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Abstract
Procedural knowledge understanding underlies
the ability to infer goal–step relations. The task
of Visual Goal–Step Inference addresses this
ability in the multimodal domain. It requires
the identification of images that depict the steps
necessary to accomplish a textually expressed
goal. The best existing methods encode texts
and images either with independent encoders,
or with object-level multimodal encoders us-
ing blackbox transformers. This stands in con-
trast to early, linguistically inspired methods
for event representations, which focus on cap-
turing the most crucial information, namely
actions and participants, to learn stereotypical
event sequences and hence procedural knowl-
edge. In this work, we study various methods
and their effects on procedural knowledge un-
derstanding of injecting the early shallow event
representations to nowadays multimodal deep
learning-based models. We find that the early,
linguistically inspired methods for representing
event knowledge do contribute to understand
procedures in combination with modern vision-
and-language models. This supports further
exploration of more complex event structures
in combination with large language models.1

1 Introduction

Procedural Knowledge Understanding (PKU) im-
plies reasoning about how to complete a task or
achieve a goal (Mujtaba and Mahapatra, 2019).
While previous works focus on plain texts (Yang
and Nyberg, 2015; Zhou et al., 2019; Zhang et al.,
2020a,b; Lyu et al., 2021; Sun et al., 2022), recent
studies extend the task to the visual–linguistic do-
main. They ground procedural everyday tasks in
the visual world, as a step towards situated proce-
dural understanding in the real world.

Yang et al. (2021) propose a novel PKU task that
utilizes both textual and visual information by se-
lecting an image conditioned on a sentence which

1The code is available at https://github.com/
st143575/Exploring-Event-In-VGSI.

I1 I2

I3 I4

Figure 1: An example of the VGSI task. For the given
goal G, image I1 (Combine the milk and cream before
adding everything to the large bowl) should be selected
since it depicts a step S that leads to accomplishing G.

describes a high-level goal (illustrated in Figure 1,
cf. Section 2.2). Their experimental results show
that there is still a large gap to human performance
on this task. While Yang et al. (2021) represent
goal descriptions by their neural embeddings, ear-
lier approaches to representing procedural knowl-
edge or stereotypical event sequences (i.e., goals
and steps; cf. scripts, Shank and Abelson, 1977),
in contrast, focus on capturing the most essential
information of events, namely the actions and their
main participants (Balasubramanian et al., 2013;
Pichotta and Mooney, 2014, inter alia).

In this work, we explore different ways to in-
ject these linguistically inspired representations
to the recent powerful deep learning approaches,
and study their contribution to multimodal PKU.
Specifically, we investigate the relational event
representation (Balasubramanian et al., 2013) and
the multi-argument event representation (Pichotta
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and Mooney, 2014, 2016) due to their simple but
condensed structure holding the most crucial in-
formation such as the action and the main par-
ticipants in the main clause. We also evaluate
different approaches to encode and inject such
event knowledge to the model used by Yang et al.
(2021), while also taking the contextual informa-
tion into account. We conduct our experiments
from three perspectives. First, we explore two
approaches for event knowledge injection: (1)
EVENT replaces the sentence describing the event
by the two aforementioned event representations;
(2) SENTENCE+EVENT appends the two types of
event representations to the sentence describing
that event. Second, we compare the embeddings
extracted from different layers of the text encoder
based on the finding of Jawahar et al. (2019) and
Vulić et al. (2020), namely that lexical, syntactic
and semantic information tend to be captured by the
first, middle and last couple of layers, respectively.
And third, we study the contribution of contextu-
alised embeddings to represent the event and its
participants compared to local embeddings.

The main contributions of this paper are:
(1) comparison between two approaches for
linguistically-inspired event knowledge injection
for the task of multimodal procedural knowledge
learning; (2) comparison of three levels of linguis-
tic information in the text embedding; (3) investiga-
tion of local and contextualised event embeddings;
(4) assessment of different abstract representations
for the implicit subject of instructional texts.

We find that appending the multi-argument
event representation to the input sentence with the
<|startoftext|> token as the implicit subject, and
taking the average of the last 4 hidden layers of
CLIP’s text encoder is the best way to encode and
inject event knowledge to a deep learning model.
Specifically, first encoding the full sentence and
then extracting and averaging the word-level em-
beddings of the components of the event represen-
tation can use the contextual information in the
sentence outside the event itself.

