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Abstract
The art of mathematical reasoning stands as a
fundamental pillar of intellectual progress and
is a central catalyst in cultivating human in-
genuity. Researchers have recently published
a plethora of works centered around the task
of solving Math Word Problems (MWP) — a
crucial stride towards general AI. These exist-
ing models are susceptible to dependency on
shallow heuristics and spurious correlations to
derive the solution expressions. In order to
ameliorate this issue, in this paper, we pro-
pose a framework for MWP solvers based
on the generation of linguistic variants of the
problem text. The approach involves solving
each of the variant problems and electing the
predicted expression with the majority of the
votes. We use DeBERTa (Decoding-enhanced
BERT with disentangled attention) as the en-
coder to leverage its rich textual representa-
tions and enhanced mask decoder to construct
the solution expressions. Furthermore, we in-
troduce a challenging dataset, PARAMAWPS,
consisting of paraphrased, adversarial, and in-
verse variants of selectively sampled MWPs
from the benchmark MAWPS dataset. We ex-
tensively experiment on this dataset along with
other benchmark datasets using some baseline
MWP solver models. We show that training on
linguistic variants of problem statements and
voting on candidate predictions improve the
mathematical reasoning and robustness of the
model. We make our code and data publicly
available.

1 Introduction

Math word problem solving is a long-standing re-
search problem in Artificial General Intelligence
(AGI) and a lot of studies about this topic, from
both industry and academia, have been published
recently. A typical Math Word Problem (MWP)
takes the form of a written narrative that articu-
lates a problem scenario and poses a question re-
garding one or more unknown quantities. A lan-
guage model capable of solving such problems has

Problem: 69 handbags are sold for $13 each. There are a
total of 420 handbags in a boutique and the remaining ha-
ndbags are sold for $7 each. How much did the boutique
earn after selling all the handbags?
Expression: x = 69× 13 + (420− 69)× 7
Solution: 3354

Table 1: An example of a Math Word Problem.

to translate the human-readable problem statement
to a valid mathematical expression that can be eval-
uated to obtain the numeric answer. An example
of a classic MWP is portrayed in Table 1, where
the reader is asked to infer the revenue of a bou-
tique shop. Such problems are generally found in
math textbooks of 1st to 8th grade students and are
easily solvable by humans with decent mathemati-
cal aptitude.

A lot of challenges manifest while designing
an automated system for solving these problems
(Zhang et al., 2019; Sundaram et al., 2022). The
primary challenge is to understand the quantities
in the problem and capture their complex mathe-
matical interconnections from a linear textual se-
quence written in natural language. There exists
a diverse range of MWPs with differing difficulty
levels, i.e., varying numbers of unknown values,
and depth of the relationships between quantities,
which require good mathematical reasoning abil-
ity to solve. Furthermore, the absence of crucial
information and the presence of irrelevant infor-
mation in the problem statements proves to be
quite a challenge for the solver models (Patel et al.,
2021). Other challenges include learning to tackle
the chronological and temporal ambiguities of the
events happening in the problem statements and
dealing with MWPs that significantly differ from
the training set in terms of semantic and syntactic
structure.

To address the problem outlined in Table 1, a
competent MWP solver model would need to pos-
sess the ability to associate the quantity, i.e., 69
handbags, with its price attribute of $13, and un-
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derstand the relative arithmetic order by deriving
351 remaining handbags, i.e., 420− 69, before as-
sociating the price attribute of $7. A lot of psycho-
logical studies have been done on how human be-
ings learn to solve mathematical problems and im-
prove their aptitude (Piaget, 2013; Peterson et al.,
2003; Kingsdorf and Krawec, 2016). The fron-
tier of research involving MWP solving is consid-
ered a momentous step towards the apogee of AGI
(Bubeck et al., 2023) and so researchers have dedi-
cated their efforts to replicating these complex cog-
nitive patterns exhibited by human beings within
the frameworks of AI models. The existing meth-
ods that are considered strong baselines for MWP
solving can be demonstrably shown to use shal-
low heuristics to solve many of the MWPs in the
benchmark datasets (Patel et al., 2021) creating a
faux impression of their mathematical reasoning
capability. To account for this limitation, in this
paper —

• We propose a framework for solving sim-
ple math word problems by generating para-
phrased linguistic variants of the input prob-
lem statement using OpenAI’s latest Genera-
tive Pre-trained Transformer (GPT-3) (Brown
et al., 2020) models, namely text-davinci-
003 and gpt-3.5-turbo. The problem state-
ment variants along with the original prob-
lem text then undergo the appropriate pre-
processing steps and are fed to an MWP
solver model with a DeBERTa-based encoder
and Enhanced Mask decoder.

• We also generate a large, augmented ver-
sion of the MAWPS (Koncel-Kedziorski
et al., 2016) dataset, namely PARAMAWPS
(Paraphrased MAth Word Problem Solving
Repository), as a challenging dataset by the
introduction of paraphrased structural varia-
tions of almost all categories of problems, but
emphasizing more on the categories that the
strong baseline models find difficult to solve.

