
these strategies rely on some quantification of a
string y’s quality, e.g., its probability under pθ,
and they try to find the string which maximizes it.
Finding this string, however, is an NP-hard prob-
lem (Chen et al., 2018). These decoding strategies
thus propose heuristic methods for performing this
search. Beam search, for instance, searches for
this maximizing string by iteratively expanding all
substrings y<t, albeit at any given point, keeping
only the k best substrings found so far.

Stochastic decoding. In tasks for which text
diversity is a desired attribute, stochastic strategies
are usually employed. Typically, these strategies
work incrementally: first, one word is sampled
from pθ(· | y<t); this word is then appended to
the context, producing yt; the next word is then
sampled from pθ(· |y<t+1). Sampling stops at some
pre-determined length, or once the end-of-string
token is sampled. Following this iterative process,
we sample strings according to distribution p(y).
Several issues arise from simply sampling from
p(y), though. In the next section, we dive into
different methods to mitigate these issues.

3.3 Part 3: Sampling Adapters

As discussed in part 1, due to the structure of most
probabilistic language generators, no token in the
vocabulary can be assigned a probability of zero
under pθ(· | y<t). Even if a model assigns inap-
propriate tokens very low probability, there is still
the chance of sampling them when using stochastic
decoding strategies. This can lead to undesirable
outputs, as a single incoherent token can render a
natural language string virtually incomprehensible
(Fan et al., 2018; Holtzman et al., 2020). While
intuitively we might expect this issue to only occur
with low probability, a concrete example proves
otherwise. Let’s say we have a model that assigns
a very small collective probability mass of 0.1%
to all tokens in the tail (low-probability region) of
the distribution at any given point. If we sample a
sequence of 200 tokens from this model, there is a
1−(1−0.001)200 ≈ 20% chance it will contain at
least one token from the tail of the distribution.

In an attempt to prevent this issue, several works
have proposed simple modifications to the sam-

pling distribution to exclude undesirable tokens
from the candidate pool. Two prominent examples
are nucleus and top-k sampling, both of which trun-
cate the distribution to some subset of its most prob-
able items (and then renormalize it). These types
of transformations are widely-employed when sam-
pling from probabilistic language generators: they
are quick to implement, efficient in practice, and
surprisingly effective. Indeed, nucleus sampling is
often used as a baseline in various language gen-
eration tasks (Welleck et al., 2020; Pillutla et al.,
2021; Basu et al., 2021).

In this part of the tutorial, we will offer a for-
mal treatment of these transformations; we present
a general framework for what we call sampling
adapters, the class of functions g : R|V| → R

|V|

that adapts each conditional distribution pθ(· |y<t)
in a locally normalized language model to a new
distribution. We will discuss the motivation and
formulation of several popular sampling adapters
(Fan et al., 2018; Holtzman et al., 2020; Basu et al.,
2021; Meister et al., 2022; Hewitt et al., 2022), de-
scribing the problems that they mitigate (such as
sampling incoherent tokens) as well as the prob-
lems that they introduce (such as repetitive gener-
ations). Further, we will show results from prior
works comparing these methods. Finally, we will
discuss possible interpretations of the effectiveness
of these methods, in order to provide intuition for
why they lead to better language generation.

3.4 Part 4: Controlled Generation

Generated samples from language models often
contain toxic or non-factual content (Gehman et al.,
2020; Maynez et al., 2020). Further, they also of-
ten go off-topic, even after applying the sampling
adapters discussed in the previous section (Yang
and Klein, 2021). To ensure that the generated sam-
ples satisfy a set of desired properties—e.g. being
non-toxic or talking about a certain topic—we need
methods to impose controls during the sampling
process. The question we will discuss in this part of
the tutorial is how can we sample from a pretrained
language model pθ, while ensuring that samples sat-
isfy a specific control c? This can be formalized as
sampling from a conditional distribution pθ(y | c)
instead. We split prior work on sampling from this
distribution into two groups: autoregressive and
non-autoregressive controlled generation methods.