2 Related Work

2.1 Event Definitions and Representations

The concept event can be defined in various ways.
In early works, an event is either defined as a verb
(Katz and Arosio, 2001), or an expression that have
implicit time dimension and is either a verb or a
noun phrase (Schilder and Habel, 2001), or a propo-

sition consisting of the subject and the predicate (Fi-
latova and Hovy, 2001). Pustejovsky et al. (2005)
define an event as a predicate describing a state or
a circumstance in which something holds true. Li
et al. (2021) define an event as the occurrence of an
action causing a state change, which is performed
by some participant(s) in a particular manner. For
instance, image I3 in Figure 1 illustrates the event
of A person beating together butter and sugar with
a mixer.

Later studies on script learning (Zhang, 2022)
extend the definition of the event by its surround-
ing components in the text. Chambers and Juraf-
sky (2008) represent an event as a (verb, depen-
dency)-pair extracted from narrative texts using a
dependency parser. Balasubramanian et al. (2013)
generate event schemata from news articles using
(subject, verb, object)-pairs as the event representa-
tion. Pichotta and Mooney (2014, 2016) represent
events as (subject, verb, object, preposition) tuples
that model the interactions between entities in a
script.

In contrast, recent works focus on extracting
events with more complex structures and richer in-
formation from contexts. Yu et al. (2022) design
a BERT-based framework for building event ex-
tractors in a weak supervised manner. Chen et al.
(2021) train a multimodal Transformer (Vaswani
et al., 2017) to jointly extract events from videos
and texts. Wei et al. (2023) propose a framework
for zero-shot event extraction using a sibling model
to InstructGPT (Ouyang et al., 2022). Knowledge
graphs (Hogan et al., 2021) have been widely used
to extract events from multimodal data and repre-
sent events in a more complex structure (Li et al.,
2020, 2022). We adopt the relational event rep-
resentation of Balasubramanian et al. (2013) and
the multi-argument event representation of Pichotta
and Mooney (2014) for our experiments due to the
low performance of recent event extractors on the
dataset used for our experiments.

2.2 Procedural Knowledge Understanding

A procedure is a compound event that can be bro-
ken down into multiple events (Zhang, 2022). It
consists of a goal and a sequence of steps towards
accomplishing that goal. Procedural knowledge
understanding (PKU) is the task of learning the
relations between the goal and the steps. Various
approaches have been proposed to understanding
procedures using event knowledge. Tandon et al.
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(2020) use entity tracking to generate state changes
from procedural text. Zhang et al. (2020b) learn
goal–step relations and step–step temporal relations
in procedural texts and introduce a 4-way multiple
choice task for goal–step inference. Yang et al.
(2021) extend it to the multimodal domain and
learn goal–step relations from texts and images.
Lyu et al. (2021) generate the sequence of steps
conditioned on a given goal. Zhou et al. (2022)
discover the hierarchical structure in procedural
knowledge using action linking. Based on the work
of Yang et al. (2021), we investigate different ways
to encode and inject classical event knowledge to
recent deep learning models.

Goal–Step–Inference (Zhang et al., 2020b) is the
task of reasoning about goal–step relations from
instructional texts. Given a goal sentence and four
candidate step descriptions, a model should choose
the step that leads to the goal. The main challenge
of this task is that it requires to understand both,
the actions of goals and steps and their relations.
Yang et al. (2021) extend the task to the multimodal
domain through the Visual Goal–Step Inference
task, in which steps are described by images. They
attempt to overcome the challenge by matching the
goal sentence and the step image. However, they
still observe a significant gap between model and
human performance. Our work seeks to bridge this
gap with multiple approaches by combining state-
of-the-art neural models with early linguistically
motivated event representations (see above).

2.3 Vision-and-Language Models

In recent years, Vision-and-Language (V&L) mod-
els have made tremendous progress on a wide range
of multimodal tasks, such as visual commonsense
reasoning (Lu et al., 2019), image–text retrieval
(Chen et al., 2020), text-to-image and image-to-
text generation (Rombach et al., 2022; Li et al.,
2023). One strand of models are fusion encoders
which learn a fused representation of images and
texts. For example, LXMERT (Tan and Bansal,
2019) uses attention (Vaswani et al., 2017) to learn
intra-modal and cross-modal relationships while
training a language encoder, an object relationship
encoder and a cross-modality encoder. Although
the model learns the alignment between images,
objects and words in sentences via the object-level
pretraining objectives, it does not understand the re-
lations between the objects and the action. Another
line of works propose dual encoders which learn