DeBERTa (Decoding-enhanced BERT with dis-
entangled attention) (He et al., 2020) is currently
one of the most popular language models due
to its effectiveness in achieving state-of-the-art
results on a variety of natural language pro-
cessing tasks, including language translation,
text classification, and question answering. In
our work, we find that the DeBERTa model
achieves value accuracies of 63.5% and 91.0%

on the SVAMP dataset (Patel et al., 2021) and the
MAWPS dataset (Koncel-Kedziorski et al., 2016)
respectively. It falls behind the current SOTA
accuracy of ROBERTA-DEDUCTREASONER (Jie
et al., 2022) by a slight margin of 1 ± 0.20%
on the MAWPS dataset, but exceeds its accu-
racy of 47.3 ± 0.20% on the SVAMP dataset.
Our code and data are publicly available at —
https://github.com/Starscream-11813/
Variational-Mathematical-Reasoning

2 Problem Formulation

A Math Word Problem S is a sequence of word
tokens and numeric values, where the VS =
{v1, . . . , vm} denotes the word tokens in S and the
set nS = {n1, . . . , nl} denotes the set of numeric
quantities in S. The set of word tokens VS consists
of entities such as names of people, objects, units,
and rates while the set of quantities nS consists of
the numerical amount relevant to those entities.

The goal of an MWP solver model is to map S
to a valid mathematical expression E, consisting
of the quantities in (nS ∪ C), where C is a set of
constants, and the fundamental mathematical oper-
ators O = {+,−,×,÷}, which can be evaluated
to obtain the correct answer.

3 Literature Review

3.1 Math Word Problem Solving

3.1.1 Preliminary Works
The dawn of research on MWP solving was in
the mid-1960s (Feigenbaum et al., 1963; Bobrow,
1964). Rule-based methods (Fletcher, 1985; Bak-
man, 2007; Yuhui et al., 2010) are chronologi-
cally some of the earliest approaches to solving
MWPs. They use a set of manually hard-coded
rules about the language they are analyzing to find
out regularities in the data. Statistical methods
(Kushman et al., 2014; Hosseini et al., 2014; Roy
et al., 2015; Zhou et al., 2015; Mitra and Baral,
2016; Liang et al., 2016a,b) use generic ML clas-
sifiers to extract the entities, quantities, and opera-
tors from the problem statement and infer the nu-
meric answer with simple logic. Tree-based meth-
ods (Koncel-Kedziorski et al., 2015; Roy and Roth,
2016; Roy et al., 2016; Roy and Roth, 2017) utilize
the inherent binary tree-like structure of expres-
sions/equations. Other primitive categories of ap-
proaches that have now been rendered somewhat
obsolete are Parsing-based methods (Shi et al.,
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2015; Zou and Lu, 2019), Similarity-based meth-
ods (Huang et al., 2016), and Template-based
methods (Kushman et al., 2014; Zhou et al., 2015;
Roy et al., 2016; Upadhyay et al., 2016; Huang
et al., 2017).

3.1.2 Deep Learning-based Methods
Currently, the landscape of Deep learning mod-
els for the MWP solving task is primarily com-
prised of five distinct paradigms, SEQ2SEQ-
based, SEQ2TREE-based, GRAPH2TREE-based,
complex relation extraction-based, and Large Lan-
guage Model (LLM) prompt-based approaches,
each of which has demonstrated remarkable levels
of performance and efficacy. Wang et al. (2017)
were the pioneers of introducing deep learning to
solve MWPs with their proposed SEQ2SEQ model.
To improve the SEQ2SEQ model, researchers re-
sorted to alternative strategies, such as reinforce-
ment learning techniques (Wang et al., 2018b;
Huang et al., 2018), using dense problem repre-
sentation (Mishra et al., 2018), adopting template-
based methodologies (Wang et al., 2019), and in-
corporating group attention mechanisms (Li et al.,
2019). Xie and Sun (2019) were the progenitors
of the novel Goal-driven Tree-Structured (GTS)
model, designed to generate expression trees using
the tree-based decoder in order to imitate the goal-
driven problem-solving approach of humans. The
use of this tree decoder along with pre-trained lan-
guage models, such as BERT (Devlin et al., 2018),
BART (Lewis et al., 2019), RoBERTa (Liu et al.,
2019b), as the encoder in some of the SEQ2TREE

approaches (Liu et al., 2019a; Shen and Jin, 2020;
Wu et al., 2020; Lin et al., 2021; Shen et al.,
2021; Liang et al., 2021; Liang et al.; Li et al.,
2021; Xiong et al., 2022) brought about substan-
tial performance improvements over the previous
SEQ2SEQ methods. Cao et al. (2021) devised
a directed acyclic graph (SEQ2DAG) model of
the equations for the purpose of extracting the
expression. Zhang et al. (2020a) incorporated
the idea of Knowledge Distillation (KD) (Hinton
et al., 2015) in their proposed model where the
teacher network is pre-trained to guide the learn-
ing behaviors of the student networks. Yu et al.
(2021) introduced 2 types of encoders in their
model. Hong et al. (2021) modified the work of
Xie and Sun (2019) by incorporating a symbolic
reasoning based Learning-by-fixing (LBF) frame-
work. Huang et al. (2021) attempted to emulate
human-like analogical learning in their proposed

memory-augmented model. GRAPH2TREE-based
approaches (Zhang et al., 2020b; Li et al., 2020)
fused the merits of Graph-based Transformer (Yun
et al., 2019; Cai and Lam, 2020) encoders with
multiple Graph Convolutional Network (multi-
GCN) modules (Kipf and Welling, 2016), and tree-
based decoders to solve MWPs. Chatterjee et al.
(2021) introduced a weakly supervised approach
for MWP solving. Li et al. (2021) introduced a
contrastive learning approach with pattern diver-
gence to solve MWPs. Jie et al. (2022) formulated
the MWP solving task as a complex relation ex-
traction problem and leveraged explainable deduc-
tive reasoning techniques to iteratively construct
the target equations.

