Intriguing Effect of the Correlation Prior on ICD-9 Code Assignment
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Abstract

The Ninth Revision of the International Classi-
fication of Diseases (ICD-9) is a standardized
coding system used to classify health condi-
tions. It is used for billing, tracking individ-
ual patient conditions, and for epidemiology.
The highly detailed and technical nature of
the codes and their associated medical condi-
tions make it difficult for humans to accurately
record them. Researchers have explored the
use of neural networks, particularly language
models, for automated ICD-9 code assignment.
However, the imbalanced distribution of ICD-9
codes leads to poor performance. One solu-
tion is to use domain knowledge to incorpo-
rate a useful prior. This paper evaluates the
usefulness of the correlation bias: we hypoth-
esize that correlations between ICD-9 codes
and other medical codes could help improve
language models’ performance. We showed
that while the correlation bias worsens the over-
all performance, the effect on individual class
can be negative or positive.! Performance on
classes that are more imbalanced and less corre-
lated with other codes is more sensitive to incor-
porating the correlation bias. This suggests that
while the correlation bias has potential to im-
prove ICD-9 code assignment in certain cases,
the applicability criteria need to be more care-
fully studied.

1 Introduction

Electronic Health Records (EHRSs) contain patient
information in the form of clinical notes, struc-
tured data tables, and biomedical imaging and time

"The implementation code is available on github: https:
//github.com/nyuolab/text2table

series. For easy tracking and analysis of health
data across different healthcare systems, and criti-
cally for billing purposes, hospitals and insurance
companies assign codes of a standardized coding
system to characterize the clinical conditions of
patients. Wrong code assignments may result in
billing issues that increase patients’ expenses sub-
stantially, misdiagnosis, and poor tracking of popu-
lation level health conditions nationally. The Ninth
Revision of the International Classification of Dis-
eases (ICD-9) is a system used worldwide to clas-
sify and code diseases, injuries, and other health
conditions. There were extensive efforts studying
the automated assignment of ICD-9 codes to health
records and relevant documents (Yan et al., 2022).

With recent developments in NLP, there has
been a focus on the use of neural networks (Yu
et al., 2019; Mullenbach et al., 2018; Teng et al.,
2020). One particularly recent direction is in the
use of language models. Originally introduced
in BERT (Devlin et al., 2019), the recipe of pre-
training and finetuning of language models has
shown promising performance in many tasks. Re-
searchers have applied BERT for assigning ICD-9
codes from medical documents (Huang et al., 2022;
Pascual et al., 2021; Zhang et al., 2020). However,
BERT and other encoder-based language models
perform poorly on ICD-9 code assignment (Yan
et al., 2022).

One challenge is the extremely imbalanced distri-
bution of ICD-9 codes. Following the distribution
of medical conditions in the real world, some codes
occur frequently while other codes may appear only
once (Yan et al., 2022). It is difficult for models
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to correctly predict minority codes because few
samples exist in the dataset (Sun et al., 2009). A
proposed solution is to incorporate domain knowl-
edge that provides useful priors for the minority
codes (Bai and Vucetic, 2019; Wang et al., 2020;
Zeng et al., 2019).

We hypothesize that one useful prior for ICD-9
code assignment is the correlation between ICD-
9 codes and other relevant coding systems. We
term other relevant coding systems auxiliary tasks
because language models in our experiments pre-
dict codes from these systems in addition to ICD-
9 codes. The auxiliary tasks are Current Proce-
dural Terminology (CPT) codes and Diagnosis-
Related Group (DRG) codes. This correlation prior
stems from the domain knowledge that labels from
other coding systems give information about ICD-9
codes. For example, patients who underwent artery
bypass surgeries (CPT code 33533) are likely to
have heart failures (ICD-9 code 428.0). To test our
hypothesis, we investigate the effect of multitask-
ing on correlated auxiliary tasks and encouraging
similar label correlations between training labels
and model predictions through regularization. We
showed that 1) on average, utilizing correlations
hurts language models’ performance on predict-
ing ICD-9 codes from discharge summaries, 2) for
each ICD-9 code, utilizing correlations might hurt
or help, 3) ICD-9 codes that are more imbalanced
and less correlated with auxiliary tasks experience
larger performance changes (both positive and neg-
ative) from incorporating the correlation prior. Our
findings suggest that the correlation prior has the
potential to improve predictions of certain ICD-9
codes, but this method suffers from instability when
the main task has an imbalanced label distribution
and a weak correlation with auxiliary tasks.