separate encodings of images and language. A
prominent example is CLIP (Radford et al., 2021),
which uses a contrastive objective to train a text en-
coder (GPT-2, Radford et al., 2019) and an image
encoder (e.g., ViT Dosovitskiy et al., 2020). CLIP
achieves state-of-the-art performance across multi-
ple tasks. Different from LXMERT, CLIP is trained
to match an image as a whole to a text description.
We use this advantage and extract image-grounded
sentence embeddings using CLIP’s text encoder.
Since CLIP applies a subtoken-level tokenization,
the outputs of its text encoder are embeddings for
the subtokens in the input sentence. Although it is a
common practice to use the embedding of the clas-
sification token as the overall sentence embedding,
this approach has been shown to be suboptimal
(Vulić et al., 2020). We conduct experiments to
find the optimal sentence representation.

3 VGSI: Visual Goal–Step Inference Task

Task Definition. Yang et al. (2021) define VGSI
as a 4-way multiple choice problem. As shown in
the example in Figure 1, given a textual goal G and
four images Ii, i ∈ {1, 2, 3, 4} representing four
candidate steps, the task is to select the image that
represents a correct step towards accomplishing G.

In this paper, we additionally explore a stricter
definition of VGSI, where the task is to select the
respective correct image of all steps that are neces-
sary to reach the goal G.

3.1 Methods

3.1.1 Event Representations
To obtain event representations from goal and step
sentences, we first extract the subject, verbal predi-
cate, direct object and prepositional phrase from
the sentences using a dependency parser (Dozat
and Manning, 2016)2.

Implicit Subject Representation. Due to the na-
ture of the dataset of procedural instructions, tex-
tual goals and steps are usually imperative sen-
tences, and as a consequence, the subject is left
off. To encode the subject, we conduct experi-
ments to compare event representations with no
explicitly mentioned subject to those which ex-
press the subject (1) by the token person, or (2)
by the special <|startoftext|> token of the CLIP to-
kenizer. Since the <|startoftext|> token added by

2We use SuPar available at https://github.com/
yzhangcs/parser
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us is always between the <|startoftext|> token of
the CLIP tokenizer and the verbal predicate, its
embedding is supposed to capture syntactic infor-
mation from these two surrounding tokens via the
attention mechanism (i.e. the information about the
position of the subject of a sentence). To verify
this hypothesis, we conduct two groups of prob-
ing experiments using the most common and the
least common token in the input text as the pseudo-
subject, respectively (see Section 5.1). We find
that sentences with the <|startoftext|> token as the
pseudo-subject lead to the best result.

Event Representations. The event representa-
tion is an essential component of our task. As intro-
duced in Section 2, we represent events in the goal
and step sentences using two types of representa-
tions: (1) the relational event representation (Bala-
subramanian et al., 2013) which is a (subject, verb,
object) tuple, and (2) the multi-argument event rep-
resentation (Pichotta and Mooney, 2014) which is
a (subject, verb, object, prepositional phrase) tuple.
Table 1 shows examples of all representations we
explore. In the case that the object or prepositional
phrase is absent, we represent it by a [PAD] token,
e.g., (<|startoftext|>, pour, sauce, [PAD]).

Local vs. Contextualised Event. To assess the
effectiveness of event representations, we deliber-
ately use non-contextualised embeddings to disen-
tangle the subj–pred–obj(–pp) information from
the overall sentence. In detail, the components of
the event representations are concatenated to form
a sentence, which is then encoded by the CLIP
text encoder (i.e. GPT-2). For instance, the event
(<|startoftext|>, pour, sauce) is turned into the in-
put <|startoftext|> pour sauce. We compare this
encoding method to one that uses contextualised
embeddings: We first encode the whole sentence
and extract all word embeddings. If the tokenizer
split a word into subtokens, we mean-pool their
corresponding embeddings. Then, we mean-pool
the word embeddings which are part of the com-
ponents of the event representations. For example,
the word embeddings in the object phrase into con-
tainer or jug are averaged to a single vector. Note
that for both local and contextualised approaches,
the CLIP tokenizer automatically adds a <|startof-
text|> and an <|endoftext|> token to the start and
the end of the input, respectively. We remove these
two special tokens after the encoding, such that
only the embedding of the <|startoftext|> as the

text
Pour the soy or tamari sauce into
a suitable small mixing container

or jug.

eventrel (<|startoftext|>, pour, sauce)

eventmult
(<|startoftext|>, pour, sauce,

into container or jug)

Table 1: Example of the relational and multi-argument
event representation.

implicit subject is averaged with other words. We
evaluate the text embeddings obtained from three
groups of layers of CLIP.3 The visual embeddings,
in turn, are the last hidden state of the CLIP image
encoder (i.e. ViT).4

3.1.2 Triplet Network for Goal–Step Inference

We use Triplet Network (Hoffer and Ailon, 2015)
in all our experiments and use the cosine similarity
as the similarity metric.

