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1 Tutorial Overview

Teaching machines to reason over texts has been
a long-standing goal of natural language process-
ing (NLP). To this end, researchers have designed
a diverse set of complex reasoning tasks that in-
volve compositional reasoning (Geva et al., 2021;
Trivedi et al., 2022), knowledge retrieval (Yang
et al., 2018; Kwiatkowski et al., 2019), ground-
ing (Budzianowski et al., 2018; Xie et al., 2022;
Shi et al., 2021), commonsense reasoning (Talmor
et al., 2021a; Lin et al., 2020), etc.

A standard choice for building systems that per-
form a desired type of reasoning is to fine-tune a
pretrained language model (LM) on specific down-
stream tasks. However, recent research has demon-
strated that such a straightforward approach is
often brittle. For example, Elazar et al. (2021)
and Branco et al. (2021) show that, on question-
answering (QA) tasks, similar performance can be
achieved with questions removed from the inputs.
Min et al. (2019), Chen and Durrett (2019), and
Tang et al. (2021) show that models trained on
multi-hop QA do not generalize to answer single-
hop questions. The reasoning capabilities of these
models thus remain at a surface level, i.e., exploit-
ing data patterns. Consequently, augmenting LMs
with techniques that make them robust and effec-
tive becomes an active research area.

We will start the tutorial by providing an
overview of complex reasoning tasks where the
standard application of pretrained language mod-
els fails (in Sec 2). This tutorial then reviews
recent promising directions for tackling these
tasks (in Sec 3). Specifically, we focus on
the following groups of approaches that explic-
itly consider problem structures: (1) knowledge-
augmented methods, where the knowledge is ei-
ther incorporated during fine-tuning or pretrain-
ing; (2) few-shot prompting methods, which effec-
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tively guide the models to follow instructions; (3)
neuro-symbolic methods, which produce explicit
intermediate representations; and, (4) rationale-
based methods, one of the most popular forms
of the neuro-symbolic methods, which highlight
subsets of input as explanations for individual
model predictions. The tutorial materials are
online at https://wenting-zhao.github.
io/complex-reasoning-tutorial.

2 Problem Introduction

We will start with NLP tasks that require reason-
ing over multiple pieces of information in a pro-
vided context, covering various reasoning skills
such as fact composition, mathematical reason-
ing, inferring semantic structures, and reasoning
about entities (Yang et al., 2018; Yu et al., 2018;
Budzianowski et al., 2018; Dua et al., 2019; Ho
et al., 2020; Dasigi et al., 2019; Cobbe et al., 2021;
Trivedi et al., 2022). Then, we will discuss bench-
marks that combine multiple sources of informa-
tion (i.e., modalities), e.g., paragraphs, tables, and
images (Chen et al., 2020b; Talmor et al., 2021b;
Pasupat and Liang, 2015; Chen et al., 2020a).

We will present open-domain setups where exter-
nal knowledge should be integrated into the reason-
ing process (Geva et al., 2021; Onoe et al., 2021;
Ferguson et al., 2020; Talmor and Berant, 2018). In
addition, we will review tasks that require common-
sense reasoning (Talmor et al., 2021a; Rudinger
et al., 2020; Sap et al., 2019; Saha et al., 2021).

We will conclude this part by highlighting key
practices for dataset creation, that increase data
diversity and minimize annotation biases and rea-
soning shortcuts (Bartolo et al., 2020; Khot et al.,
2020; Geva et al., 2019; Parmar et al., 2022).

3 Approaches

(1a) Knowledge-Augmented Fine-Tuning Tack-
ling complex reasoning problems that require com-
monsense knowledge and entity-centric facts can
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benefit from access to external knowledge sources.
How to incorporate knowledge during fine-tuning
has thus been extensively studied. A general
method is to retrieving knowledge facts relevant
to given situations (e.g., questions) and fusing
them with an LM-based neural module. External
knowledge can be categorized into three forms:
structured (e.g., knowledge graphs like Concept-
Net (Speer et al., 2017)), unstructured (e.g., knowl-
edge corpora such as Wikipedia and Generic-
sKB (Bhakthavatsalam et al., 2020)), and instance-
based (i.e., annotated examples).