2 Related Work

Domain knowledge One useful prior for ICD-
9 codes is its hierarchical structure. For exam-
ple, a high-level code (e.g., 428.0 heart failure) en-
compasses its corresponding low-level codes (e.g.,
428.1 left heart failure, 428.2 systolic heart fail-
ure). Tsai et al. (2019) incorporated this hierarchi-
cal prior and improved models’ performance on
predicting imbalanced ICD-9 codes.

CorrLoss CorrLoss is a regularization technique
(Rieger et al., 2022) that encourages consistent la-
bel correlations between ground truth and predic-
tions. Rieger et al. (2022) uses CorrLoss on the

facial affect recognition task to integrate the cor-
relation priors for facial movements. Corrloss can
be used in any domain where correlation between
prediction targets provides a useful signal. Thus,
we adopt Corrloss to integrate information of the
correlations between different kinds of diagnosis
and procedure codes.

3 Methods

Task overview We formulate the task of code
assignment into a multilabel text classification task
because each patient has multiple codes corre-
sponding to their discharge summaries. Each bi-
nary label in the task corresponds to a specific code.
Formally, our classifier aims to approximate the
probability p(yi,...,ys|z), where each y; is an
ICD-9 code and z is a discharge summary.

The Correlation Prior We hypothesize that cor-
relations between ICD-9 and other coding systems
are a useful prior for ICD-9 code assignment and
choose to incorporate the prior in two ways.

First, we added the auxiliary tasks of predicting
other medical codes (e.g., CPT). Formally, we train
a classifier to approximate

p(y, z|z) = p(y|z) p(z]z, ), (1)

where y is a sequence of ICD-9 codes (the main
task), z is a sequence of other medical codes (the
auxiliary task), and z is a discharge summary. Our
domain knowledge assumes that the absolute corre-
lation abs(p(y, z)|x) > 0, so y, z are not condition-
ally independent given x and p(z|z,y) # p(z|z).
This is desirable because otherwise, we are strictly
increasing the difficulty of the task from learning
p(y|z) to learning p(y|z) p(z|x).

There are benefits and concerns associated with
Equation 1, and their trade-off is unclear a priori.
One benefit is that extra dependency information
from p(z|x, y) could potentially simplify learning
p(y, z|z). One drawback is that the additional pre-
diction targets z could worsen the curse of dimen-
sionality. Whether the benefit would outweigh the
drawback is difficult to determine without running
a controlled experiment.

Second, we used CorrLoss to encourage similar
label correlation patterns between training and pre-
dictions. Formally, we added a regularization term
¢ = 3,2, c(di,d;). Each summation term scales
with a correlation difference:

Ytrain
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PROC PROC+CPT PROC+DRG PROC+DIAG
ClinicalBERT  original 0.4528 0.397 0.3939 0.408
CorrLoss  0.4037  0.3594 0.3272 0.363
RoBERTa original 0.4421  0.4009 0.3884 0.4116
CorrLoss  0.3736  0.3236 0.2816 0.3692
Longformer original 04712 0.4227 0.3886 0.4219
CorrLoss  0.4139  0.335 0.212 0.3549

Table 1: Macro F1 scores of experiments, in which procedure ICD-9 is the main task, on MIMIC-III-50 test set.
For each model, the best F1 score is in bold. PROC means procedure ICD-9. DIAG means diagnosis ICD-9.
PROC+CPT means that procedure ICD-9 is the main task and CPT is the auxiliary task.

where d;, d; are different classes, p(d;, d;), is
the correlation between class d; and d; in a vector
U, Ytrain 1S the training labels, ¢ is the predicted
labels, and p is the Pearson correlation function.