With the advent of LLMs, many innovative
prompt-based methods (Shao et al., 2022; Li et al.,
2022; Wang et al., 2022; Pi et al., 2022; Chen
et al., 2022; Liang et al., 2023) of solving MWPs
that capitalize on the models’ exceptional few-shot
learning capability came into the limelight and
demonstrated good performance across numerous
benchmark datasets. Cobbe et al. (2021) used ver-
ifiers with their GPT-3 (Brown et al., 2020) model.
Although LLMs excel at natural language under-
standing and have serendipitous emergent reason-
ing abilities (Yang et al., 2023), they are still
lackluster in complex reasoning tasks (Huang and
Chang, 2022). Numerous studies on complex rea-
soning tasks have empirically demonstrated that
the approach of fine-tuning smaller models is
more effective (Ho et al., 2022) than adopting
LLM prompting techniques like Chain of Thought
(CoT) prompting (Wei et al., 2022).

3.2 Paraphrasing

Paraphrase generation has garnered significant at-
tention from various NLP approaches, encompass-
ing rule-based methods (McKeown, 1980; Meteer
and Shaked, 1988), data-driven techniques (Mad-
nani and Dorr, 2010), linguistic translation meth-
ods (Bannard and Callison-Burch, 2005; Barzilay
and McKeown, 2001; Prakash et al., 2016) that
leverage bilingual corpora for iterative refinement
(Madnani and Dorr, 2010; Prakash et al., 2016;
Mallinson et al., 2017). Witteveen and Andrews
(2019) demonstrated the superiority of LLMs like
GPT-3 over the preceding methods in the para-
phrasing task.

Accordingly, our work attempts to leverage the
strengths of GPT-3 to generate a more linguisti-
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cally diverse pool of problem statements to fine-
tune a relatively smaller DeBERTa solver model
on the downstream task of MWP solving which
falls under the rubric of complex reasoning tasks.

4 Methodology

Figure-1 in Appendix-A shows an overview of our
proposed architecture. Given a problem statement
S, we prompt the paraphraser model to generate k
linguistic variants of S which are, S1, S2, . . . , Sk.
These k variant problems along with the seed prob-
lem S consists of quantities that are tagged appro-
priately using quantity tags. Each of the k+1 text
sequences is then tokenized and the content em-
beddings H and positional embeddings P of the
tokens are fed to the DeBERTa model. The dis-
entangled self-attention mechanism of DeBERTa’s
encoder utilizes H and P to generate the output
Houtput, which is a contextual representation of
the content of each problem statement. Houtput,
along with the relative positional embeddings P
and absolute positional embeddings I of each of
the problem statements are used by the Trans-
former layers of Enhanced Mask Decoder (EMD)
of DeBERTa to generate the k + 1 predicted equa-
tions E1, E2, . . . , Ek+1. These equations are then
simplified and the equation that is predicted the
most number of times is elected as the final predic-
tion of the model. This majority voting module is
used only during the validation/testing phase and
for inference. During the training phase, the k +
1 problem statements are deemed as stand-alone
training samples and the Negative Log-Likelihood
loss (NLLLoss) is calculated using the predicted
equations and the ground-truth equation. Conse-
quently, if the training set of the dataset used to
train the model consists of n samples, it is as if the
model is trained with (k + 1)× n = kn+ n sam-
ples. The knowledge points gathered after being
trained on an extra kn samples contributes to the
robustness of the model.

4.1 Paraphrasing Model

The task of correctly reformulating a Math Word
Problem statement requires a good level of lan-
guage understanding which is not present in its
entirety in rule-based and data-driven methods
of paraphrasing rendering them unsuitable in this
case. These methods frequently yield incorrect, in-
coherent, and grammatically inaccurate linguistic
variations; sometimes even leaving out crucial nu-

merical information. Accordingly, we choose text-
davinci-003 and gpt-3.5-turbo, two GPT-3 models
from OpenAI, as the paraphrasing models. GPT-
3 (Generative Pre-trained Transformer 3) (Brown
et al., 2020) is a large language model with 175
billion parameters, that is capable of performing a
wide range of natural language processing tasks,
including paraphrasing a given sentence. Upon
being prompted, it restates a given problem state-
ment in different words while still maintaining the
original meaning. To select the most appropri-
ate paraphrase, GPT-3 uses a scoring mechanism
that evaluates the semantic similarity between the
original sentence and each of the generated para-
phrases. The model assigns a higher score to para-
phrases that are more similar in meaning to the
input sentence, based on its understanding of the
context and the relationships between the words.
It also allows users to customize the level of com-
plexity and the style of writing in the paraphrased
version. We generate k variants of the original
problem text by prompting the model.

4.1.1 Prompts and System Task Description
The prompts that we use for accomplishing our lin-
guistic variant generation task are,

• system role Task Description —
You are a Math Word Problem rephraser that
generates variations of math word problem
statements.

