
Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 298–309

July 10-12, 2023 ©2023 Association for Computational Linguistics

LECO: Improving Early Exiting via Learned Exits and Comparison-based
Exiting Mechanism

Jingfan Zhang1, Ming Tan2, Pengyu Dai3,4, Wei Zhu5∗
1 University of Ottawa, Canada

2 Southern University of Science and Technology, China
3 Chongqing University of Post and Telecommunication, China

4 Brunel University, London
5 East China Normal University, China

Abstract

Recently, dynamic early exiting has attracted
much attention since it can accelerate the in-
ference speed of pre-trained models (PTMs).
However, previous work on early exiting has ne-
glected the intermediate exits’ architectural de-
signs. In this work, we propose a novel frame-
work, Learned Exits and COmparison-based
early exiting (LECO) to improve PTMs’ early
exiting performances. First, to fully uncover
the potentials of multi-exit BERT, we design a
novel search space for intermediate exits and
employ the idea of differentiable neural archi-
tecture search (DNAS) to design proper exit
architectures for different intermediate layers
automatically. Second, we propose a simple-
yet-effective comparison-based early exiting
mechanism (COBEE), which can help PTMs
achieve better performance and speedup trade-
offs. Extensive experiments show that our
LECO achieves the SOTA performances for
multi-exit BERT training and dynamic early
exiting.

1 Introduction

Despite achieving state-of-the-art (SOTA) perfor-
mances on almost all the natural language process-
ing (NLP) tasks (Lin et al., 2021), large pre-trained
language models (PLMs) still have difficulty be-
ing applied to many industrial scenarios with low
latency requirements. Many research works are de-
voted to speeding up the inference of BERT or other
PLMs, such as network pruning (Zhu and Gupta,
2017; Xu et al., 2020a; Fan et al., 2019; Gordon
et al., 2020), student network distillation (Sun et al.,
2019; Sanh et al., 2019; Jiao et al., 2020), and early
exiting (Teerapittayanon et al., 2016; Xin et al.,
2020; Kaya et al., 2019; Xin et al., 2021). Due
to its potential in applications, early exiting has
attracted much attention in the research field (Xu
et al., 2021a). Early exiting requires a multi-exit

∗Corresponding author: michaelwzhu91@gmail.com

BERT, a BERT backbone with an intermediate clas-
sifier (or exit) installed on each layer. And then, a
dynamic early exiting mechanism is applied during
the forward pass to ensure efficient inference. Early
exiting is in parallel with and can work together
with static model compression methods (Tambe
et al., 2020). However, the literature focuses less on
the training of multi-exit BERT (Teerapittayanon
et al., 2016; Xin et al., 2020; Liu et al., 2020; Xin
et al., 2021) and there is no literature systematically
discussing the architectural design of the interme-
diate exits.

In this work, we propose a novel framework,
Learned Exits and COmparison-based Early exit-
ing (LECO), designated to discover the full poten-
tials of multi-exit BERT in early exiting. First, we
design a suitable and comprehensive search space
for architectural learning of the intermediate exits
(see Figure 1). Our search space contains candidate
activation functions, encoding operations, and pool-
ing operations. We follow the differentiable neural
architecture search (DNAS) framework like Liu
et al. (2019a); Xie et al. (2019); Chen et al. (2021)
to learn a set of intermediate exits with different
architectures automatically. Second, reflecting on
the limitations of the patience-based early exiting
method PABEE (Zhou et al., 2020), we propose
a comparison-based early exiting (COBEE) mech-
anism. COBEE makes early exiting decisions by
comparing the predicted distributions of adjacent
intermediate layers.

We conduct extensive experiments and ablation
studies on the GLUE benchmark (Wang et al.,
2018). We show that learned intermediate exits of
LECO outperform the previous SOTA multi-exiting
BERT training methods while adding fewer train-
able parameters. Furthermore, our novel dynamic
early exiting mechanism COBEE outperforms the
previous SOTA early exiting mechanisms. Fur-
ther analysis shows that: (a) our LECO framework
can help to boost the performance of multi-exiting

298

Figure 1: The overall framework of our LECO framework. Left: We compare the predicted distributions of adjacent
PTMs’ intermediate layers for mining exiting signals. Middle: the general architecture of intermediate exits. Right:
Each edge in the the search cell is a weighted sum of multiple operations under the DNAS framework.

BERT under different training strategies. (b) our
novel dynamic early exiting strategy outperforms
the baseline early exiting methods.

Our contributions are as follows:

• We propose a novel framework, LECO, which
constructs a search space for intermediate ex-
its and employs a DNAS framework to learn
the suitable exits for different layers.

• We propose a novel comparison-based early
exiting criterion which can achieve better
quality-speed tradeoffs for PTMs.

• We conduct experiments to show that our
LECO achieves SOTA performances for multi-
exit BERT training.