In this section, we will cover methods for these
three forms of knowledge in a variety of reasoning
problems. For structured knowledge, KagNet (Lin
et al., 2019) is a typical method that focuses on
fusing retrieved subgraphs from ConceptNet for
fine-tuning LMs to perform commonsense reason-
ing. Follow-up works include MHGRN (Feng
et al., 2020), QA-GNN (Yasunaga et al., 2021),
and GreaseLM (Zhang et al., 2022b). For unstruc-
tured knowledge, we will introduce methods that
encode a large knowledge corpus as neural mem-
ory modules to support knowledge retrieval for
reasoning. We will start with DPR (Karpukhin
et al., 2020), one of the most popular methods that
embed Wikipedia as a dense matrix of fact em-
beddings. Then, we will cover DrKIT (Dhingra
et al., 2020), which improves multi-hop reasoning
ability by encoding sparse entity mentions. Addi-
tionally, we introduce DrFact (Lin et al., 2021), a
fact-level extension for DrKIT that focuses on com-
monsense reasoning. For instance-based knowl-
edge, a promising direction, we will also intro-
duce methods such as RACo (Yu et al., 2022b),
ReCross (Lin et al., 2022), and QEDB (Chen et al.,
2022b), which aim to exploit annotated examples
to enhance reasoning.

(1b) Knowledge-Augmented Pretraining. Pre-
training performs self-supervised learning of repre-
sentations from large-scale data, which holds the
potential to help a broader range of downstream
tasks. We will review recent efforts to incorporate
knowledge and reasoning abilities into LMs during
pretraining. We first discuss retrieval-augmented
pretraining (Guu et al., 2020; Lewis et al., 2020a;
Borgeaud et al., 2021; Yasunaga et al., 2022b),
which retrieves relevant documents from an ex-
ternal memory and feeds them to the model as an
additional input. This helps not only knowledge-
intensive tasks but also some reasoning-intensive

tasks because the models learn to process multi-
ple documents for multi-hop reasoning (Yasunaga
et al., 2022b). We then discuss works that integrate
structured knowledge bases/graphs. For example,
some use knowledge graphs to make additional
pretraining objectives for LMs (Xiong et al., 2020;
Shen et al., 2020; Wang et al., 2021; Liu et al., 2021;
Yu et al., 2022a; Ke et al., 2021); others retrieve
and feed entity or knowledge graph information as
a direct input to the model (Zhang et al., 2019; Ros-
set et al., 2020; Liu et al., 2020; Sun et al., 2021;
Agarwal et al., 2021; Sun et al., 2020; He et al.,
2020; Yasunaga et al., 2022a). Recent works show
that these retrieved knowledge graphs can provide
LMs with scaffolds for performing complex rea-
soning over entities, such as logical and multi-hop
reasoning (Yasunaga et al., 2022a).

(2) Few-Shot Prompting Approaches. The rise
of large pretrained LMs, such as GPT-3 (Brown
et al., 2020), OPT (Zhang et al., 2022a), and
PaLM (Chowdhery et al., 2022), has unlocked
the potential of few-shot prompting methods for a
wide range of reasoning tasks. However, despite
their strengths, these LMs in the few-shot prompt-
ing mode have peculiar failure modes, especially
when it comes to complex reasoning tasks (Marcus,
2022). Further, the prompt has to be designed care-
fully, and it has been shown that seemingly innocu-
ous changes to the prompt (e.g., order of examples
or the format of text) can drastically impact the per-
formance (Le Scao and Rush, 2021; Mishra et al.,
2021). In response, several techniques have been
developed to make few-shot prompting methods to
be less susceptible to the exact prompt choice. This
section will cover both a high-level overview of
few-shot prompting and introduce specific classes
of techniques that can further improve the few-shot
prompting methods on complex reasoning tasks.

First, we will introduce prompt-design tech-
niques like chain-of-thought prompting (Wei et al.,
2022b) and least-to-most prompting (Wei et al.,
2022c), which encourage an LM to generate reason-
ing steps as part of the solution, helping with prob-
lem decomposition and enhanced reasoning. Next,
we will cover techniques that change the prompt
dynamically for each input query. The methods
covered in this part include selecting the training
examples in the prompt (Liu et al., 2022a) and edit-
ing the prompt to incorporate feedback received on
a similar-input (Madaan et al., 2022a).

Finally, we will cover techniques that lever-
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age code-generation models for complex reason-
ing tasks. Representative techniques in this part
will cover i) the use of code-generation model for
structured commonsense reasoning (Madaan et al.,
2022b), ii) algorithmic reasoning by expanding
detailed instructions in the prompt (Zhou et al.,
2022), and iii) generating chain-of-thought styled
reasoning chains in Python code to tackle complex
symbolic reasoning tasks (Gao et al., 2022).