• user role Prompts —

– Generate k1 paraphrased variations of
the problem by changing the sentence
structure.

– Generate k2 paraphrased variations of
the problem by changing the named
entities and objects.

– Generate k3 paraphrased variations of
the problem with irrelevant numerical
information.

Here, the total number of linguistic variants of a
problem, k = k1 + k2 + k3 and 5 ≤ k ≤ 15.

A detailed discussion on the types of problem
variations is delineated in Section-5.

4.2 Quantity Tagging
All the quantities (written either numerically or in
words) in every single variant of the problem along
with the original problem itself, are tagged with
unique quantity tags using RegEx and a Python
script which is provided in our GitHub repository
(see Section-1). This quantity tagging step ensures
that the same quantity is present in both the input
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as well as in the output. The quantity-tagged to-
kens have their own content and positional embed-
dings. For example, if the problem statement is,

“Melanie picked 4 plums, Dan picked 9
plums, and Sally picked 3 plums from
the plum tree. How many plums were
picked in total?"

then the quantity-tagged version of the problem
statement is,

“Melanie picked [Q1] plums, Dan
picked [Q2] plums, and Sally picked
[Q3] plums from the plum tree. How
many plums were picked in total?"

We use this quantity tagging for the ground truth
equation’s quantities as well.

4.3 Encoder
We use the pre-trained language model DeBERTa
(Decoding enhanced BERT with disentangled
attention). DeBERTa is a newly developed neural
language model by He et al. (2020) that is based
on the Transformer architecture. It boasts a signif-
icant advancement over previous state-of-the-art
(SOTA) pre-trained language models (PLMs) due
to the incorporation of two novel techniques. The
first technique is a disentangled attention mech-
anism and the second technique is an enhanced
mask decoder. Together, these techniques make
DeBERTa a highly effective PLM that outper-
forms its predecessors on a wide range of NLP
downstream tasks.

4.3.1 Disentangled Attention
Contrary to BERT, which utilizes a vector repre-
sentation for each word in the input layer by sum-
ming its content and position embeddings, in De-
BERTa, every word is represented by two separate
vectors that encode its content and position indi-
vidually. The attention scores between words are
computed using separate matrices that are disen-
tangled based on the content and relative position
of each word. This design choice is based on the
observation that the attention weight between a
pair of tokens is influenced by both their content
and in tandem their relative positions. This espe-
cially holds paramount importance for the task of
MWP solving as the relative positions of certain
keywords in the problem statements dictate the so-
lution.

To represent a token xi located at a specific posi-
tion i within a given sequence, it employs two dis-

tinct vectors, Hi and Pi|j , which are respectively
the content and relative positional representation
vectors of xi with respect to a token xj at position
j. The inter-token attention weights between xi
and xj can be broken down into four constituent
components,

Aij = ⟨Hi, Pi|j⟩ × ⟨Hj , Pj|i⟩⊤

= HiH
⊤
j︸ ︷︷ ︸

C2C

+HiP
⊤
j|i︸ ︷︷ ︸

C2P

+Pi|jH
⊤
j︸ ︷︷ ︸

P2C

+ Pi|jP
⊤
j|i︸ ︷︷ ︸

P2P
(omitted)

(1)

where, the four disentangled matrix attention
scores represent their contents and positions
as content-to-content (C2C), content-to-position
(C2P), position-to-content (P2C), and position-to-
position (P2P). The P2P portion of (1) is some-
what rendered obsolete since DeBERTa uses rela-
tive positional embedding which is why no useful
information can be extracted from it.

The self-attention mechanism described by
Vaswani et al. (2017) has 3 parameters, Q (Query),
K (Key), and V (Value). The non-contextual em-
bedding that is being contextualized at any point
requests for information from its surrounding to-
kens within the context window and that is repre-
sented by the query token, and the tokens that the
model pays attention to are the key tokens.

Qc = HWcQ ,Kc = HWcK , Vc = HWcV

Qr = PWrQ ,Kr = PWrK

(2)

where, WcQ ∈ Rd×d, WcK ∈ Rd×d, WcV ∈
Rd×d are the projection weight matrices for the
projected content vectors Qc, Kc, Vc respectively.
Similarly, WrQ ∈ Rd×d and WrK ∈ Rd×d play
the role of projection matrices for the projected
relative position vectors Qr and Kr. The metric
to calculate the relative distance between tokens
xi and xj is,

δ(i, j) =





0, if i− j ≤ k

2k − 1, if i− j ≥ k

i− j + k, otherwise
(3)

which implies, δ(i, j) ∈ [0, 2k). Each element
Āij of the attention matrix Ā denotes the atten-
tion score from token xi to the token xj and is
computed using the vectors defined in (2) in the
following manner,

Āij = Qc
iK

c⊤
j︸ ︷︷ ︸

C2C

+Qc
iK

r⊤
δ(i,j)︸ ︷︷ ︸

C2P

+Kc
jQ

r⊤
δ(j,i)︸ ︷︷ ︸

P2C

(4)

The attention score is yielded using the dot-
product of the query and key in the formula to let
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the model have an idea of how similar the key is to
the query. The output of the self-attention mecha-
nism, which is denoted by Houtput ∈ RN×d is,

Houtput = softmax

(
Ā√
3d

)
Vc (5)

The result of the dot-product is normalized by di-
viding with

√
3d to avoid very hard softmax with

small gradients, which is especially required for
training stability in the case of large-scale PLMs
(Vaswani et al., 2017; He et al., 2020).