2 Related Work

2.1 Inference acceleration methods

Since the rise of BERT, there are quite large
numbers of literature devoting themselves to speed-
ing up the inference of BERT. Standard method
include direct network pruning (Zhu and Gupta,
2017; Xu et al., 2020a; Fan et al., 2019; Gordon
et al., 2020), distillation (Sun et al., 2019; Sanh
et al., 2019; Jiao et al., 2020), Weight quantiza-
tion (Zhang et al., 2020b; Bai et al., 2020; Kim
et al., 2021) and Adaptive inference (Zhou et al.,
2020; Xin et al., 2020; Liu et al., 2020). Among
them, adaptive inference has drawn much atten-
tion. Adaptive inference aims to deal with simple
examples with only shallow layers of PLMs, thus

speeding up inference time on average.
Early exiting requires a multi-exit model, like a

BERT backbone with an intermediate classifier (or
exit) installed on each layer. Early exiting literature
mainly focuses on the development of the early exit-
ing strategies, that is, determining when an interme-
diate exit’s prediction is suitable as the final model
prediction. Score based strategies (Teerapittayanon
et al., 2016; Xin et al., 2020; Kaya et al., 2019;
Xin et al., 2021), prior based strategies (Sun et al.,
2022) and patience based strategies (Zhou et al.,
2020) have been proposed. Teerapittayanon et al.
(2016) uses the entropy of an intermediate layer’s
predicted distribution to measure the in-confidence
level and decide whether to exit early. PABEE asks
the model to exit when the current layer’s predic-
tion is the same with the previous layers.

Our work complements the literature on early
exiting by proposing the LECO framework to im-
prove early exiting performance via the automatic
architectural design of exit architectures and a
novel early exiting mechanism.

2.2 Neural architecture search
With the rapid development and wide in-

dustrial applications, researchers have devoted
great effect in manually designing neural ne-
toweks (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016; Huang et al.,
2017; Wang et al., 2022). The trend is to stack
more and more convolutional or transformer layers
to construct a deep network. Recently, when trying

299

to avoid manual architecture design, researchers
started considering developing algorithms to de-
sign neural networks automatically. Thus, a new
research sub-field of automated machine learning
(AutoML) (He et al., 2021) called neural architec-
ture search is established (Zoph and Le, 2017).

In the early attempts, NAS requires massive com-
putations, like thousands of GPU days (Zoph and
Le, 2017; Zoph et al., 2018; Liu et al., 2018). Re-
cently, a particular group of one-shot NAS, led by
the seminal work DARTS (Liu et al., 2019a) has
attracted much attention. DARTS formulates the
search space into a super-network that can adjust
itself in a continuous space so that the network
and architectural parameters can be optimized al-
ternately (bi-level optimization) using gradient de-
scent. A series of literature try to improve the
performance and efficiency of DARTS. SNAS (Xie
et al., 2019) reformulate DARTS as a credit assign-
ment task while maintaining the differentiability. P-
DARTS (Chen et al., 2021) analyze the issues dur-
ing the DARTS bi-level optimization, and propose
a series of modifications. PC-DARTS (Xu et al.,
2021b) reduces the memory cost during search by
sampling partial channels in super-networks. Fair-
DARTS (Chu et al., 2021) change the softmax op-
erations in DARTS into sigmoid and introduce a
penalty term to prune the architectural parameters
according to the demand. Gao et al. (2020) make
the hyper-network more close to the discretized
sub-network by penalizing the entropy of the archi-
tecture parameters.

Our work contributes to the NAS literature by
investigate the architectural search of intermediate
exits to improve the early exiting performances.

3 Preliminaries

In this section, we introduce the necessary back-
ground for BERT early exiting. we consider the
case of multi-class classification with K classes,
K = {1, 2, ...,K}. The dataset consists of N
samples {(xi, yi), i ∈ I = {1, 2, ..., N}} , where
xi is an input sentence consisting of L words, and
yi ∈ K is the label.

3.1 Early Exiting

Multi-exit PTM Early exiting is based on multi-
exit PTM, which is a PTM backbone with classi-
fiers (or exits) at each layer. With M layers, M
classifiers fm(x; θm) are designated at M layers of
the PTM, each of which maps its input to the prob-

ability distribution on K classes. fm(x; θm) can
take the form of a simple linear layer (linear exit)
following (Zhou et al., 2020). However, as is shown
in Liu et al. (2020), adding an encoding operation
like the multi-head self-attention layer (Vaswani
et al., 2017) to the intermediate exits (MHA exits)
can significantly boost the performance of inter-
mediate layers, demonstrating the importance of
architectural design.
Training We now introduce the three main multi-
exit BERT training methods widely adopted in the
literature.

JT. Perhaps the most straightforward fine-tuning
strategy is to minimize the sum of all classifiers’
loss functions and jointly update all parameters in
the process. We refer to this strategy as JT. The
loss function is:

LJT =

M∑

m=1

LCE
m (1)

where LCE
m = LCE

m (y, fm(x; θm)) denotes the
cross-entropy loss of the m-th exit. This method
is adopted by Teerapittayanon et al. (2016); Kaya
et al. (2019); Zhou et al. (2020); Zhu (2021).

