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Abstract

Recognizing flat, overlapped and discontinu-
ous entities uniformly has been paid increas-
ing attention. Among these works, Seq2Seq
formulation prevails for its flexibility and ef-
fectiveness. It arranges the output entities into
a specific target sequence. However, it intro-
duces bias by assigning all the probability mass
to the observed sequence. To alleviate the bias,
previous works either augment the data with
possible sequences or resort to other formula-
tions. In this paper, we stick to the Seq2Seq
formulation and propose a reranking-based ap-
proach. It redistributes the likelihood among
candidate sequences depending on their per-
formance via a contrastive loss. Extensive ex-
periments show that our simple yet effective
method consistently boosts the baseline, and
yields competitive or better results compared
with the state-of-the-art methods on 8 widely-
used datasets for Named Entity Recognition.

1 Introduction

Recently, recognizing flat, overlapped and discon-
tinuous entities in a unified manner has been paid
increasing attention. Among the existing works for
unified Named Entity Recognition (NER), Seq2Seq
formulation prevails for its flexibility and effective-
ness in unified modeling (Yan et al., 2021; Lu et al.,
2022; Ye et al., 2022). Typically, it arranges the
output entities into a fixed order to form a target
sequence, and trains the generative model by maxi-
mum likelihood estimation (MLE).

However, this estimation introduces bias by as-
suming a deterministic target distribution, where
the model learns to assign all the probability mass
to the observed target sequence. The biased es-
timation hurts the performance during decoding
where predicted sequence likelihoods often do not
accurately rank the performance of the generated
sequences. To alleviate the bias, (Zhang et al.,
2022) propose two data augmentation methods that
sample possible sequences from the target space.

topK/B CoNLLO03 OntoNotes5.0 ACE04  ACEO05
1/5 93.14 90.27 86.85 84.76
5/5 96.58 96.43 93.14 92.26
10/10 97.20 97.09 94.38 93.24
topK/B  GENIA CADEC ShARel3 ShARel4
1/5 78.93 70.53 79.69 80.35
5/5 89.66 81.17 89.36 90.68
10/10 91.64 83.01 91.11 91.87

Table 1: Oracle F1, i.e., maximum F1 over topK candi-
dates, on NER datasets based on BARTNER (Yan et al.,
2021). topK/B denotes picking topK candidates out of
candidates generated by beam search with beam size B.

Others resort to other formulations, e.g., W2NER
(Li et al., 2022) reformulates NER as a word-word
relation classification. In this study, we stick to
the Seq2Seq formulation and explore how to miti-
gate the bias from another perspective orthogonal
to (Zhang et al., 2022).

Beam search decoding algorithms maintain B
candidates in descending likelihoods and output
the highest one. However, the rest candidates could
contain predictions with better performance. We
measure this phenomenon with oracle scores. As
shown in Table 1, the beam candidates contain pre-
dictions with up to 8.1 points higher F1 over the
outputted one, averaged on eight datasets. Dou-
bling the beam size further increases the advantage
to 9.38 points.

Recently, reranking-based methods proposed for
the abstractive summarization task offer a potential
technique (Liu and Liu, 2021; Ravaut et al., 2022).
They train a discriminator on the candidates to pre-
dict a score for picking out the best candidate. For
example, SimCLS (Liu and Liu, 2021) regards the
cosine similarity between the input and candidate
representations as the score. However, when apply-
ing reranking-based methods to our task, we find a
challenge originating from the nature of informa-
tion extraction. Candidates of the same input share
most of the words and the discriminators trained
from scratch have difficulty differentiating them
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Figure 1: Illustration of Sequence Likelihood Calibration. After guiding the estimated sequence likelihood by F1
score, the likelihood is more consistent with the F1 score. More cases can be found in Appendix 8.

(detailed in Sec. 3.3).