4.4 Decoder

He et al. (2020) postulates that the premature inte-
gration of absolute positions, which is employed
by BERT (Devlin et al., 2018) in its decoding
phase, could potentially impede the model’s abil-
ity to acquire adequate knowledge of relative po-
sitions. With this as the justification, DeBERTa,
being a model that was pre-trained using MLM
(Masked Language Modeling), uses the absolute
positions of the tokens in the penultimate layer,
right before the softmax layer during the masked
token prediction in its decoding phase. This en-
ables all the Transformer layers in the decoder to
work with the relative positional information with-
out the susceptibility of hampering the learning
process of the model. Since the absolute positions
of the tokens in a sentence highly influence the
nuanced understanding of the sentence’s semantic
and syntactic structure, and extracting information
from only the relative positions isn’t sufficient, the
absolute positions are incorporated in the tail-end
of the pipeline in the case of DeBERTa. This is
why DeBERTa’s decoding module is dubbed an
Enhanced Mask Decoder (EMD) and it demon-
strably outperforms the decoder counterparts of its
predecessor PLMs (He et al., 2020).

4.5 Majority Voting

Since there can be multiple valid equations for
a single MWP, each of the k + 1 predictions
from the decoder, E1, E2 . . . , Ek+1, is simplified
to a reduced normal form using the python pack-
age sympy1. These k + 1 simplified predictions,
E′

1, E
′
2 . . . , E

′
k+1, are then counted and the predic-

tion that is the most frequent or that is yielded the
most number of times is elected as the final an-
swer of the whole solver model. It is to be noted
that this voting mechanism is used only during the

1https://www.sympy.org/en/index.html

testing/validation phases or during inference.

E∗ ← argmax
E′

Votes(E′
i); i = 1, 2, . . . , k + 1

(6)

5 Experiment

5.1 Data Acquisition
We introduce a new large-scale dataset, namely
PARAMAWPS (Paraphrased MAth Word
Problem Solving Repository), consisting of
16,278 single equation MWPs. It is gener-
ated as a by-product of using one of the most
commonly-used English MWP datasets, MAWPS

(Koncel-Kedziorski et al., 2016) which consists
of a total of 2,373 problems, and the paraphraser
model. We save the generated paraphrased vari-
ants of selectively sampled problems of MAWPS

and also manually include inverse versions of the
problems to create our dataset. The dataset con-
tains all the problems from the original MAWPS

dataset as well as paraphrased versions of some
of the more challenging problems within MAWPS,
hence the name, PARAMAWPS. The samples are
manually checked for correctness by 3 under-
graduate students. By generating variations of
some of the more difficult problems, we intend to
increase familiarity of challenging concepts found
within those problems to any model trained over
this data, as well as more thoroughly challenge
existing models trained on datasets that do not
provide said complexity at an equal or higher
density. We generate k problems from each seed
problem in the dataset, adding up to a total of
k + 1 problems, where 5 ≤ k ≤ 16. Each of the
k generated problems will be a variation on the
original that will feature several changes to the
problem text. We generate 4 types of variations of
each seed problem (see Table-7 in Appendix-A).

• Changed phrase order — Variations with
the order of the phrases being changed facili-
tate a break from the standard problem state-
ment template where quantities are generally
given before the question formulation. Hav-
ing a changed ordering of phrases makes apri-
ori question formulations more common.

• Changed object and entity names — Ob-
ject and entity names are altered with inter-
changeable alternatives (names, synonyms)
in problem variations to prevent fixation on
elements of the problem mostly agnostic to
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the process of solving the problem. It also
serves to prevent an increase in density for
similar terms that originate from the seed
problem yielding good problem samples for
language models (Lee et al., 2021).

• Added unrelated information — Some vari-
ations contain an extra phrase or quantity, or
similar additions that are in excess of the in-
formation required to solve a problem and do
not affect the original problem formulation in
any meaningful way. These adversarial vari-
ations serve to obfuscate and familiarize the
models with only the necessary information,
enhancing deductive abilities (Kumar et al.,
2021).

• Inverted question — Some variations will
take a previously known quantity and turn
it into an unknown quantity while revealing
the previous unknown quantity of the prob-
lem. This, in many cases, alters the question
drastically, changing the needed calculations
and equations, while keeping a roughly sim-
ilar question body to the seed problem. Liu
et al. (2021) used such problem samples in
their work.

5.1.1 Seed Problems
Many of the seed problems used to generate vari-
ations from MAWPS pose sufficient difficulty to
even SOTA MWP solvers and often contain nu-
meric information embedded within the statement
itself. An example is the following problem,

"Mary, Sam, Keith, and Alyssa each
have 6 marbles. How many marbles do
they have in all?"