(3) Neuro-Symbolic Approaches. Although per-
formance on NLP tasks is dominated by neural end-
to-end systems that directly map inputs to outputs
(Devlin et al., 2019; Raffel et al., 2020), these ap-
proaches lack interpretability and robustness. Sym-
bolic approaches, on the other hand, produce ex-
plicit intermediate reasoning trajectories such as
logical forms, reasoning paths, or program code,
which might then be executed to derive a final out-
put (Zettlemoyer and Collins, 2005; Chen et al.,
2019b, i.a.). Compared to both end-to-end and
chain-of-thought methods (Wei et al., 2022a, i.a.),
the reasoning processes produced by the symbolic
methods are interpretable, and the resulting execu-
tion makes them more robust to input changes.

Researchers (Andreas et al., 2016; Liang et al.,
2017; Gupta et al., 2019; Khot et al., 2021; Zhu
et al., 2022; Cheng et al., 2022; Gao et al., 2022;
Schick et al., 2023, i.a.) also propose to combine
neural modules and symbolic components to lever-
age advantages of both approaches. More specif-
ically, Neural-Symbolic Machines (Liang et al.,
2017) adopt a seq-to-seq model to generate pro-
grams and a Lisp interpreter that performs program
execution. (Chen et al., 2019b) designs a domain-
specific language for question answering over text.
BREAK (Wolfson et al., 2020) proposes a mean-
ingful representation, QDMR, that decomposes the
question into multiple steps. Thorne et al. (2021)
propose a mixed pipeline of logic forms and neural
networks, aiming at solving the scale problem and
noisy, messy data over a natural language database.

Another stream of works called neural module
networks (Andreas et al., 2016; Das et al., 2018;
Gupta et al., 2019) propose to generate symbolic
programs that are further softly executed by the cor-
responding neural modules. Khot et al. (2021) pro-
pose text module networks to solve complex tasks
by decomposing them into simpler ones solvable
by existing QA models and a symbolic calculator.
However, most prior neural-symbolic methods re-
quire the elaborate human design of the symbolic

language and the calibration of corresponding neu-
ral modules to tackle problems in a specific domain
with large training data. Recently, Cheng et al.
(2022) propose Binder, a new neural-symbolic sys-
tem based on GPT-3 Codex (Chen et al., 2021) that
supports flexible neural module calls that will en-
able higher coverage for the symbolic language,
while only requiring few annotations. Also, Gao
et al. (2022) introduce PAL, a new method based
on Codex that generates executable programs as
the intermediate reasoning steps and leverages a
Python interpreter to derive final answers.

This section will begin by discussing the high-
level comparison among the end-to-end, chain-of-
thought, symbolic (e.g., semantic parsing), and
neural-symbolic approaches. We will then move to
provide a high-level overview of different neural-
symbolic approaches. In this part, we will mainly
focus on neural-symbolic approaches with LMs.
Finally, we will cover recent techniques incorporat-
ing GPT-3 Codex in neural-symbolic approaches.

(4) Rationale-Based Approaches. Rationale-
based approaches extract parts of input to be rea-
soning certificates, offering end users a way to eval-
uate the trustworthiness of the predictions. Based
on reasoning types, rationales of different granular-
ity are identified – they can be tokens, sentences,
or documents (DeYoung et al., 2020; Kwiatkowski
et al., 2019). NLP systems can benefit from ratio-
nales in several ways. Yang et al. (2018) show that
providing rationales as additional supervision im-
proves models’ capacity to perform multi-hop rea-
soning. More recently, Chen et al. (2022a) demon-
strate the potential of using such methods to build
more robust NLP systems.

Existing methods for extracting rationales often
require supervision; they either apply multi-task
loss functions (Joshi et al., 2020; Groeneveld et al.,
2020), or design specialized network architectures
to incorporate inductive biases (Tu et al., 2019;
Fang et al., 2020). Because rationale annotations
are expensive to collect and not always available,
recent effort has been devoted to semi-supervised
and unsupervised methods. Chen et al. (2019a)
leverage entity taggers to build silver reasoning
chains used for rationale supervision. Glockner
et al. (2020) and Atanasova et al. (2022) design
unsupervised objectives for extracting rationales
in multi-hop QA systems. Finally, latent-variable
approaches are a natural fit for unsupervised learn-
ing (Lei et al., 2016; Zhou et al., 2020; Lewis et al.,
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2020b). By modeling rationales as a latent variable,
it provides a principled way to explicitly impose
constraints in the reasoning process.