Dataset We built two datasets from the Medical
Information Mart for Intensive Care III (MIMIC-
III) (Johnson et al., 2016), a database of EHRs. Our
first dataset, subsequently referred to as “MIMIC-
III", contains examples of each patient’s discharge
summary, and associated diagnosis and procedure
codes (diagnosis ICD-9, procedure ICD-9, CPT,
and DRG). Because this dataset is extremely imbal-
anced, we further select the top 50 most frequently
used codes for each kind of coding system to con-
struct a second dataset that represents a more ideal
scenario. Following the convention of related litera-
ture, we call this dataset “MIMIC-III-50" (Vu et al.,
2020; Luo et al., 2021; Li and Yu, 2020). Statistics
of the MIMIC-III dataset are in Appendix A.

Models and Evaluation We use ClinicalBERT
(Alsentzer et al., 2019), RoBERTa (Liu et al., 2019),
Longformer (Beltagy et al., 2020) (justification in
Appendix C). We use the macro F1 as our metric
for comparison because this metric treats all classes
equally, which means minority codes are as impor-
tant as majority codes in evaluation (Branco et al.,
2016; Sun et al., 2009; Ferri et al., 2009). Because
it is an imbalanced classification, the default thresh-
old of 0.5 is not suitable (Zhou and Liu, 2006; Zou
et al., 2016). Instead, we tune the threshold accord-
ing to the precision-recall curve to maximize the
F1 score for each individual label.

4 Experiments

To test whether the correlation prior is useful for
ICD code assignment, we incorporate multitask-
ing (Equation 1) and CorrLoss (Equation 2) into
our model and check if they improve performance.
Specifically, we studied two main tasks (diagno-

111

sis ICD-9 codes and procedure ICD-9 codes). For
each main task, we added one of the three auxil-
iary tasks: DRG codes, CPT codes, and the other
ICD-9 codes (for diagnosis ICD-9 code, the aux-
iliary task can be procedure ICD-9 code, and vice
versa). We trained both main-task-only models and
multitasking models with and without CorrLoss.

5 Results

Multitasking and CorrLoss hurt performance
on MIMIC-III-50 and do not significantly im-
pact performance on MIMIC-III. Table 1 shows
the macro-F1 score on procedure ICD-9 of the
MIMIC-III-50 dataset. We observe two patterns for
each language model. First, adding auxiliary tasks
always decreases the performance of models in
comparison to predicting main tasks only. Second,
regularizing with CorrLoss always decreases the
performance of models in comparison to not using
CorrLoss. The same pattern exists for predicting
diagnosis ICD-9 of the MIMIC-III-50 dataset (Ap-
pendix Table 6). However, on the full MIMIC-III
dataset, multitasking and CorrLoss do not impact
models’ performance significantly (Appendix B).

6 Analysis

Since the macro F1 score does not show significant
changes from multitasking and CorrLoss on the
full MIMIC-III dataset, we investigate whether the
performance changes for individual labels. Specifi-
cally, we analyzed how label imbalance (measured
by Shannon entropy, defined in Appendix D.1) and
label correlation (measured by the average absolute
Pearson correlation coefficient between each main
task label and all auxiliary task labels, as defined
in Appendix D.1) affect the model’s performance.

For individual ICD-9 code, incorporating the
correlation prior may hurt or help. Figure 1
shows that there exist labels with both negative and
positive performance changes.
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Figure 1: The plot of ClinicalBERT’s performance changes (Y axis) on labels of procedure ICD-9, when DRG is
added as the auxiliary task, versus the balances (X axis) of the labels, and versus the correlations (sizes and colors
of the units) between each label with the whole auxiliary DRG task. CorrLoss is not included.