This problem yields the equation "x = 4× 6", de-
spite the quantity 4 not being mentioned anywhere
in the statement. This quantity had to be inferred
from the other parts of the statement itself, namely,
the 4 entities referred to in the statement; Mary,
Sam, Keith, and Alyssa. Another such problem is,

"When the price of diesel rose by 10%,
a user reduced his diesel consumption
by the same amount. How much would
his diesel bill change in terms of percent-
age?"

which yields the complex equation of "x = (1.0−
((1.0+(10.0×0.01))× (1.0− (10.0×0.01))))×
100.0". This problem, although seemingly simple

on the surface in terms of quantities described, has
several calculations dictated through the problem
statement, some of which require additional real-
world anecdotal knowledge, such as the conver-
sion of percentages. Another problem with similar
inferences of a more complex nature is,

"Lauren wants to mix 5 liters of 7% milk
with skim-milk (0% fat) to produce a
mixture of 2.9787% milk. How much
skim-milk should Lauren add?"

yielding the equation "x = (7.0 × 0.01) ×
5.0/(2.9787 × 0.01) − 5.0", containing similar
conversions of percentages, as well as additional
knowledge of types of mixtures. Here, 7% milk
is mixed with pure milk, or 100% milk. Yet the
only indication that the milk is of 100% purity is
nowhere to be seen in a direct capacity in the prob-
lem, but rather in a roundabout way - by referring
to the amount of fat (0%) rather than the purity
of the milk. Models have to infer a vast amount
of real-world contextual knowledge to be able
to solve such problems. Problems with second-
degree unknown quantities are also present as seed
problems. For example, the problem

"The Hudson River flows at a rate of 3
miles per hour. A patrol boat travels 60
miles upriver and returns in a total time
of 9 hours. What is the speed of the boat
in still water?"

that yields the equation "(60.0/(x − 3.0)) +
(60.0/(3.0+x)) = 9.0", which is a quadratic equa-
tion. The problem itself deals with calculations of
speed, which requires knowledge of how speed is
calculated given certain quantities, as well as the
effect of certain elements in the problem scenario
on speed.

We resort to this data generation approach due
to the lack of large-scale, diverse, single-equation
English MWP datasets. Other commonly-used
benchmark datasets, MATH23K (Wang et al.,
2017) and APE210K (Liang et al., 2021) consist
of math problems written in Chinese Mandarin.
We also aim to diversify the samples in MAWPS

to enable better training for MWP solvers (Schick
and Schütze, 2021; Kumar et al., 2022). SVAMP,
created by Patel et al. (2021) consists of chal-
lenging versions of problems and is considered a
challenge set for testing the robustness of MWP
solvers. We use the original version of MAWPS

and SVAMP along with our dataset PARAMAWPS
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for conducting our experiments. A comparative
summary of the statistics of the datasets used is
shown in Table-2 and their operator count distribu-
tions are portrayed in Figure-2.

Properties SVAMP MAWPS PARAMAWPS
# of problems 1,000 2,373 16,278

# of unique templates 27 159 215
Avg. # of operators 1.236 1.606 1.68

Avg. # of quantities per prob. 2.81 2.57 2.54
Avg. # of quantities per equ. 2.23 2.59 2.67
# of problems with constants 0 185 3313

Table 2: Comparison of the datasets used.

5.2 Model Implementation Details and
Training

5.2.1 Baseline Models
We implement the DeBERTa model using Mi-
crosoft’s deberta-base that is publicly available in
Hugging Face2. The other baseline MWP solver
models are implementations already available in
the open-source MWPToolkit3 developed by Lan
et al. (2022). We use an extensive set of base-
line models, Transformer (Vaswani et al., 2017),
DNS (Wang et al., 2017), MathEN (Wang et al.,
2018a), GroupATT (Li et al., 2019), RNNEncDec
(Sutskever et al., 2014), RNNVAE (Su et al.,
2018), BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019b), and compare them with the perfor-
mance of the DeBERTa model. See Appendix-A
for more training process details.

5.3 Result Analysis

Methods MAWPS†

(%)
SVAMP

(%)
PARA-

MAWPS†

(%)

DNS 59.5 22.1 71.2
Math-EN 69.2 21.8 71.6
GROUP-ATT 76.1 19.2 70.8
RNNEncDec 79.4 25.4 73.6
RNNVAE 79.8 25.9 72.8
Transformer 85.6 20.7 64.6
BERT 86.9 24.8 72.1
RoBERTa 88.4 30.3 72.5
DeBERTa 90.7 63.5 74.1
DeBERTaPM + VM 91.0 - -
DeBERTaVM - - 79.1

Table 3: Value accuracy of the DeBERTa model and
various baseline models. † denotes 5-fold cross val-
idation. PM stands for Paraphrasing Model and VM
stands for Voting Mechanism.

Table-3 shows the performance comparison of
the DeBERTa model and the baseline models men-
tioned in Section-5.2.1. The DeBERTa model cou-
pled with the Paraphrasing model and the Voting

2https://huggingface.co/microsoft/deberta-base
3https://github.com/LYH-YF/MWPToolkit/

Mechanism outperforms all the baseline models
in the MAWPS (Koncel-Kedziorski et al., 2016)
dataset with an accuracy of 91.0%. The Paraphras-
ing Model and the Voting Mechanism contributed
to a 0.3% increase in accuracy. The vanilla De-
BERTa model also outperforms the baseline mod-
els in our PARAMAWPS dataset by boasting an
accuracy of 74.1%. With the voting mechanism
at the tail-end of the pipeline, we are able to yield
an improvement of the accuracy by 5.04% mak-
ing the accuracy 79.1%. We test the robustness
of the vanilla DeBERTa model on the SVAMP

(Patel et al., 2021) challenge dataset and get an
accuracy of 63.5% which is quite higher than
that of the other baseline models. The model
still lags a mere 1 ± 0.20% behind the current
SOTA model on MAWPS, which is the ROBERTA-
DEDUCTREASONER model by Jie et al. (2022)
(92.0 ± 0.20%) but supersedes its accuracy of
47.3± 0.20% on the SVAMP dataset.