2ST. The two-stage (2ST) (Xin et al., 2020; Liu
et al., 2020) training strategy divides the training
procedure into two stages. The first stage is identi-
cal to the vanilla BERT fine-tuning, updating the
backbone model and only the final exit. In the sec-
ond stage, we freeze all parameters updated in the
first stage and fine-tune the remaining exits sepa-
rately:

Stage1 : Lstage1 = LCE
M (yi, fM (xi; θM)) (2)

Stage2 : Lstage2 = LCE
m ,m = 1, ...,M − 1. (3)

where LCE
m = LCE

m (yi, fm(xi; θm)) denotes the
cross-entropy loss of m-th exit.

ALT. It alternates between two objectives (taken
from Equation 1 and 2) across different epochs, and
it was proposed by BERxiT (Xin et al., 2021):

Odd : Lstage1 = LCE
M (yi, fM (xi; θM)) (4)

Even : Ljoint =
M∑

m=1

LCE
m (5)

For the search and training of our LECO method,
we adopt the joint training (JT) method, following
Teerapittayanon et al. (2016); Kaya et al. (2019);
Zhou et al. (2020); Zhu (2021). LECO mainly

300

employs JT to fine-tune the PTM backbone and
simultaneously learn the best exit architectures for
all intermediate layers under a differentiable NAS
framework.
Early exiting inference At inference, the multi-
exit PLM can operate in two different modes: (a)
static early exiting, that is, a suitable exit m∗ is
appointed to predict all queries. (b) Dynamic early
exiting, the model starts to predict on the classifiers
f (1), f (2), ..., in turn in a forward pass, until it
receives a signal to stop early at an exit m∗ < M ,
or arrives at the last exit M .

3.1.1 Inference speedup ratio
During inference, we will run the test samples

with batch size one following Zhou et al. (2020);
Teerapittayanon et al. (2016). We report the ac-
tual wall-clock run-time reduction as the efficiency
metric. For each test sample xi, denote the infer-
ence time cost under early exiting as ti, and time
cost under no early exiting as Ti. Then the aver-
age speedup ratio on the test set is calculated by

Speedup = 1−
∑Ntest

1 ti∑Ntest
1 Ti

, where Ntest is the num-

ber of samples on the test set. We will run the test
set ten times and report the average speedup ratio
to avoid randomness of run-time.

3.2 Preliminaries on DARTS

Assume there is a pre-defined space of oper-
ations denoted by O, where each element, o(·),
denotes a neural network operation, such as con-
volutional operation, self-attention, and activation.
DARTS (Liu et al., 2019a) operates on a search cell,
a fully connected directed acyclic graph (DAG)
with N nodes. Let (i, j) denote a pair of nodes.
The core idea of DARTS is to initialize a super-
network stacked with blocks with the same archi-
tecture as the DAG. During the search, each edge
in the DAG is a weighted sum including all |O| op-
erations in O, fi,j(zi) =

∑
o∈O aoi,j · o(zi), where

aoi,j =
expαo

i,j∑
o′∈O expαo′

i,j

, zi denotes the output of

the i-th node, and αo
i,j is the architectural param-

eters that represent the weight (or the importance
score) of o(·) in edge (i, j). The output of a node is
the sum of all input flow, i.e., zj =

∑
i<j fi,j(zi).

The output of the entire cell is formed by summing
the last two nodes.

This design makes the entire framework differen-
tiable to layer weights and architectural parameters

αo
i,j so that it can perform architecture searches

in an end-to-end fashion. The standard optimiza-
tion method is the bi-level optimization proposed
in DARTS. After the search process is completed,
the discretization procedure extracts the final sub-
network by dropping the operations receiving lower
scores.

4 Search space of LECO

As depicted in Figure 1, we construct the search
space of a LECO intermediate exit mimicking the
MHA exit. Representations of the current BERT
layer, H(m)

i , will first be down-sampled to a smaller
dimension Rde (e.g., 64) to keep the intermediate
exit parameter-efficient.1 Then, it will go through
an activation cell, an encoder cell, a pooling cell,
and finally, another activation cell. The whole DAG
of the intermediate exit consists of 7 edges.
Activation cell Both activations cells are one-
step DAGs (Figure 1), designated to choose the
proper activation function from several candidates.
Similar to So et al. (2019), the collection of activa-
tion functions we consider is: (a) ReLU (Agarap,
2018); (b) GeLU (Hendrycks and Gimpel, 2016);
(c) SWISH (Ramachandran et al., 2017); (d)
Tanh (Krizhevsky et al., 2012); (e) NullAct, which
means making no changes to the input.
Encoder cell As is shown in Figure 1, differ-
ent from Wang et al. (2020); Zhu et al. (2021a),
we construct our encoder cell as a simple DAG,
which consists of at most two encoder operations.
Encoder operations 1 and 2 will encode the cell’s
input, and their outputs will be summed to be the
output of the encoder cell. As an extension to the
encoder search space of Wang et al. (2020); Zhu
et al. (2021a); Chen et al. (2020), our collection of
encoder operations consists of the following com-
monly used encoding operations: (a) 1-d convolu-
tional layers, with stride 1, same padding, output fil-
ters equal to the input’s dimension, and kernel size
equal to 1, 3, or 5 (denoted as conv_k, k = 1, 3, 5);
(b) multi-head self-attention layer (Vaswani et al.,
2017), with k = 2, 4, 8 attention heads, head size
equaling de/k (denoted as mha_k, k = 2, 4, 8); (c)
skip-connection, denoted as skip-connect; (d) the
null encoding operation that multiply zero tensors
to the input (null).2

1Note that the parameters of the intermediate exits consti-
tute at most 1.6% of the BERT’s parameters.