Labels that are more imbalanced and less
correlated to auxiliary labels experience larger
changes. Figure 1 shows two relationships: (1)
more balanced labels (closer to the right) have less
performance changes (spread of dots on the y axis),
(2) labels that are more correlated with the auxiliary
task (darker dots) have less performance changes
(spread along the y axis). All the other plots of
different tasks and setups show similar patterns
(Appendix D.1).

topS0  bottom50
ClinicalBERT  +CPT 0.333  0.273
+DRG  0.28 0.413
+DIAG 0.3 0.387
RoBERTa +CPT 04 0.3
+DRG 0393 0.353
+DIAG 0.313 0.287
Longformer +CPT 0.34 0.427
+DRG 0.34 0.28
+DIAG 0.347 0.307

Table 2: The percentages of positive macro F1 score
changes on the top 50 most balanced procedure ICD-9
labels and on the bottom 50 least balanced procedure
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is not included.

In both extreme scenarios (imbalanced label,
small correlation with auxiliary labels) and ideal
scenarios (balanced labels, high correlation with
auxiliary labels), incorporating correlation is
more likely to hurt than help. Table 2 shows that
for the top 50 most balanced labels and the bottom
50 least balanced labels, if we utilize correlations

top50  bottom50
ClinicalBERT  +CPT 0333 0.327
+DRG  0.32 0.327
+DIAG 0.293  0.247
RoBERTa +CPT 0.487 0.333
+DRG  0.373 0.387
+DIAG 0.267 0.293
Longformer +CPT 0.433 0.327
+DRG  0.28 0.273
+DIAG 0.333 024

Table 3: The percentages of positive macro F1 score
changes on the top 50 procedure ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 procedure ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is included.

(with multitasking and CorrLoss), the percentage
of positive F1 score changes is always less than
50%. Table 3 shows that for the top 50 labels that
are most correlated with the auxiliary tasks and the
bottom 50 labels that are least correlated with the
auxiliary tasks, utilizing correlations also leads to
< 50% positive F1 score change.

7 Discussion

Since multitasking and CorrLoss worsen language
models’ overall performance, it contradicts our hy-
pothesis that the correlations between ICD-9 codes
and other medical codes would be a useful prior.
Nevertheless, the performance changes on individ-
ual labels are more nuanced and show potential for
improving prediction of certain ICD-9 codes. We
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wonder what characterizes the labels that benefit
from incorporating the correlation prior (dots with
positive changes in Figure 1). Perhaps for those la-
bels, the additional dependency information gained
from the auxiliary tasks outweigh the increased
learning complexity from a larger output space. A
prerequisite for a rigorous investigation would be
quantifying the trade-off between the dependency
information and the learning complexity.

We recognize three limitations that may influ-
ence the interpretation of our results and call for
future works. First, we did not conduct a hyper-
parameter search for the regularization strength of
CorrLoss. Second, since F1 score decreases are
substantial and universal across all experiments on
MIMIC-III-50, we did not run experiments multi-
ple times with different seeds. Third, we did not
provide a rigorous explanation of what caused our
empirical findings. Future works can investigate
the plausible hypothesis that the trade-off between
the dependency information and the learning com-
plexity causes these findings. Besides these limita-
tions, future works can also investigate more sce-
narios and methods of incorporating the correlation
prior.
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A Dataset Statistics

Distribution of lengths of tokenized discharge summaries
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Figure 2: The distribution of lengths of tokenized discharge summaries in MIMIC-III dataset.