The superiority of the model’s accuracy in
PARAMAWPS over SVAMP, despite the demon-
strably greater difficulty of the MWP samples in
PARAMAWPS, indicates that training a language
model on a more diverse set of linguistically varied
problem statements leads to a better quality math-
ematical reasoning ability after the training phase.

5.4 Ablation Study

To gain insights into the individual contributions
of the Paraphrasing Model and Voting Mechanism
in conjunction with the DeBERTa model, we per-
form ablation studies. Table-4 shows the effect of

# of variants MAWPS† (%)
w/ k = 0 90.7
w/ k = 5 90.4
w/ k = 10 90.8
w/ k = 15 91.0

Table 4: Value accuracy with different numbers of lin-
guistic variants of the problem samples. † denotes 5-
fold cross validation.

Voting Mechanism PARAMAWPS† (%)
w/o VM 72.9, 74.1, 76.5, 72.1, 74.6
w/ VM 78.5, 77.8, 82.4, 77.2, 79.5

Table 5: Effect of Majority Voting on Value accuracy
across all 5 folds. † denotes 5-fold cross validation.

increasing the number of generated problem vari-
ants to infer the solution expressions of the prob-
lem samples in the MAWPS dataset’s test set. Al-
though there is a slight decrease in the accuracy for
k = 5, we see a minuscule increase in accuracy for
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k = 10 and k = 15. In Table-5 we see the impact
of the Voting Mechanism which contributed to a
5.4% increase on average in the accuracy of the
DeBERTa model on the PARAMAWPS dataset.

5.5 MWP Task Performance Analysis of
Large Language Models

To test out the assertion made in other studies
(Huang and Chang, 2022; Ho et al., 2022) about
the incompetence of LLMs in complex reasoning
tasks compared to fine-tuned smaller models, we
use the GPT-J model and some of the presently
used GPT-3 models by OpenAI to perform the
task of MWP solving. We use the original ver-
sion of MAWPS (Koncel-Kedziorski et al., 2016)
along with our dataset PARAMAWPS for testing
the mathematical reasoning of these models.

Models MAWPS†

(%)
PARA-

MAWPS†

(%)

GPT-J (6B) 9.9 5.9
text-babbage-001 (6.7B) 2.76 3.21
text-curie-001 (13B) 4.09 4.20
gpt-3.5-turbo (175B) 80.3 73.0

Table 6: Value accuracy of the LLMs in a zero-shot
setup testing. † denotes evaluation on the whole
dataset.

One of the most capable models in the GPT-3.5 se-
ries of models is text-davinci-003, with 175 billion
parameters and the ability to follow instructions
consistently and produce lengthy outputs. How-
ever, the most capable and up-to-date model ac-
cording to OpenAI is gpt-3.5-turbo, with 175 bil-
lion parameters, which is primarily optimized for
chat completions but can be tweaked to follow
more specific instructions similar to text-davinci-
003. While all models used are instructed to out-
put in a specific format — ‘Answer: [ANS]’ with
just the numerical value in the place of ‘[ANS]’,
the ability to do so consistently deteriorated with
the models with relatively fewer parameters. Out
of the base GPT-3 models, the 13 billion parame-
ters text-curie-001 can output in the given format
relatively consistently, text-babbage-001 with 6.7
billion parameters can occasionally produce the
output in the correct format, but tries to generate
full sentences more often than not, whereas the
350 million parameters text-ada-001 can barely
generate a single output in the correct format,
choosing to generate full sentences almost all of
the time. Models tend to try to ‘work through’ the
problem in text form rather than just generating
the output, although with gpt-3.5-turbo this can

be mostly mitigated by using very specific instruc-
tions for the prompt. The results in Table-6 and
Table-3 support the current weakness of LLMs
in mathematical reasoning tasks and the suitabil-
ity of fine-tuning smaller models. It indicates the
improvement in performance for a well-reasoning,
but comparatively small model when it has the op-
tion to democratically choose from a substantial
number of solution guesses.

6 Conclusion and Future Work
In this paper, we propose the idea of an MWP solv-
ing framework that utilizes the paraphrased lin-
guistic variations of problem texts to train a De-
BERTa model that generates candidate solution
expressions and finalizes the predicted math ex-
pression by employing majority voting on a set
of simplified candidate expressions. Our find-
ings demonstrate that incorporating linguistic vari-
ants of problem statements during training and
utilizing a voting mechanism for candidate pre-
dictions enhance the model’s mathematical rea-
soning and overall robustness. We also intro-
duce a large-scale, diverse, and challenging single-
equation MWP dataset, PARAMAWPS, consisting
of paraphrased, inverse, and adversarial variants of
selectively sampled datapoints from MAWPS, as a
formidable evaluation test-bed and a proper bench-
mark for training MWP solver models. We wish to
experiment further with harder problem text vari-
ations (e.g. grammatical errors) and conduct a
thorough error analysis of the models for identify-
ing their lapses in mathematical reasoning and dis-
covering more scopes of improvement. We also
aim to expand our research to encompass the in-
tricate realms of multi-equation, multi-step deduc-
tion, and domain-knowledge problems. We hope
our approach and findings will pave the way to
more scholarly works on the vistas of AGI and in
tandem be deemed a noteworthy and meaningful
contribution to this domain of research.