Training. The triplet network for training is im-
plemented as a three-branch network with a text
module and an image module, where the two
branches of the image module share the same pa-
rameters. The input is a triplet (G+S, Ipos, Ineg),
where G+S is the embedding of the concatenated
goal–step sentence, Ipos is the embedding of the
positive image, Ineg is the embedding of a nega-
tive image (see Section 4.3). The model learns a
cross-modal embedding space by minimizing the
distance between G+S and Ipos, while maximizing
the distance between G+S and Ineg. Different from
Yang et al. (2021) which use G as the textual input
for training, we use G+S because S share common
information with I and serves as a bridge between
G and I. Thus, G+S could help the model to better
understand the relation between G and I.

Inference. During inference, we follow the in-
put format of Yang et al. (2021), i.e. the textual
input is the goal alone. The model takes each
pair (G, Ii), i ∈ {1, 2, 3, 4} from a test data point
(G, [I1, I2, I3, I4]) as input. By computing the sim-
ilarity between G and Ii, the model predicts the
correct step image Î as that with the highest simi-

3Based on (Vulić et al., 2020)’s findings, we do not use the
embedding of the classification token, cf. Sect. 2.

4We use clip-vit-large-patch14 from Hug-
gingFace available at https://huggingface.co/
openai/clip-vit-large-patch14

257

https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/openai/clip-vit-large-patch14


Experiment group Embed size #params Input format Event injection

SENTENCE
768 (text)

1024 (image)
3,936,256

goal+step (train)
goal (test)

s

EVENT
768 (text)

1024 (image)
3,936,256

goal+step (train)
goal (test)

e

SENTENCE+EVENT
1536 (text)

1024 (image)
4,722,688

goal+step (train)
goal (test)

s+e

Table 2: Embedding size, number of parameters, input formats to the text encoder and event injection approaches of
different experiment groups: concatenation of goal and step headline (goal+step), goal only (goal); sentence only
(s), event only (e), sentence+event (s+e).

larity as follows:

Î = argmax
Ii

cos(G, Ii) (1)

4 Experiments

4.1 Data

We conduct our experiments on wikiHow-VGSI
(Yang et al., 2021),5 a dataset for multimodal goal-
oriented PKU collected from the English wiki-
How6. The dataset contains articles of instructions
to complete tasks across a wide range of daily-life
topics, including health, home and garden, educa-
tion, recipes etc. Each article contains a goal G
in the form of a “How to”-sentence and a set of
methods (e.g., “How to bake mini cupcakes”, Fig-
ure 1). Each method comprises a list of steps. Each
step has a step headline S which is an imperative
sentence describing that step, and an image I cor-
responding to that step (e.g., I1 and S in Fig. 1).
To describe a goal and its steps, we use the goal G
and the step headline S and its associated image I,
respectively.

We lowercase all the texts in the dataset, and
use the special token <|startoftext|> to represent
the subject in all sentences (i.e., pseudo-subject).
Specifically, <|startoftext|> substitutes How to in all
goals and is prepended to all step headlines. Since
we found some issues in the dataset, such as dupli-
cates or non-English text, we removed 3 goals and
56 step headlines. Details to our filtering procedure
are given in Appendix 9.1. As a result, the dataset
used for our experiments contains 53, 186 goals,
772, 221 step headlines and 772, 277 step images.

5https://github.com/YueYANG1996/
wikiHow-VGSI

6https://www.wikihow.com/Main-Page

4.2 Models

We assess the benefit of the two approaches for
the event knowledge injection (relational and multi-
argument representations, see Sect. 3.1.1) when
being used as the only representation of the goal G
and step S during training (EVENT), or when being
used as additional information to the full sentences
(SENTENCE+EVENT). We compare them against
only using the full sentence (SENTENCE), which
is also employed by Yang et al. (2021). Table 2
gives an overview of the different inputs and the
corresponding hyperparameters of the models.