To address the above issue, we propose
RerankNER to debias generative NER based on
a reranking framework adapted for the task. Specif-
ically, we first train the generative model in the
standard way, resulting in a biased model. Then,
we generate several candidates for each input with
beam search. Instead of training a separated dis-
criminator on the candidates sharing most of the
words, we calibrate the generative model with a
contrastive loss defined on the candidates. The con-
trastive loss aims to make the estimated sequence
likelihoods consistent with their relative task per-
formance as shown in Figure 1. This objective
softens the target distribution and thus alleviates
the bias.

Our contributions are summarized as follows:

1. To the best of our knowledge, we are the first
to explore reranking-based methods in the
field of generative information extraction (Ye
etal., 2022).

2. We propose a method for generative NER tack-
ling the bias problem.

3. Experimental results show that our method
consistently boosts the baseline, and yields
competitive results compared with the state-
of-the-art methods on 8 widely-used datasets
for NER.

2 Method

2.1 Task Formulation

We unify three NER subtasks (i.e. the flat,
overlapped, and discontinuous NER) as follows.
Given an input sentence of n tokens X =
X1T9...Ty, the m output entities are arranged
into a target sequence Y = FE1Fs... By, B =
yly2 ...yl 'y 1, where yl, ...,y denotes the to-
kens in the ¢-th entity and /; denotes the label of
the ¢-th entity. Our goal is to model the condi-
tional probability P (Y|X), which is factorized
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Token Distribution [ [ J===——t=b
Likelihood

Encoder Decoder

— [ -
Target Sequence

[ .. .. ]Input Sequence

Gold Likelihood [ | Likelihoods F1 Score
' [ (] [ ] ]
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Likelihood 8 [ ] L) I ]
t 1
[ Model ] [ Model ] ||[ Model |
Gold [ .. [N .. [N Gold [ [N - [ || T T
- - || ] p—
Candidates {[ .. [ .. | || [l .. | Evaluate
[ -] Candidates
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Figure 2: Illustration of the optimization objectives. @
The model estimates a sequence likelihood for each
given target sequence. ® Ly r maximizes the likeli-
hood of the gold sequence. ® Lq1q penalizes any can-
didate with higher likelihood than the gold. @ Lg.nx
coordinates the likelihoods of the candidates with their
ordering of F1 scores.

auto-regressively into H‘ti‘o P (y| X, Y<y).

2.2 Overview

Given a generative NER model trained on the tar-
get sequences with the standard MLE, we perform
sequence likelihood calibration to alleviate the bias.
First, we generate several candidates for each in-
put with beam search and evaluate their task per-
formance (F1 score is used). Then, we continue
training the model with the contrastive loss to make
the estimated sequence likelihoods consistent with
their relative task performance. Finally, we gener-
ate the answer with the standard beam search by
the calibrated model.

2.3 Sequence Likelihood Calibration

The contrastive loss depicted in Figure 2 is com-
posed of three terms Lyire, LRank, £Gold-

Lk is identical to the standard MLE used in
the first training stage. It maintains the generating
ability of the model during the calibration process.
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LyLg maximizes the sequence likelihood of the
gold target sequence Y, where the sequence like-
lihood is calculated as the product of token-level
likelihood:

Lyre = —S(Y)
S(Y) = log Pp(w| X, Yer)
t

and 6 denotes model parameters.

LRank improves the consistency between the es-
timated sequence likelihoods and the task perfor-
mance of the candidate sequences. We adopt the
margin ranking loss (Hopkins and May, 2011) for
this term, i.e.,

LRank = Zmax <O, S(Y;) — S(V;) + )\)

,J

where l?;, f/j is a pair of candidates generated by
beam search, provided that Y; has a higher F1 score
than }A{} A denotes the margin, a hyper-parameter.

Apart from the supervision of relative order in
the candidates, we utilize the supervision of the
gold sequence as well. Lgo1q ensures the sequence
likelihoods of the generated candidates do not over-
step the likelihood of the gold.

Lioa = Z max (o, S(V;) — S(Y) + )\)

where Y; denotes a candidate sequence, provided
that it is not an equivalent of the gold.
The contrastive loss is the sum of the terms:

L = Lyik + oLRank + AL Cold

where o and & are coefficients.