2Selecting this operation means fewer operations will be
included in the encoder DAG.

301

Pooling cell It is also a one-step DAG for select-
ing the proper pooling layer. The most commonly
used pooling operation for PTM-based models is to
extract the representations of the [CLS] token (de-
noted as cls_pool). As is summarized in Gong et al.
(2018), other commonly used pooling operations
are: max pooling (max_pool); average pooling
(avg_pool); self-attention based pooling (sa_pool).

Note that our search space contains the MHA
exit (introduced in Section 3.1) as a special case.
The above search space can result in 6.87e+34 com-
binations of different multi-exit BERT. We will
mainly follow DARTS (Liu et al., 2019a) to search
for the optimal architecture designs of exits. But
different from (Liu et al., 2019a), we adopt a macro
search space, that is, the exits from different lay-
ers have different architectural parameters, thus
resulting different architectures for different layers.

5 Comparison-based Early Exiting

The patience-based mechanism (Zhou et al.,
2020) validates the early exiting decisions among
the previous layers, providing a promising direc-
tion for designing early exiting mechanisms. the
early exiting condition in PABEE is coarse: it di-
rectly compares the predicted labels. However, tt is
common for BERT to change its predictions after
a few intermediate layers. Thus, PABEE’s early
exiting performances with low patience parame-
ters may not be reliable. To summarize, we need a
more fine-grained criterion to generate more reli-
able early exiting signals.

We now introduce our Comparison-based early
exiting method, COBEE. The inference procedure
is illustrated in Figure 1. Assume the forward pass
has reached layer m < M . We now compare the
predicted distributions of layer m and layer m

′

(m > m
′
) as follows. Denote the label that receives

the highest probability mass at layer m as k∗m, and
the probability distribution of exit m is denoted as
Prm, then the disagreement between layer m and
layer m

′
is calculated as:

Di(Prm,Prm′) = |Prm(k∗m)−Prm′ (k∗m)|. (6)

For simplicity, we denote dim,m′ =
Di(Prm,Prm′) ∈ R. The smaller the value
of dim,m′ , the predicted distributions Prm and
Prm′ are more consistent with each other. We
use a counter cnt to store the number of times the
disagreement scores between adjacent layers are
less than the pre-defined exiting threshold τ . At

layer m, cntm is calculated as:

cntm =

{
cntm−1 + 1, if dim,m−1 < τ,

0, otherwise.
(7)

If dim,m−1 is less than the pre-defined threshold,
then the patience counter is increased by 1. Oth-
erwise, the patience counter is reset to 0. If cntm
reaches the pre-defined patience value t, the model
stops inference and exits early. Otherwise, the
model goes to the next layer. However, if the model
does not exit early at intermediate layers, the model
uses the final classifier fM for prediction.

6 Experiments

6.1 Datasets

We evaluate our proposed approach to the clas-
sification tasks on GLUE benchmark (Wang et al.,
2018). We only exclude the STS-B task since it is
a regression task, and we exclude the WNLI task
following previous work (Devlin et al., 2019; Jiao
et al., 2020; Xu et al., 2020b). Since the origi-
nal test sets are not publicly available, we follow
Zhang et al. (2020a) and Mahabadi et al. (2021)
to construct the train/dev/test splits as follows: (a)
for datasets with fewer than 10k samples (RTE,
MRPC, CoLA), we divide the original validation
set in half, using one half for validation and the
other for testing. (b) for larger datasets, we split 1k
samples from the training set as the development
set, and use the original development set as the test
set. The detailed dataset statistics are presented in
Table 1.

For MNLI, we report acc, which is the average
of the accuracy scores on the matched and mis-
matched test set. For MRPC and QQP, we report
acc-f1, which is the average of accuracy and F1
scores. For CoLA, we report mcc, which is the
Matthews correlation. For all other tasks, we report
accuracy (acc).

6.2 Baseline methods

We compare our LECO framework with the fol-
lowing baselines:
Multi-exiting model training For multi-exit
model training, we compare: (a) Joint training (JT)
(Zhou et al., 2020; Teerapittayanon et al., 2016),
with both a linear exit and an MHA exit (de = 64);
(b) two-stage training (2ST) (Liu et al., 2020; Xin
et al., 2020), with an MHA exit (de = 64); (c) alter-
nating training (ALT) in Xin et al. (2021); (d) the

302

Category Datasets |train| |dev| |test| |Y| Type Labels

Single-sentence
SST-2 66349 1000 872 2 sentiment positive, negative
CoLA 8551 521 522 2 linguistic acceptability acceptable, not acceptable

Sentence-pair

MNLI 391702 1000 19647 3 NLI entailment, neutral, contradiction
MRPC 3668 204 204 2 paraphrase equivalent, not equivalent
QNLI 103743 1000 5463 2 NLI entailment, not entailment
QQP 362846 1000 40430 2 paraphrase equivalent, not equivalent
RTE 2490 138 139 2 NLI entailment, not entailment

Table 1: The statistics of datasets evaluated in this work. For MNLI task, the number of samples in the test set is
summed by matched and mismatched samples. |Y| is the number of classes for a dataset.