Jawahar et al. (2019) observed that the embed-
dings obtained from different layers of BERT tend
to be dominated by different levels of linguistic
information: surface (i.e. lexical) information in
bottom layers, syntactic information in middle lay-
ers and semantic information in top layers. Thus,
we examine sentence embeddings of three linguis-
tic levels in each of these experiment groups: (1)
FIRST4 averages the outputs of the first 4 layers
of CLIP’s text encoder; (2) MIDDLE4 averages the
outputs of the 5-th to the 8-th layers of the encoder;
(3) LAST4 averages the outputs of the last 4 layers.

4.2.1 EVENT

In this group of experiments, the goal and step sen-
tences are replaced by the event representations ex-
tracted from them. For example, the sentence in Ta-
ble 1 is replaced by <|startoftext|> pour sauce for
the relational event representation and by <|startof-
text|> pour sauce into container or jug for the
multi-argument event representation.

4.2.2 SENTENCE+EVENT

In this group of experiments, the event representa-
tions are appended to the goal and step sentences.
For example, the aforementioned sentence is con-
verted to <|startoftext|> pour the soy or tamari
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sauce into a suitable small mixing container or jug.
<|startoftext|> pour sauce. for the relational event
representation, and <|startoftext|> pour the soy or
tamari sauce into a suitable small mixing container
or jug. <|startoftext|> pour sauce into container or
jug. for the multi-argument event representation.

4.2.3 SENTENCE

While event representations have been found valu-
able in earlier, linguistically motivated research on
procedural texts (see Section 2), it stands the ques-
tion whether they fully provide the crucial infor-
mation for learning procedural knowledge. Hence,
we also compare against a model that takes the
encoded full sentence describing the goal or the
goal+step as textual input, i.e. the model learns the
task-relevant features from the full goal sentence
or the step headline.

4.3 Training Procedure

We apply the random sampling strategy of Yang
et al. (2021) to select negative step images. For
each data point, we randomly select three different
articles and take a random image from each article
as the negative step image. We leave the experi-
ments with other sampling methods used in Yang
et al. (2021) to future work.

We initialize the weights using He-uniform with
ReLU non-linearity. All models are trained for 200
epochs with batch size 1024 and a learning rate of
1e-5 with early stopping. In each experiment group,
the model is trained and evaluated five times. We
implemented the models in Keras with Tensorflow
2.0 and trained them on a single RTX A6000.

4.4 Evaluation Measures

We evaluate our models with two settings. The first
one, which we call weak, follows the original task
definition by Yang et al. (2021), where a data point
in the test set is considered correctly predicted, if
one step towards the goal given by that data point
is correctly selected. To better fit the concept of
procedural knowledge, we also apply a strict set-
ting, in which a data point is correctly predicted, if
all the steps required to achieve the goal given by
the data point are correctly selected. We report the
mean accuracy obtained by the five individual train-
ing and testing runs, as well as the corresponding
standard deviation.

5 Results

Tables 3 and 5 give the most important results. The
full results can be found in Appendix 9.2.

5.1 Event-based Representations

Table 3 shows the performance of the models with
the <|startoftext|> token as pseudo-subject, using
different event representations containing different
levels of linguistic knowledge. The last two rows
list the results of the best model and the human
evaluation in Yang et al. (2021).

As expected, by comparing the EVENTrel,∗ and
EVENTmult,∗ groups (i.e., <[2],[3]>, <[7],[8]>,
<[12],[13]>), we observe that the multi-argument
event representation outperforms the relational
event representation.

Linguistic Level Embedding. To find out which
level of linguistic knowledge is most suitable for
the task, we compare the following three groups
of results in Table 3: <[2],[7],[12]>, <[3],[8],[13]>
and <[5],[10],[15]>. On average, the LAST4 groups
achieve the highest accuracy, while the FIRST4
groups perform the worst. The performance gap
between FIRST4 and the other two groups is con-
siderably larger than that between MIDDLE4 and
LAST4. This indicates that both semantic and syn-
tactic information play important roles in the task,
while lexical information is far less important than
syntactic and semantic information.

Event Knowledge Injection. The results of
<[3],[5]>, <[8],[10]>, and <[13],[15]> in Table 3
show that SENTENCE+EVENT results in higher ac-
curacy than EVENT. This reveals the advantage
of attaching event knowledge to the sentence over
using only the event knowledge. It also implies
that the sentence could provide additional informa-
tion to the event, which could help models better
understand procedural knowledge.