3 Experiments

3.1 Main Results

We conduct experiments on eight datasets of three
NER subtasks in total. Precision (P), Recall (R)
and Micro F1 score (F1) are reported as previous
works. We use BART-large as our backbone. For
fair comparison, we reproduce BARTNER (Yan
et al., 2021) using the public code ! and get simi-
lar results reported in the paper. We compare our
model principally with SOTA generative NER mod-
els, including (Yan et al., 2021; Zhang et al., 2022;
Lu et al., 2022). Performances of SOTA discrimina-
tive NER models (Li et al., 2022) are also listed for
reference. Refer to Appendix A for more details.

"https://github.com/yhcc/BARTNER/

The results for flat, overlapped and discontinu-
ous NER are shown in Table 2, Table 3 and Ta-
ble 4 respectively. On eight datasets, our proposed
sequence calibration consistently boosts the base-
line. It achieves SOTA performance among the
generative methods. Noting that our method gets
competitive results even compared with discrimina-
tive methods that use extra embedding and domain
pretrained model, which shows the potential of gen-
erative models.

3.2 Analysis of Improvement

We manually analyze the predictions corrected by
the calibration. Apart from reranking the correct
candidate to the top beam, RerankNER can gener-
ate new candidates with boundary or type corrected.
More cases can be found in Appendix B.

In addition to manually observing examples,
we also quantitatively analyze the sources of gain.
We find that the gain mostly comes from samples
with low likelihood, which means sequence like-
lihood calibration is more effective for samples
with higher difficulty. Specifically, we group the
samples in the test set into ten groups according
to their original sequence likelihood and evaluate
their performance before (colored in orange) and
after (colored in blue) calibration. It can be seen
from Figure 3 that the F1 scores of most groups get
improved after calibration, and the improvement is
greater for samples with lower likelihoods.

We also conduct the hit@top-k evaluation.
Specifically, we iterate over the test samples and
increase the number of hits when a gold answer ex-
ists among the top-k candidates. Table 5 shows that
calibration slightly increase the hit@top-k across
various datasets.

3.3 Variants of Reranker

As stated in Section 1, we observe that previous
methods have difficulty capturing the subtle nuance
among the candidates. We have investigated three
variants: (1) SimCLS (Liu and Liu, 2021). (2) Sim-
CLS with our modification which concatenates the
input and the candidate representation and projects
it to a score to replace the cosine similarity. (3)
Picking out the best candidate based on the esti-
mated likelihood of our model. Overall, we find
their training losses fluctuate and their performance
consistently lower than the baseline which selects
the top beam with the highest likelihood. Future
work could investigate this phenomenon in more
depth.
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CoNLLO03 OntoNotes5.0
Model
p R F1 p R F1

2 (Akbiketal., 2019)' [BERT-Large] - - 9286 - - -
& (Lietal,2020)° [BERT-Large] 9247 9327 92.87 91.34 8839 89.84
'E  (Shen et al., 2021)> [BERT-Large] 92.13 9373 92.94 - - -
5 (Wangetal, 2021a)' [BERT-Large] - - 93.21 - - -
A (Lietal,2022) [BERT-Large] 9271 9344 93.07 90.03 90.97 90.50

(Strakov4 et al., 2019)! [BERT-Large] - - 93.07 - - -
£ (Zhang et al., 2022) [T5-Base] 9278 9351 93.14 89.77 91.07 90.42
2 (Luetal,2022) [UIE (T5-Large)] - 92.99 - - -
Q
g (Yan et al., 2021) [BART-Large] 92.61 93.87 9324 89.99 90.77 90.38

Ours [BART-Large]

93.26 93.69 9348 90.03 91.24 90.63

Table 2: Results on flat NER datasets.

1

means using extra embedding (e.g. character embedding and POS

embedding). > means using extra context. 3 means reproduction from (Yan et al., 2021).