Gradient Equilibrium technique (GradEquil) (Li
et al., 2019), which incorporates JT with gradient
adjustments and is adopted by Liu et al. (2021); (e)
Global Past Future (Liao et al., 2021) (Global-PF)
which asks the lower layers to imitate the deeper
layers; (f) GAML-BERT (Zhu et al., 2021b), which
employs a mutual learning strategy to improve the
performances of shallow exits.
Early exiting methods We compare the early
exiting performances of our COBEE method on the
multi-exit backbone trained under the LECO frame-
work with the following methods: (a) Entropy-
based method (Entropy) originated from (Teer-
apittayanon et al., 2016), which is equivalent to
the maximum-probability based method Schwartz
et al. (2020); (b) Patience-based method (Pa-
tience) (Zhou et al., 2020); (c) learning-to-exit
based method (LTE) proposed by Xin et al. (2021),
which train an extra meta-classifier to estimate the
confidence on a sample and achieves the SOTA
performances of early exiting. For comparison, we
also run the patience-based method on the back-
bone obtained by the JT method with linear exits.

6.3 Experimental settings

Devices We implement LECO on the base of
HuggingFace’s Transformers. We conduct our ex-
periments on Nvidia V100 16GB GPUs.
PTM models. We mainly adopt the ALBERT
base (Lan et al., 2019) backbone. We will also
include RoBERTa-base (Liu et al., 2019b), and
DeBERTa-base (He et al., 2020) in the ablation
studies.
Settings for Architecture search We add a
LECO search cell (Figure 1) with dimension de
equal to 32 on each intermediate layer of the PTM
and adopt the DARTS (Liu et al., 2019a) method
to learn the best exit architecture for each layer.
AdamW optimizer (Loshchilov and Hutter, 2019)
is used for both the model and architecture parame-
ters. At the beginning of each epoch, the training

set is randomly split into D1 (for updating model
parameters) and D2 (for updating architecture pa-
rameters) with a ratio of 1 : 1. The search will last
for 30 epochs. The learning rate is 2e-5 for model
parameters and 2e-4 for architectural parameters.
The search procedure is run once on each GLUE
task.
Settings for Architecture evaluation After the
search procedure ends, the top-scored sub-network
is discretized from the super-network at each layer
and will be trained from scratch as the final learned
exit. The learning rate is 2e-5, and AdamW op-
timizer (Loshchilov and Hutter, 2019) is used for
optimization. We evaluate the dev set and save the
checkpoint after each epoch. After training ends,
we evaluate the best checkpoint on the test set. We
train the final learned exits under 5 random seeds
to obtain its average test performance.

6.4 Main results

Comparison of multi-exit model training meth-
ods Table 2 reports the main results on the GLUE
benchmark with ALBERT as the backbone model.
All baseline models are run with the original au-
thors’ open-sourced codes. We report AVG, the
cross-layer average score, and BEST, the best score
among all the intermediate layers. From Table 2,
Our LECO method outperforms the previous multi-
exit model training methods in terms of the AVG
scores (with statistical significance), demonstrating
that our LECO framework effectively boosts the
overall performances of intermediate exits and thus
providing stronger backbones for early exiting.

Note that both 2ST + MHA exit (Liu et al., 2020)
and JT + MHA exit introduce 66k parameters per
exit, while the LECO method adds 25k-26k param-
eters per exit. The comparison among the three
methods demonstrates that our LECO method does
not rely only on adding more parameters to obtain
performance improvements. The improvements of
LECO result from better architectural designs for

303

RTE MRPC CoLA SST-2 QNLI QQP MNLI
Baseline methods

AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST
JT + linear exit 66.8 72.5 83.7 87.9 43.7 53.3 89.2 91.1 82.6 87.3 82.2 87.2 76.0 83.1
JT + MHA exit 68.1 76.9 84.1 88.2 43.6 57.5 88.2 91.5 82.8 87.6 82.4 87.1 76.8 83.2

GradEquil 67.3 77.4 84.2 89.3 43.6 56.1 89.2 91.8 82.4 88.0 82.7 87.0 76.5 83.6
ALT 68.5 77.8 84.6 88.3 44.1 57.3 88.9 91.6 82.3 87.8 82.5 86.8 76.6 83.2

GAML-BERT 68.8 77.6 84.9 88.8 45.0 57.9 89.1 92.3 82.6 87.9 82.6 87.5 75.9 83.4
Global-PF 68.5 78.1 84.9 88.6 45.1 57.7 88.9 92.6 82.5 88.1 82.6 87.4 76.5 83.3

2ST + MHA exit 68.9 77.5 85.1 89.2 45.0 57.9 89.3 92.4 82.5 88.0 82.7 87.3 76.2 82.7
Our proposed method

LECO 69.7∗ 77.9 85.8∗ 89.4 46.4∗ 58.0 89.6∗ 92.5 83.4∗ 88.1 83.1∗ 87.4 77.3∗ 83.4

Table 2: Average test performance of methods with ALBERT backbone on GLUE tasks across 5 random seeds.
AVG represents cross-layer average score, and BEST represents best score among all layers. The ∗ symbol on the
AVG scores means the results surpass the baseline method with statistical significance (by the Wilcoxon signed-rank
test).