Local vs. Contextualised Embeddings. By
comparing the results of local and contextualised
event embeddings in Table 3, we observe a signifi-
cant improvement of the performance in the latter
group. On average, the accuracy with contextu-
alised embeddings is 3.71% and 13.73% higher
than that with the local ones in the weak setting
and in the strict setting, respectively. This verifies
the observation in the last paragraph that sentences
provide additional, useful information.
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Models Local Event Contextualised Event
weak strict weak strict

[2] EVENTrel,first4 68.9±0.3 9.9±0.3 71.6±0.4 12.2±0.3
[3] EVENTmult,first4 75.8±0.4 15.3±0.5 77.0±0.1 15.9±0.2
[5] SENTENCE+EVENTmult,first4 80.9±0.8 19.3±1.3 81.0±0.1 19.6±0.3

[7] EVENTrel,middle4 70.3±0.2 11.1±0.2 74.9±0 14.9±0.1
[8] EVENTmult,middle4 76.9±0.6 16.9±0.9 79.9±0 19.1±0.4
[10] SENTENCE+EVENTmult,middle4 82.4±0.1 22.1±0.3 82.8±0.9 22.4±1.5

[12] EVENTrel,last4 69.1±0.3 11.5±0.4 75.9±0 16.7±0.1
[13] EVENTmult,last4 77.3±0.4 18.8±0.4 80.8±0 21.2±0.2
[15] SENTENCE+EVENTmult,last4 81.1±0.7 21.5±0.8 84.7±0 26.4±0.2

[16] EVENTmult,last4,+1layer 76.6±0.3 17.9±0.2 80.5±0 20.7±0

Triplet Net (BERT) (Yang et al., 2021)† 72.8 - 72.8 -
Human (Yang et al., 2021) 84.5 - 84.5 -

Table 3: Accuracy (%) of experiments using different event representations encoded by different layers of the CLIP
text encoder. The implicit subject is represented by <|startoftext|> (sot+sent). †Results adopted from the authors,
they are not directly comparable.

Implicit(/Pseudo-)Subject weak strict

sot+sent 82.7 22.3
person+sent 80.3 19.9
-+sent 79.4 19.4
sot 24.2 0.11

most-frequent+sent 79.8 20.3
least-frequent+sent 68.6 10.4

Table 4: Accuracy (%) of SENTENCE experiments us-
ing different implicit (top) / pseudo (bottom) subjects:
<|startoftext|>+sentence (sot+sent), person+sentence
(person+sent), sentence without subject (-+sent),
<|startoftext|> only (sot).

Implicit Subject Abstract Representation. The
sentences in the dataset either begin with How to,
or they do not have an explicit subject. Thus, we
assess the contribution of different abstract rep-
resentations for the implicit subject of the sen-
tences. Table 4 (top) shows the performance of
the SENTENCEmiddle4 models with four abstract
representations as the subject. The results show
that <|startoftext|> is the most powerful abstract
representation for the subject. However, we ob-
serve a significant performance degradation when
using this token separately as the representation of
the whole sentence (i.e. sot in Table 4). In this case,
the embedding of <|startoftext|> is derived from
the last hidden state of CLIP’s text encoder. A pos-

sible reason could be that the <|startoftext|> token
is always located between the verbal predicate and
the <|startoftext|> token added by CLIP’s tokenizer
which indicates the start of the sentence. Hence,
its embedding may capture syntactic information
about the subject’s position in the sentence from
these contextual tokens via the attention mecha-
nism. To verify this hypothesis, we conduct two
groups of probing experiments for the syntactic
information in the <|startoftext|> token. We eval-
uate the SENTENCEmiddle4 model by taking the
most and the least frequent token in the dataset (“.”
and “50.0”, respectively) as a pseudo-subject of
the input text, as we assume them to be generally
less informative for the sentences. We observe a
considerable performance drop with the least fre-
quent token (see Table 4, bottom), indicating that
<|startoftext|> indeed gives the model valuable cues
about the subject position in a sentence.