3.1 Schedule
1. Introduction & Motivations (15 min.)
2. Benchmarks & Evaluation (25 min.)
3. Knowledge-augmented Fine-tuning (25 min.)
4. Knowledge-augmented Pretraining (25 min.)
5. Break (30 minutes)
6. Neuro-Symbolic Approaches (25 min.)
7. Few-shot Prompting Approaches (25 min.)
8. Rationale-Based Approaches (25 min.)
9. Concluding discussion (15 min.)

4 Instructor information
Wenting Zhao is a Ph.D. student in Computer
Science at Cornell University. Her research fo-
cuses on the intersection of reasoning and NLP.
She is especially interested in developing explain-
able methods for complex reasoning problems.
Mor Geva is a postdoctoral researcher, now at
Google Research and previously at the Allen In-
stitute for AI. Her research focuses on debugging
the inner workings of black-box NLP models, to
increase their transparency, control their operation,
and improve their reasoning abilities. She is orga-
nizing the next edition of the Workshop on Com-
monsense Reasoning and Representation.
Bill Yuchen Lin is a postdoctoral researcher at
the Allen Institute for AI. He obtained his Ph.D. at
USC advised by Prof. Xiang Ren. His research
goal is to teach machines to think, talk, and act with
commonsense knowledge and commonsense rea-
soning ability as humans do. He was a co-author of
the tutorial on Knowledge-Augmented Methods for
Natural Language Processing and the Workshop
on Commonsense Representation and Reasoning
at ACL 2022.
Michihiro Yasunaga is a Ph.D. student in Com-
puter Science at Stanford University. His research
interest is in developing generalizable models with
knowledge, including commonsense, science, and
reasoning abilities. He co-organized the Workshop
on Structured and Unstructured Knowledge Inte-
gration (SUKI) at NAACL 2022.
Aman Madaan is a Ph.D. student at the School
of Computer Science, Carnegie Mellon Univer-
sity. He is interested in large language models,
feedback-driven generation, and the intersection
of code generation and natural language reasoning.
He helped organize the 1st and 2nd Workshops

on Natural Language Generation, Evaluation, and
Metrics (GEM) at ACL 2021 and EMNLP 2022.
Tao Yu is an assistant professor of computer sci-
ence at The University of Hong Kong. He com-
pleted his Ph.D. at Yale University and was a post-
doctoral fellow at the University of Washington. He
works on executable language understanding, such
as semantic parsing and code generation, and large
LMs. Tao is the recipient of an Amazon Research
Award. He co-organized multiple workshops in
Semantic Parsing and Structured and Unstructured
Knowledge Integration at EMNLP and NAACL.

5 Other Information

Reading List Rogers et al. (2022); Storks et al.
(2019); Liu et al. (2022b); Lyu et al. (2022); Wiegr-
effe and Marasović (2021); Andreas et al. (2016);
Cheng et al. (2022); Gao et al. (2022).

Breadth We estimate that approximately 30% of
the tutorial will center around work done by the
presenters. This tutorial categorizes promising ap-
proaches for complex reasoning tasks into several
groups, and each of this group includes a significant
amount of other researchers’ works.

Diversity considerations The challenges of
building robust and generalizable NLP systems ex-
ist in every language. The methods covered in this
tutorial are language-agnostic and can be extended
to non-English context.

For instructors, they all have different affilia-
tions (i.e., Cornell, Google, Stanford, USC, HKU,
and CMU). They are three PhD students, two post-
doctoral researchers, and one assistant professor;
two of the instructors are female.
Prerequisites Following knowledge is assumed:

• Machine Learning: basic probability theory,
supervised learning, transformer models

• NLP: Familiarity with pretrained LMs; stan-
dard NLP tasks such as question answering,
text generation, etc.

Estimated number of participants 150.
Preferable venue ACL.
Targeted audience Researchers and practition-
ers who seek to develop a background in complex
reasoning tasks where standard application of pre-
trained language models fail. By providing a sys-
tematic overview of recent promising approaches
for these tasks, this tutorial hopefully reveals new
research opportunities to the audience.
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