Distribution of diagnosis ICD9

Code

Figure 3: The distribution of diagnosis ICD-9. There are 6918 diagnosis ICD-9 codes. 6062 Codes occur less than
or equal to 100 times in MIMIC-III dataset. They are not included for clarity.
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Figure 4: The distribution of procedure ICD-9. There are 2011 procedure ICD-9 codes. 1767 Codes occur less than
or equal to 100 times in MIMIC-III dataset. They are not included for clarity.
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B Results

PROC PROC+CPT PROC+DRG PROC+DIAG

ClinicalBERT original  0.0098 0.0094 0.0091 0.0097
CorrLoss 0.0102  0.0099 0.0088 0.0087
RoBERTa original  0.0097 0.0089 0.0087 0.0088
CorrLoss  0.0095 0.0095 0.0098 0.0089
Longformer original ~ 0.0088 0.0088 0.0095 0.0085
CorrLoss  0.0094 0.0085 0.0091 0.0078

Table 4: Macro F1 scores of experiments, in which procedure ICD-9 is the main task, on full MIMIC-III test set.

DIAG DIAG+CPT DIAG+DRG DIAG+PROC

Clinical BERT original  0.0068 0.0066 0.0066 0.0067
CorrLoss  0.0066 0.0069 0.0069 0.0068
RoBERTa original  0.0069 0.0065 0.0062 0.0065
CorrLoss  0.0071 0.0071 0.0066 0.0065
Longformer original  0.0072 0.0069 0.007 0.0071
CorrLoss 0.007  0.0068 0.0076 0.0071

Table 5: Macro F1 scores of experiments, in which diagnosis ICD-9 is the main task, on full MIMIC-III test set.

DIAG DIAG+CPT DIAG+DRG DIAG+PROC

ClinicalBERT original ~ 0.3755 0.3296 0.3351 0.3351
CorrLoss 0.3235 0.2966 0.2947 0.2992
RoBERTa original  0.3851 0.3255 0.3307 0.3341
CorrLoss 0.3143  0.2822 0.2713 0.2939
Longformer original  0.4408 0.349 0.3544 0.3552
CorrLoss 0.3364 0.2963 0.2906 0.3027

Table 6: Macro F1 scores of experiments, in which diagnosis ICD-9 is the main task, on MIMIC-III-50 test set.
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C Justifcation of Models

The variant of ClinicalBERT we use is
Bio+Discharge Summary BERT model because it
was further trained on discharge summaries from
MIMICH-III after initialized from BioBERT (Lee
et al., 2020).

We use RoBERTa because it is a variant of
vanilla BERT that was trained differently to im-
prove its performance on a range of NLP tasks.

We use Longformer because it can handle long
text sequences. BERT and many BERT-based mod-
els cannnot handle text sequences longer than 512
tokens. Many tokenized discharge summaries are
text sequences longer than 512 tokens and Long-
former can benefit from more complete understand-
ings of discharge summaries.

Each model represents a different improvement
on top of vanilla BERT: Clinical BERT improves
through domain-specific pretraining; RoOBERTa im-
proves through tuning training setup; and Long-
former improves through incorporating more in-
formation from the input. With these models, we
cover a significant part of the improvement spec-
trum, which shows that the pattern we present is
generalizable to different models.

D Analysis

D.1 Performance on Each Label

Other figures Since there are 72 experiments
that have auxiliary tasks, there are 72 correspond-
ing plots. Thus, it is unreasonable to include all
of them in the appendix. You can find all plots
in our github repository: https://github.com/
nyuolab/text2table/tree/main/notebooks.

Shannon Entropy
H(X) ==Y p(x;)logy p(x;) 3)
i=1

In this equation, H (X)) represents the entropy
of a label X with possible outcomes x1, 2, ..., Tp.
In our context, n = 2 because a label only has
two possible outcomes: 1 (positive) or 0 (negative).
The term p(x;) represents the probability of the i-th
outcome, and the logarithm is taken with base 2 to
give the result in units of bits. The sum is taken
over all possible outcomes of X. With only two
possible outcomes, a label’s Shannon entropy will
be close to 1 if it is balanced, and will be close to 0
if it is imblanced.