5.2 Event-Enhanced Sentences

Table 5 compares the performance of using
sentence-only embeddings with using event-
enhanced sentence embeddings. As a result, SEN-
TENCE+EVENT outperforms SENTENCE with con-
textualised event embeddings when using the av-
erage of the last 4 hidden layers of the CLIP text
encoder. The groups using the first 4 and middle 4
layers achieve comparable performance. Moreover,
the best model (i.e., [15]) reaches the human upper
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Models Local Event Contextualised Event
weak strict weak strict

[1] SENTENCEfirst4 81.6±0.1 20.1±0.1 81.2±0.0 19.7±0.2
[5] SENTENCE+EVENTmult,first4 80.9±0.8 19.3±1.3 81.0±0.1 19.6±0.3

[6] SENTENCEmiddle4 82.7±0.4 22.3±0.5 82.7±1.1 22.2±1.7
[10] SENTENCE+EVENTmult,middle4 82.4±0.1 22.1±0.3 82.8±0.9 22.4±1.5

[11] SENTENCElast4 82.1±0.4 22.3±0.7 84.6±0.1 26.0±0.2
[15] SENTENCE+EVENTmult,last4 81.1±0.7 21.5±0.8 84.7±0.0 26.4±0.2

Triplet Net (BERT) (Yang et al., 2021)† 72.8 - 72.8 -
Human (Yang et al., 2021) 84.5 - 84.5 -

Table 5: Accuracy (%) and standard deviation of the experiments using different event representations encoded by
different layers of the CLIP text encoder.

bound, demonstrating the necessity of applying the
strict evaluation setting.

5.3 Disentangle the Influence of Model Sizes
and Embeddings

Since the models in the SENTENCE+EVENT group
have more trainable parameters due to the concate-
nation of sentence- and event embeddings, the per-
formance gain could attribute either to the number
of parameters or to the embeddings. To disentan-
gle the influence of these two factors, we conduct
an experiment based on EVENTmult,last4, with the
text module of the triplet network being extended
by an additional dense layer. This increases the
number of trainable parameters of the model to
4, 750, 973, which is comparable with the most ef-
fective SENTENCE+EVENTmult,last4 models. The
results of [16] in Table 3 show that there is no
considerable change in performance from [13] and
[15], indicating that the performance gain is due to
attaching the event representation to the sentence.

6 Qualitative Analysis

We provide a qualitative analysis on the semantic
gap between the ground-truth and the predicted
images. Figure 2 shows part of an example of
the model’s predictions for the goal How to stop
twitching in your sleep? In this example, four out
of ten steps are incorrectly predicted.

For Step 5, the textual input for training
is <|startoftext|> stop twitching in your sleep.
<|startoftext|> exercise every day. The model se-
lects Image (e) which depicts a hand holding a
heart. The model may associate “twitching” with
the heart in the image, but fails to infer the rela-

tion between “twitching” and the jogging people
in the correct image (a). Thus, the model may
not learn causal relationships between the goal and
the step image, such as “Jogging can improve peo-
ple’s health condition and thus stop twitching in
the sleep”.

For Step 7 with the textual input <|startoftext|>
stop twitching in your sleep. <|startoftext|> eat
plenty of magnesium., the model selects Image (f)
illustrating a person sitting at a laptop. Possible
reasons could be: (1) The action “eat” is usually
performed by humans, but the correct image only
describes some food, which the model misses to
associate with “eat”; and (2) The phrase “plenty
of magnesium” may mislead the model to select
the wrong image with a laptop, which is associ-
ated more with magnesium than vegetables. Hence,
the model may only learn knowledge about sim-
ple, superficial properties of the objects in images,
and may lack more complex commonsense knowl-
edge about the relations between objects, such as
“Laptop is not edible” or "Human cannot take mag-
nesium by eating laptops”.

For Step 8, the input is <|startoftext|> stop
twitching in your sleep. <|startoftext|> adjust what
you consume before bed. The model selects the
image showing a lady with a hat being pointed to
by an arrow. This again indicated that the model’s
decision heavily relies on the verb. Furthermore, it
also suggests that the model has limited capability
of identifying the affordances of the objects in the
image and associating them with the goal.

For Step 10 with the input <|startoftext|> stop
twitching in your sleep. <|startoftext|> address
potential vitamin deficiencies., the model again
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(a) Step 5: <|startoftext|>
exercise every day.

(b) Step 7: <|startoftext|>
eat plenty of magnesium.

(c) Step 8: <|startoftext|>
adjust what you consume
before bed.

(d) Step 10: <|startoftext|>
address potential vitamin
deficiencies.

(e) Step 5: <|startoftext|>
be gentle.

(f) Step 7: <|startoftext|>
search online for job post-
ings.

(g) Step 8: <|startoftext|>
put on a sun hat to pro-
tect your hair and keep you
cool.

(h) Step 10: <|startoftext|>
start to learn about and
change any patterns in your
daily life that may act as
triggers or contribute to
your loved one’s destruc-
tive behavior.