ACE04 ACEO05 Genia
Model
P R F1 P R F1 P R F1

.‘LZ’ (Yu et al., 2020)* [BERT-Large] 87.3 86.0 86.7 85.2 85.6 854 81.8 79.3 80.5
§ (Li et al., 2020)* [BERT-Large] 85.83 8577 8580 85.01 84.13 84.57 8125 7636 78.72
‘E  (Xuetal, 2021) [BERT-Large] 86.9 85.8 86.3 85.7 85.2 85.4 80.3 78.9 79.6
‘5 (Shenetal., 2021)* [BERT-Large] 8744 8738 87.41 86.09 8727 86.67 80.19 80.89 80.54
'é (Li et al., 2022)° [BERT-Large] 87.33 87771 8752 85.03 88.62 86.79 83.10 79.76 81.39

(Strakové et al., 2019) [BERT-Large] - - 84.40 - - 84.33 - - 78.31
.QZ) (Zhang et al., 2022) [T5-Base] 86.36 84.54 8544 8292 87.05 8493 81.04 7721 79.08
s (Luetal, 2022) [UIE (T5-Large)] - - 86.89 - - 85.78 - - -
5]
§ (Yanetal., 2021) [BART-Large] 87.27 86.41 86.84 83.16 86.38 8474 7857 793 78.93
©  Ours [BART-Large] 87.64 87.61 87.63 85.01 87.47 8622 79.51 7948 79.49

3

Table 3: Results on overlapped NER datasets. | means using extra embedding. > means using extra context. 3 means
using domain pretrained model (e.g. ClinicalBERT and BioBERT). 4 means reproduction from (Yan et al., 2021)

CADEC ShARel3 ShARel4
Model

P R F1 P R F1 P R F1
§ (Tang et al., 2018) 67.80 64.99 66.36 - - - - - -
‘g‘ (Dai et al., 2020) [ELMO] 6890 69.00 69.00 80.50 75.00 77.70 78.10 81.20 79.60
g (Li et al., 2020) [BERT-large] - - 69.90 - - 82.50 - - -
‘5 (Wangetal., 2021b)' [BERT-Large] 70.50 72.50 71.50 8430 7820 81.20 7820 84.70 81.30
é’ (Li et al., 2022)" [BERT-Large] 74.09 7235 7321 8557 79.68 8252 79.88 83.71 81.75
.g (Zhang et al., 2022) [T5-Base] 7135 71.86 71.60 81.09 78.13 79.58 77.88 83.77 80.72
=
2 (Yanetal, 2021) [BART-Large] 70.08 7121 70.64 82.09 7742 79.69 772 8375 80.34
(B Ours [BART-Large] 7233 71.01 71.66 81.86 78.48 80.14 78.68 83.63 81.01

Table 4: Results on discontinuous NER datasets.

1

BioBERT).
CoNLLO03 OntoNotes5.0 ACE04 ACEO05
hit@3 3196/3119 7732/7734  559/566 759/779
hit@5 3240/3138 7858/7869  582/586 786/797
GENIA CADEC ShARel3  ShARel4

hit@3 1135/1161  981/962  8046/8077 14405/14578
hit@5 1245/1254 1005/980 8085/8124 14481/14659

Table 5: Hit@top-k evaluation. Each element in the
table denotes the hit count among top-k candidates be-

fore/after calibration.

means using domain pretrained model (e.g. ClinicalBERT and

4 Related Work

Named Entity Recognition The existing meth-
ods for NER can be broadly classified into se-
quence labeling formulation, span-based formula-
tion and generative-based formulation. A majority
of initial works adopt sequence labeling formula-
tion which assigns each token a tag from a prede-
fined tagging scheme (Huang et al., 2015; Lample
et al., 2016). Then, the span-based formulation is
proposed which enumerates all possible spans and
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Figure 3: Distribution of F1 scores for samples with different sequence likelihood before (blue) and after (orange)
calibration. X-axis shows 10 groups of samples categorized by their sequence likelihood before calibration. Y-axis

shows the F1 score of each group.

performs classification at the span-level (Wang and
Lu, 2019). Recently, researchers have grown more
interest in tackling the three subtasks uniformly,
i.e., flat NER, overlapped NER and discontinuous
NER. We refer to them as unified NER in the rest
of the passage. The above two formulations have
major drawbacks in modeling unified NER. For ex-
ample, sequence labeling methods need to design
different tagging schemas for each subtask (Dai
et al., 2020). While span-based methods have to
trade-off between maximal span length and compu-
tation efficiency due to the enumeration operation
(Luan et al., 2019). Generative-based formulation
prevails in unified NER for its flexibility in gen-
erating variable-length entities (Lu et al., 2022;
Yan et al., 2021). In this paper, we adopt BART-
NER (Yan et al., 2021) as our backbone generative
model.