(a) RTE (b) SST-2

Figure 2: The speedup-score curves with different dynamic early exiting methods, on the RTE and SST-datasets.

exits of different depths.

Comparison of dynamic early exiting mecha-
nisms We compare our COBEE method with
the previous best-performing early exiting methods
on the multi-exit ALBERT-base backbone trained
under our LECO framework (as reported in Ta-
ble 2). We also run the patience-based early exit-
ing with the multi-exit ALBERT-base trained with
the JT method. For the patience-based method
(Zhou et al., 2020), early exiting is run on dif-
ferent patience parameters. For the other meth-
ods, we run early exiting under different confi-
dence thresholds or patience parameters so that
the speedup-performance curves consist of at least
20 points evenly distributed across the interval
(0, 1) of speedup ratios. The speedup-performance
curves for the RTE and SST-2 tasks are plotted in
Figure 2.

The following takeaways can also be made from
Figure 2: (a) With the same backbone model,
our COBEE method achieves better speedup-
performance trade-offs than the previous SOTA
early exiting methods, especially when the speedup

ratio is large. (b) The comparison between Pa-
tience and JT+linear exit: Patience demonstrates
that our LECO method can provide superior back-
bones for early exiting and consistently result in
superior performances under different speedup ra-
tios, even though introducing a more complex exit
architecture. The learned exit architecture consti-
tutes 0.25% of the parameters on each intermediate
layer and increases 0.6% inference latency on av-
erage. However, the performance gains on the in-
termediate layers clearly out-weights the increased
latency.

6.5 Discussions and ablation studies

Discussion on the learned architectures Ta-
ble 6 of the Appendix A presents the best-learned
exit architectures on each layer of ALBERT when
the downstream task is MRPC or RTE. Three ob-
servations can be made: (a) although we allow at
most two encoder operations in the encoder search
cell, more than half of the learned exits include
one valid encoding operation, making the exits
more parameter efficient. (b) The learned archi-

304

Method AVG score
- RTE SST-2

LECO 69.7 89.6
2ST + MHA exit 68.9 89.3

2ST + LECO 69.6 89.5
ALT 68.5 88.9

ALT + LECO 69.3 89.4

Table 3: Comparisons of LECO with different multi-
exit training methods. Cross-layer average performance
(AVG) scores are reported.

tectures tend to use a pair of different activation
functions, which is different from the combination
of the Tanh-Tanh activation functions applied in the
MHA exit (Liu et al., 2020). (c) Most exits do not
select the cls_pool pooling operation, validating
the necessity of our pooler search cell.
LECO works well with other multi-exit train-
ing strategies In the main experiments, we train
LECO with the JT method. Table 3 demonstrates
the results of LECO when trained with 2ST and
ALT. The results show that LECO can effectively
improve the performances of 2ST and ALT, and
achieve comparable results with LECO combined
with JT. However, the JT method is more conve-
nient and takes less training time.
LECO works well with other pretrained back-
bones We now substitute the pretrained back-
bone to RoBERTa-base (Liu et al., 2019b) and
DeBERTa-base (He et al., 2020), and the results
are reported in Table 4. We can see that our
LECO framework can also help to improve the aver-
age performance of multi-exit RoBERTa/DeBERTa
model. An interesting take-away is that RoBERTa
and DeBERTa can not outperform ALBERT in
terms of AVG scores. We hypothesis that ALBERT
shares parameters across transformer layers, thus
the difference between shallow and deep layers are
smaller than the other models.
Ablation on the search space We now conduct
an ablation study to show the validity of our search
space design. We consider reducing our search
space O to a singleton step-by-step: (a) reduce the
activation cells by only keeping the Tanh activation
(O1); (b) further reduce the pooler cell to only in-
clude cls_pool (O2); (c) further reduce the encoder
cell to only include mha_dot, and now the search
space only contains the MHA exit. Table 5 reports
the search results on different search spaces. From
Table 5, we can see that dropping any components
of the whole search space results in performance

Method AVG score
- RTE SST-2

ALBERT backbone
LECO 69.7 89.6

JT + MHA exit 68.1 88.2
RoBERTa backbone

LECO 68.6 88.7
JT + MHA exit 66.5 87.4

DeBERTa backbone
LECO 69.5 89.3

JT + MHA exit 66.9 88.1

Table 4: Comparisons of LECO with different pre-
trained backbones. Cross-layer average performance
(AVG) scores are reported. We can see that RoBERTa
and DeBERTa can not outperform ALBERT in AVG
scores.

search space AVG score
- RTE SST-2
O 69.7 89.6
O1 69.3 89.1
O2 68.9 88.7

MHA exit 68.1 88.2

Table 5: Experimental results for the ablation study of
our LECO search space. Cross-layer average (AVG)
performance scores are reported.

losses, demonstrating that our search space design
is necessary and beneficial.