Figure 2: Ground-truth (top) and model’s false predictions (bottom) for Steps 5, 7, 8, 10. Goal: How to stop
twitching in your sleep?

seems to not capture causal relationships such as
“Vitamin deficiency can lead to twitching in sleep”,
but to base its inference on shallow object features
such as “A man opens the door and wakes the
sleeping woman up”.

In conclusion, our observations indicate that the
model’s decision highly depends on shallow fea-
tures in the image and their alignment to the verbs
and nouns in the text, while its effectiveness is
impaired by its limited understanding of deeper se-
mantics and causal relationships between the goal
and the step images.

7 Conclusions

In this paper, we investigate two linguistically-
inspired event knowledge injection approaches for
the Visual Goal–Step Inference (VGSI) task. We
experimentally compare three levels of linguistic in-
formation in the text embedding produced by state-
of-the-art neural deep learning models. Further-
more, we also compare event embeddings which
encode only the information of the event compo-
nents themselves with contextualised event embed-
dings which include information about the overall
sentence syntactically not belonging to the argu-
ments forming an event representation itself. Last
but not least, we assess different representations for

the implicit subject of instructional sentences. We
find that the early, linguistically inspired methods
for representing event knowledge do contribute to
understand procedures in combination with modern
V&L models.

8 Limitations

We explore early, very simple structured event rep-
resentations. Recent works in visual–linguistic se-
mantic representations which use richer represen-
tations comprising predicate–argument structures
and event types and argument roles, the general
graph-based approaches, as well as scene graphs,
are left for future work. Furthermore, the wikiHow
articles may reflect the bias of their human authors.
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9 Appendix

9.1 Data Preprocessing and Cleaning
1. We remove the goals with file-ID 385799 and

5323060, as they contain non-English words.

2. Two data points share the same file-ID 411540,
each refers to the goal How to keep healthy
family relationships and How to keep relation-
ships healthy within your family. The first data
point is automatically removed when building
a mapping from file-IDs to goals.

3. We remove the step headlines with step-IDs
1926747_3_0, 2191502_0_0 and 985548_2_0,
since they contain only a dot (.) and cannot
be parsed by the dependency parser.

9.2 Full Table of the Results
As a supplement to Table 3 and Table 5, Table 6
shows the results of all experiment groups.
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Experiments Local Event Contextualised Event
weak strict weak strict

[1] SENTENCEfirst4 81.6±0.1 20.1±0.1 81.2±0 19.7±0.2
[2] EVENTrel,first4 68.9±0.3 9.9±0.3 71.6±0.4 12.2±0.3
[3] EVENTmult,first4 75.8±0.4 15.3±0.5 77.0±0.1 15.9±0.2
[4] SENTENCE+EVENTrel,first4 79.9±0.3 17.9±0.7 80.4±0.1 18.6±0.1
[5] SENTENCE+EVENTmult,first4 80.9±0.8 19.3±1.3 81.0±0.1 19.6±0.3

[6] SENTENCEmiddle4 82.7±0.4 22.3±0.5 82.7±1.1 22.2±1.7
[7] EVENTrel,middle4 70.3±0.2 11.1±0.2 74.9±0 14.9±0.1
[8] EVENTmult,middle4 76.9±0.6 16.9±0.9 79.9±0 19.1±0.4
[9] SENTENCE+EVENTrel,middle4 81.8±0.3 21.2±0.3 81.8±1.1 20.4±1.8
[10] SENTENCE+EVENTmult,middle4 82.4±0.1 22.1±0.3 82.8±0.9 22.4±1.5

[11] SENTENCElast4 82.1±0.4 22.3±0.7 84.6±0.1 26.0±0.2
[12] EVENTrel,last4 69.1±0.3 11.5±0.4 75.9±0 16.7±0.1
[13] EVENTmult,last4 77.3±0.4 18.8±0.4 80.8±0 21.2±0.2
[14] SENTENCE+EVENTrel,last4 80.3±0.6 20.2±1.0 84.1±0.4 25.2±1.1
[15] SENTENCE+EVENTmult,last4 81.1±0.7 21.5±0.8 84.7±0 26.4±0.2

[16] EVENTmult,last4,+1layer 76.6±0.3 17.9±0.2 80.5±0 20.7±0

Triplet Net (BERT) (Yang et al., 2021)† 72.8 - 72.8 -
Human (Yang et al., 2021) 84.5 - 84.5 -

Table 6: Accuracy (%) of experiments using different event representations encoded by different layers of the CLIP
text encoder (full table).
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