Representation of Correlations

2bep [Pla,b)]

Cla, B) = card(B)

“)

In this equation, C'(a, B) represents the correla-
tions between a label of the main task a and a set
containing labels of the auxiliary task. For each la-
bel of the auxiliary task b € B, | P(a, b)| represents
the absolute value of the Pearson correlation coeffi-
cient bettwen a and b. card(B) is the cardinality
of B (i.e. the number of labels in B).

D.2 Performance in Different Scenarios

topS0  bottom50
ClinicalBERT +CPT 0.453 0.32
+DRG 054 0.293
+PROC 0.48 0.38
RoBERTa +CPT 048 0.313
+DRG  0.507 0.307
+PROC 048 0.333
Longformer +CPT 0.5 0.32
+DRG 048 0.393
+PROC 0.433 0.287

Table 7: The percentages of positive macro F1 score
changes on the top 50 most balanced diagnosis ICD-9
labels and on the bottom 50 least balanced diagnosis
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is not included in all experiments we examine
in this table.

top5S0  bottom50
ClinicalBERT +CPT  0.347 0.36
+DRG  0.327 0.313
+DIAG 0.273 0.28
RoBERTa +CPT 032 032
+DRG 0.353 0.36
+DIAG 0.273 0.22
Longformer +CPT  0.353 0.367
+DRG 0.28 0.293
+DIAG 0.307 0.26

Table 8: The percentages of positive macro F1 score
changes on the top 50 most balanced procedure ICD-9
labels and on the bottom 50 least balanced procedure
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is included in all experiments we examine in
this table.

117


https://github.com/nyuolab/text2table/tree/main/notebooks
https://github.com/nyuolab/text2table/tree/main/notebooks

topS0  bottom50
ClinicalBERT +CPT 0.413 0.307
+DRG  0.533 0.28
+PROC 0.487 0.293
RoBERTa +CPT 046 03
+DRG  0.493 0.373
+PROC 0473 0.34
Longformer +CPT 0.453 0.293
+DRG  0.487 0.34
+PROC 0.5 0.307

Table 9: The percentages of positive macro F1 score
changes on the top 50 most balanced diagnosis ICD-9
labels and on the bottom 50 least balanced diagnosis

ICD-9 labels, with different auxiliary tasks and models.

CorrLoss is included in all experiments we examine in
this table.

topS0  bottom50
Clinical BERT +CPT 0467 0.32
+DRG  0.307 0.373
+DIAG 0.367 0.287
RoBERTa +CPT  0.387 0.267
+DRG 0.413 0.407
+DIAG 0.32  0.307
Longformer +CPT 0427 0.367
+DRG 0.34  0.307
+DIAG 042  0.307

Table 10: The percentages of positive macro F1 score
changes on the top 50 procedure ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 procedure ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is not included in all experiments we
examine in this table.

top50 bottom50
ClinicalBERT +CPT  0.507 0.333
+DRG  0.493 0.287
+PROC 0.473 0.347
RoBERTa +CPT 048 0.247
+DRG 0.513 0.36
+PROC 0.46  0.347
Longformer +CPT 0.487 0.313
+DRG 0493 0.34
+PROC 0.427 0.313

Table 11: The percentages of positive macro F1 score
changes on the top 50 diagnosis ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 diagnosis ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is not included in all experiments we
examine in this table.

topS0  bottom50
ClinicalBERT +CPT  0.467 0.373
+DRG 052 03
+PROC 046 0.333
RoBERTa +CPT 0493 0.32
+DRG  0.52 0.433
+PROC 0.473 0.253
Longformer +CPT 046  0.32
+DRG  0.513 0.467
+PROC 0453 0.34

Table 12: The percentages of positive macro F1 score
changes on the top 50 diagnosis ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 diagnosis ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is included in all experiments we
examine in this table.
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