7 Limitations

There are still some avenues of improvement in
our work. The temporal overhead due to the prob-
lem variant generation by the paraphraser model
may make our proposed architecture unsuitable
for real-world applications even though it takes
merely 10 to 12 seconds to generate k = 5 vari-
ants for a single sample. Another limitation of
our work is the absence of a proper tie-breaking
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strategy in our Majority Voting module. Further-
more, we need to introduce a system of weighted
votes (e.g. semantic similarity scores as weights)
so that the votes of wrongly predicted equations
don’t trump that of correctly generated predictions.
We also plan to incorporate and experiment with
the Tree-based decoder (Xie and Sun, 2019) in our
proposed pipeline.
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A Appendix

A.1 Dataset Split

We use an 80:10:10 train-validation-test split for
our PARAMAWPS dataset. For MAWPS, we use
5-fold cross-validation using the splits provided by
its authors Koncel-Kedziorski et al. (2016). The
SVAMP dataset is a challenge set and all 1,000 of
its samples constitute the test set while the model
itself is trained on a combination of the MAWPS

and ASDIV-A (Miao et al., 2021) dataset.

A.2 Performance Evaluation and Metric

We use Negative log-likelihood loss (NLLLoss)
for training all the models. For the baseline mod-
els, MWPToolkit uses two metrics of accuracy,
Equation Accuracy and Value Accuracy. Equation
accuracy measures the correctness of the gener-
ated equation. Value accuracy measures the cor-
rectness of the value yielded from evaluating the
generated equation. This metric takes into con-
sideration the fact that models may generate equa-
tions that have a different template than the respec-
tive ground truth equations but nevertheless yield
the correct answers to the problem statements.

A.3 Hyperparameters

In the DeBERTa model, we use embedding dimen-
sion d = 768, FFNsize = 1024, number of de-
coder layers N = 4, number of attention heads
h = 16, dropout ratio Pdrop = 0.5, learning rate
lr = 10−5, batch size b = 8, and Epochs = 200.
The hyperparameters for the other baseline models
are as set on the respective MWPToolkit implemen-
tations.

A.4 Optimizer

We use Adam (Kingma and Ba, 2014) with a
StepLR learning rate scheduler as our optimizer.
The learning rate lr is set according to Vaswani
et al. (2017), lr = d−0.5 · min(n−0.5, n · w−1.5)
where, d is the embedding dimension, n is the step
number and w is the number of warm-up steps.
Here, warm-up steps w simply insinuate that the
learning rate rises linearly for the initial w training
steps. We set β1 = 0.9, β2 = 0.999, ϵ = 10−8

and w = 1500 for the models’ Adam optimizer.
For the StepLR scheduler, we set γ = 0.5 and
step_size = 5.
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A.5 Hardware and Schedule
We have used the NVIDIA RTX 3090 GPU
equipped with 25GB of VRAM and Intel Core i9
Processor for conducting our experiments. The
DeBERTa model took around 18 hours to fully
train on the PARAMAWPS dataset with 5-fold
cross-validation and 200 epochs per fold, which
was the highest expense of time among the lot.
The other baseline models took approximately 7 to
9 hours on the PARAMAWPS dataset and around
5 hours on MAWPS and SVAMP. The greater the
number of parameters that a model possesses the
more time it takes to fully complete the 5-fold
training process. As DeBERTa has an astounding
134 million parameters (He et al., 2020), it takes
the longest time to train.
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Figure 1: Overview of our proposed architecture.
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Variation
Type Original Variation

Changed
phrase order

There were originally 20817 houses in Lincoln
County. During a housing boom, developers built
97741. How many houses are there now in Lin-
coln County?

How many houses are there in Lincoln County
now, after developers built an additional 97741
during a housing boom, when there were origi-
nally 20817 houses?

Changed
object and

entity names

While playing a trivia game, Mike answered 3
questions correct in the first half and 5 questions
correct in the second half. If each question was
worth 3 points, what was his final score?

While playing a game of Hangman, Emily guessed
3 letters correctly in the first half and 5 letters cor-
rectly in the second half. If each letter was worth
3 points, what was her final score?

Added
unrelated

information

A carpenter bought a piece of wood that was 8.9
centimeters long. Then he sawed 2.3 centimeters
off the end. How long is the piece of wood now?

A carpenter bought a piece of wood that was 8.9
centimeters long. Then he sawed 2.3 centimeters
off the end and sanded the wood for 20 minutes.
How long is the piece of wood now?

Inverted
question

Mary bought 3 pizzas for $8 each. What was the
total amount she paid for the 3 pizzas?

If Mary paid $24 for 3 pizzas, how much did she
pay for each pizza?

Table 7: Types of Variations with examples. The problems in the Original column are samples taken from the
MAWPS dataset, whereas, the ones in the Variation column are from the PARAMAWPS dataset.

Figure 2: Operator count distributions of PARA-
MAWPS, MAWPS, and SVAMP. We keep the distri-
bution of PARAMAWPS somewhat similar to that of
MAWPS to maintain a proper balance between easy and
difficult problems.
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