Autoregressive generation. Similar to the de-
coding strategies discussed earlier, these methods
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incrementally generate text one token at a time,
in a sequential manner. At each step of the gen-
eration, a token yt is sampled with probability
p(yt | y<t, c)—which, following Bayes’ rule, is
proportional to pθ(yt | y<t) p(c | y≤t) (Yang and
Klein, 2021). In other words, at each timestep, the
score of a candidate yt under the language model
pθ(yt |y<t) is reweighted according to the probabil-
ity that y≤t satisfies the control target: p(c | y≤t).
This control target is usually estimated with a su-
pervised classifier parameterized by ϕ: pϕ(c | y≤t)
(Ghazvininejad et al., 2017; Holtzman et al., 2018).
The implication of this approach is that we need to
have reliable estimates of how much a prefix satis-
fies the desired control. However, this is arguably
an easier problem than building the entire distri-
bution over natural language strings, if due to the
smaller size of the support alone. Once we obtain
such estimates, we can make use of an arbitrary
language model pθ for controlled generation.

Non-autoregressive generation. While autore-
gressive methods have proven effective for control-
ling the topic or the sentiment of samples, they
fail for more complex controls such as toxicity or
syntax. Particularly, for more complex controls,
estimating p(c | y≤t) becomes challenging. If
at any point this probability distribution diverges
from the true value, the error will propagate to the
next steps due to structure of most of these models.
To address this issue, non-autoregressive strategies
propose to sample the whole sequence y at once.
This is usually done by designing Markov-Chains
based off of some (autoregressive) language model
pθ(y) that have the stationary distribution p(y | c).
Given that the sampling space is high dimensional,
Hamiltonian Monte Carlo (HMC) algorithms, such
as Langevin Dynamics, have been shown to be
effective for drawing samples from those Markov-
Chains (Qin et al., 2022; Kumar et al., 2022).

3.5 Breadth of Research Covered

This tutorial is intended as a primer for recent lan-
guage generation techniques. To this end, it will
need to pull on research from a large number of
authors, spanning several institutions. Explicitly,
the background section on language modeling will
cover, for example, works from OpenAI, Google,
AI2, and DeepMind, as institutions with the re-
sources to train these large language models and
make them publicly available. The introduction
to generation will touch on prominent methods,

such as beam search (Graves, 2012), nucleus sam-
pling (Holtzman et al., 2020), Mirostat (Basu et al.,
2021), top-k sampling (Fan et al., 2018), typical
decoding (Meister et al., 2022) and top-η sampling
(Hewitt et al., 2022). The controlled generation
section will summarize work on weighted decod-
ing (Ghazvininejad et al., 2017; Holtzman et al.,
2018), FUDGE (Yang and Klein, 2021), and re-
cently proposed HMC-based methods (Qin et al.,
2022; Kumar et al., 2022).

4 Presenters

• Afra Amini is a PhD student at ETH Zürich in
the ETH AI Center. Her current foci include
language generation and parsing.

• Ryan Cotterell is an assistant professor at
ETH Zürich in the Institute for Machine
Learning. His research focuses on a wide
range of topics, including information-
theoretic linguistics, parsing, computational
typology and morphology, and bias and
fairness in NLP systems.

• John Hewitt Is a PhD student at Stanford
University. His research tackles basic
problems in learning models from broad
distributions over language, characterizing
and understanding those models, and building
smaller, simpler models.

• Clara Meister is a PhD student at ETH
Zürich in the Institute for Machine Learning
and a Google PhD Fellow. Her current foci
include language generation, pyscholinguis-
tics, and the general application of statistical
methods to natural language processing.

• Tiago Pimentel is a PhD student at the Univer-
sity of Cambridge and a Facebook Fellow. His
research focuses on information theory, and
its applications to the analysis of pre-trained
language models and natural languages.

Diversity Considerations

As our tutorial focuses on language generation, we
will cover issues related to modeling and generat-
ing strings in languages which are typologically
different from English. Further, this tutorial was
developed by a group of researchers from three uni-
versities (Stanford, ETH and Cambridge), who are
originally from 3 continents (Asia, North America,
and South America). Lastly, it will discuss work
produced by authors spanning many institutions
and backgrounds (see § 3.5).
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