Bias in Generative NER Since the generative
model generates outputs in an autoregressive man-
ner which differs largely from the extraction objec-
tive of NER, it introduces incorrect biases during
training. (Zhang et al., 2022) analyze these biases
from the causality perspective and attribute them
to two confounders namely pre-context confounder
(the model may be biased to pre-generated words
which have no causal relation with the word to be
generated) and entity-order confounder. They pro-
pose two data augmentation methods to address
them respectively. (Tan et al., 2021) observe that
overlapped NER is essentially an unordered task
and propose a sequence-to-set network to predict
entity spans simultaneously in a non-autoregressive
manner. W2NER (Li et al., 2022) abandons the
generative-based formulation and model unified
NER as a word-word relation classification based
on the proposed relation schema. In this paper, we
improve the generative-based method by exploiting

the candidate information and get comparable or
better results.

Reranking Reranking has been explored in vari-
ous tasks of Natural Language Processing for long.
In question answering, passage reranking is used
as the first stage to retrieve relevant passages where
the answer might locate and reorder them accord-
ing to their scores. Similarly, answer reranking is
used as the last stage to refine the answer selection.
In neural machine translation, (Bhattacharyya et al.,
2021) apply an energy-based model on the top
of BERT to reorder candidates according to their
BLEU scores. In abstractive summarization, Sim-
CLS (Liu and Liu, 2021) trains a separate second-
stage model with discriminative ranking loss to
select the best summary candidate. BRIO (Liu
et al., 2022) optimizes the autoregressive language
model by a contrastive loss over the discrete space
of the generated texts. SummaReranker (Ravaut
et al., 2022) adopts a mixture-of-expert architec-
ture as the reranker to measure the quality of the
candidates with multiple metrics. To the best of our
knowledge, there is no work exploring reranking
methods on generative IE.

5 Conclusion

Through pilot experiments, we find the decoded
candidates provide potential supervision. Based
on this finding, we propose RerankNER to debias
generative NER based on a reranking framework
adapted for the task. It consistently boosts the base-
line and achieves competitive results with state-of-
the-art generative methods on eight NER datasets,
which verifies the effectiveness of candidate order
supervision. Future work could consider extending
this method to other generative IE tasks. Another
meaningful direction is to consider incorporating
Large Language Models into the reranking process.
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Limitations

RerankNER conducts calibration after the regu-
lar training, which introduces extra computational
overhead. This drives us to further improve the
overall efficiency of our method. Recent works
find that few-shot learning serves as an effective
finetuning method of pretrained language models.
It is reasonable to investigate our model under few-
shot learning to reduce the overhead. Although
we get competitive results with the state-of-the-art
methods, there is still a gap between the oracle
score and the best results. We leave them as our
future work.
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A Details

A.1 Dataset Statistics
The statistics of the datasets are listed in Table 6.

Flat NER subtask We conduct experiments
on CoNLL-2003 (Sang and Meulder, 2003) and
OntoNotes5.0 (Pradhan et al., 2013) in English.
We follow the experimental settings as previous
works (Lample et al., 2016; Yan et al., 2021).

Overlapped NER subtask We conduct exper-
iments on ACE 2004 (Doddington et al., 2004),
ACE 2005 (Walker et al., 2006), and GENIA (Kim
et al., 2003). For ACE 2004 and ACE 2005, we
shuffle and split the documents into training, de-
velopment, and testing in a ratio of 8:1:1 follow-
ing (Yu et al., 2020). For GENIA, the ratio is set to
8.1:0.9:1.0 following (Yan et al., 2021).