7 Conclusion

In this work, we propose a novel framework,
LECO. Our contributions are three-fold. First,
LECO designs a unified search space for archi-
tectural designs of intermediate exits. Second, we
apply the differentiable NAS framework of DARTS
to learn the optimal exit architectures automatically.
Third, we propose a novel comparison based early
exiting mechanism, COBEE. Experiments on the
GLUE benchmark and ablation studies demonstrate
that our LECO framework can achieve SOTA on
multi-exit BERT training and outperforms the pre-
viously SOTA dynamic early exiting methods.

Limitation

Although our LECO framework is shown to be
effective in improving the multi-exit BERT train-
ing, it still has certain limitations that need to be
addressed in the future: (a) MHA exits and our
learned exits indeed introduce new parameters and
additional flops. We would like to explore more
parameter-efficient methods to improve multi-exit

305

BERT training in future works. (b) In this work,
we demonstrate our framework’s performance on
sentence classification or pair classification tasks.
In future works, we would like to extend our work
to broader tasks such as sequence labeling, relation
extraction, and text generation. We would like to
explore this aspect in the future.

Ethics Statement

Our LECO framework is designated to improve
the training of multi-exit BERT and dynamic early
exiting performances. Our work can facilitate the
deployment and applications of pre-trained models
on devices with less powerful computation capabil-
ities, making the state-of-the-art models accessible
for everyone. In addition, we hope this technology
can help reduce the carbon footprints of NLP-based
applications. Furthermore, the datasets we exper-
iment with are widely used in previous work and,
to our knowledge, does not introduce new ethical
concerns.

References
Abien Fred Agarap. 2018. Deep learning using rectified

linear units (relu). ArXiv, abs/1803.08375.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2020. Binarybert: Pushing the limit of bert
quantization. arXiv preprint arXiv:2012.15701.

Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang,
Bofang Li, Bolin Ding, Hongbo Deng, Jun Huang,
Wei Lin, and Jingren Zhou. 2020. Adabert: Task-
adaptive bert compression with differentiable neural
architecture search. In IJCAI.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2021. Pro-
gressive darts: Bridging the optimization gap for nas
in the wild. ArXiv, abs/1912.10952.

Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang
Li. 2021. Fairnas: Rethinking evaluation fairness
of weight sharing neural architecture search. 2021
IEEE/CVF International Conference on Computer
Vision (ICCV), pages 12219–12228.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia,
and Wei Liu. 2020. Mtl-nas: Task-agnostic neural
architecture search towards general-purpose multi-
task learning. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
11540–11549.

Jingjing Gong, Xipeng Qiu, Shaojing Wang, and Xu-
anjing Huang. 2018. Information aggregation via
dynamic routing for sequence encoding. In COL-
ING.

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun.
2016. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 770–778.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-
enhanced bert with disentangled attention. ArXiv,
abs/2006.03654.

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. Au-
toml: A survey of the state-of-the-art. Knowl. Based
Syst., 212:106622.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian
error linear units (gelus). arXiv: Learning.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger.
2017. Densely connected convolutional networks.
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2261–2269.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. ArXiv, abs/1909.10351.

Y. Kaya, Sanghyun Hong, and T. Dumitras. 2019.
Shallow-deep networks: Understanding and mitigat-
ing network overthinking. In ICML.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2021. I-bert: Integer-
only bert quantization. In International conference
on machine learning, pages 5506–5518. PMLR.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60:84 – 90.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

306

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and
Gao Huang. 2019. Improved techniques for training
adaptive deep networks. 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
1891–1900.

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su,
Xu Sun, and Bin He. 2021. A global past-future
early exit method for accelerating inference of pre-
trained language models. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2013–2023, Online.
Association for Computational Linguistics.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng
Qiu. 2021. A survey of transformers. ArXiv,
abs/2106.04554.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Loddon Yuille, Jonathan
Huang, and Kevin P. Murphy. 2018. Progressive
neural architecture search. In ECCV.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019a. Darts: Differentiable architecture search.
ArXiv, abs/1806.09055.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang,
Haotang Deng, and Qi Ju. 2020. Fastbert: a self-
distilling bert with adaptive inference time. arXiv
preprint arXiv:2004.02178.

Xiangyang Liu, Tianxiang Sun, Junliang He, Lingling
Wu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing
Huang, and Xipeng Qiu. 2021. Towards efficient
nlp: A standard evaluation and a strong baseline.
In North American Chapter of the Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In NeurIPS.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2017. Swish: a self-gated activation function. arXiv:
Neural and Evolutionary Computing.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A Smith.
2020. The right tool for the job: Matching
model and instance complexities. arXiv preprint
arXiv:2004.07453.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

David R. So, Chen Liang, and Quoc V. Le. 2019. The
evolved transformer. ArXiv, abs/1901.11117.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. arXiv preprint arXiv:1908.09355.

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng,
Lingling Wu, Yilong He, Yuan Ni, Guotong Xie, Xu-
anjing Huang, and Xipeng Qiu. 2022. A simple
hash-based early exiting approach for language un-
derstanding and generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2409–2421, Dublin, Ireland. Association for
Computational Linguistics.

Thierry Tambe, Coleman Hooper, Lillian Pentecost, En-
Yu Yang, Marco Donato, Victor Sanh, Alexander M.
Rush, David M. Brooks, and Gu-Yeon Wei. 2020.
Edgebert: Optimizing on-chip inference for multi-
task nlp. ArXiv, abs/2011.14203.

Surat Teerapittayanon, Bradley McDanel, and H. T.
Kung. 2016. Branchynet: Fast inference via early
exiting from deep neural networks. 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR),
pages 2464–2469.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. In Black-
boxNLP@EMNLP.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang,
Dongdong Zhang, and Furu Wei. 2022. Deep-
net: Scaling transformers to 1, 000 layers. ArXiv,
abs/2203.00555.

Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai,
Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong,
Mao Yang, and Lidong Zhou. 2020. Textnas: A
neural architecture search space tailored for text rep-
resentation. In AAAI.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
2019. Snas: Stochastic neural architecture search.
ArXiv, abs/1812.09926.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. Berxit: Early exiting for bert with better fine-
tuning and extension to regression. In Proceedings

307

https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2022.findings-acl.189
https://doi.org/10.18653/v1/2022.findings-acl.189
https://doi.org/10.18653/v1/2022.findings-acl.189

of the 16th conference of the European chapter of
the association for computational linguistics: Main
Volume, pages 91–104.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020a. Bert-of-theseus: Compress-
ing bert by progressive module replacing. arXiv
preprint arXiv:2002.02925.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020b. Bert-of-theseus: Com-
pressing bert by progressive module replacing. In
EMNLP.

Jingjing Xu, Wangchunshu Zhou, Zhiyi Fu, Hao Zhou,
and Lei Li. 2021a. A survey on green deep learning.
ArXiv, abs/2111.05193.

Yuhui Xu, Lingxi Xie, Wenrui Dai, Xiaopeng Zhang,
Xin Chen, Guo-Jun Qi, Hongkai Xiong, and Qi Tian.
2021b. Partially-connected neural architecture
search for reduced computational redundancy. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 43:2953–2970.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. Revisiting few-
sample bert fine-tuning. ArXiv, abs/2006.05987.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020b. Ternarybert:
Distillation-aware ultra-low bit bert. arXiv preprint
arXiv:2009.12812.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems,
33:18330–18341.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

Wei Zhu. 2021. Leebert: Learned early exit for bert
with cross-level optimization. In ACL.

Wei Zhu, Yuan Ni, Xiaoling Wang, and Guo Tong Xie.
2021a. Discovering better model architectures for
medical query understanding. In NAACL.

Wei Zhu, Xiaoling Wang, Yuan Ni, and Guo Tong Xie.
2021b. Gaml-bert: Improving bert early exiting by
gradient aligned mutual learning. In EMNLP.

Barret Zoph and Quoc V. Le. 2017. Neural archi-
tecture search with reinforcement learning. ArXiv,
abs/1611.01578.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V. Le. 2018. Learning transferable archi-
tectures for scalable image recognition. 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8697–8710.

A Demonstrations of learned
architectures

In the section, the learned exit architectures on
the RTE and SST-2 tasks are presented in Table 6.
Discussions on the observations from the learned
architectures can be found in the main content.

308

task layer index activation 1 activation 2 pooler encoder op 1 encoder op 2

SST-2

1 swish leaky_relu avg_pool conv_3 null
2 gelu leaky_relu max_pool null mha_4
3 nullAct swish max_pool mha_4 null
4 swish leaky_relu cls_pool conv_3 null
5 swish gelu sa_pool conv_5 skip-connect
6 swish swish avg_pool null conv_5
7 gelu swish max_pool mha_4 conv_1
8 nullAct leaky_relu max_pool null skip-connect
9 tanh gelu cls_pool conv_1 conv_1
10 nullAct gelu cls_pool skip-connect mha_8
11 nullAct gelu avg_pool conv_3 null
12 gelu nullAct cls_pool conv_3 skip-connect

RTE

1 nullAct tanh sa_pool null conv_1
2 swish nullAct avg_pool conv_1 conv_5
3 gelu tanh sa_pool null mha_2
4 swish nullAct sa_pool skip-connect conv_3
5 gelu nullAct sa_pool conv_3 null
6 gelu tanh sa_pool mha_pdot conv_3
7 nullAct tanh sa_pool conv_3 null
8 leaky_relu leaky_relu max_pool conv_1 null
9 nullAct swish max_pool null conv_1
10 swish leaky_relu max_pool conv_1 null
11 nullAct gelu cls_pool skip-connect mha_4
12 nullAct swish cls_pool mha_4 null

Table 6: The best architectures learned via our LECO framework. We can see that on the same task, BERT requires
different intermediate exits to better exploit the representation capabilities on different layers.

309