Discontinuous NER subtask We con-
duct experiments on CADEC (Karimi et al.,
2015), ShARel13 (Mowery et al., 2013a), and
ShARel4 (Mowery et al., 2013b). These datasets
contains approximately 10% discontinuous entities.
We follow the experimental settings from (Dai
et al., 2020).

A.2 Implementation Details

For the fine-tuning stage, we use the code, the
hyper-parameters, the package version from (Yan
et al., 2021) and get comparable results on all
datasets reported in the paper. We set the max

epoch as 30 with early stop (patience=5). We use
AdamW optimizer with the same learning rate as
(Yan et al., 2021). Linear learning rate scheduling
is employed. For all subtasks, we do predictions
on the word-level, i.e., only the position index of
the first BPE of each entity word is used.

For the calibration training, we use the standard
beam search to generate 5 candidates for each input
sentence. We adopt the hyper-parameters as the
fine-tuning stage except for the newly added ones.
We implement both the fixed margin and the linear
margin. The linear margin A = \(j — i) denotes
the linear margin depending on the order difference
of the candidates, and \ is a hyper-parameter. We
search the value of the margin X within [0.01, 0.1].
We search the value of coefficient o within [0.1,
1]. Table 7 “mask out tie” means whether we mask
out the comparison between candidates with the
same F1 score in the contrastive loss. Effects of
“add Laog” and “mask out tie” differs across 8
datasets, so we view them as hyper-parameters. All
experiments are conducted on the NVIDIA RTX
3090 GPU with 24G memory.

A.3 Baselines

The following methods can adapt to all NER sub-
tasks. Please refer to the original papers for the
other methods designed specifically for a certain
NER subtask.

BERT-MRC (Li et al., 2020) reformulates NER
as a machine reading comprehension (MRC) task
and extract entities by answering questions such as
"find locations in the text".

UIE (Lu et al., 2022) represents various infor-
mation structures with a structured extraction lan-
guage and tackles general information extraction
tasks with a unified text-to-structure generation
framework.

(Zhang et al., 2022) analyzes incorrect biases
in the generative NER models from the causality
perspective and proposes two data augmentation
methods to address them. Note that T5-Base they
use has the same number of Transformer layers as
BART-Large.

W2NER (Li et al., 2022) reformulates unified
NER as a word-word relation classification task
based on the proposed relation schema.
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Sentence Mention

#All #Train #Dev #Test Avg.Len #All #Ovlp. #Dis. Avg.Len
Flat CoNLL2003 20744 17291 - 3453  14.38 35089 - - 1.45
OntoNotes5.0 76714 59924 8528 8262 18.11 104151 - - 1.83
GENIA 18546 15023 1669 1854 2541 56015 10263 - 1.97
Ovlp. ACE04 8512 6802 813 20.12 27604 12626 - 2.50
ACEO05 9697 7606 1002 1089 17.77 30711 12404 - 2.28
CADEC 7597 5340 1097 1160 16.18 6316 920 679 2.72
Dis. ShARel3 18767 8508 1250 9009 14.86 11148 663 1088 1.82
ShARel4 34614 17404 1360 15850 15.06 19070 1058 1656 1.74

Table 6: Dataset Statistics. "Ovlp." and "Dis." denote overlapped and discontinuous mentions respectively.

Hyper-parameter Value

epoch 30

warmup step 0.01

learning rate [1e-5, 2e-5, 4e-5]
batch size [16, 24, 32]
beam size 5

margin \ [0.01, 0.1]
coefficient « = & [0.1, 1.0, 5.0]
add Lgoia [Yes, No]

mask out tie [Yes, No]

Table 7: Hyper-parameter settings.

B Case Study

Table 8 shows some examples corrected by the
sequence likelihood calibration.

C Generative Model

Our method is agnostic to the generative model. In
this study, we adopt BARTNER (Yan et al., 2021),
an Encoder-Decoder framework with pointer mech-
anism, to model the probability P(Y|X):

Encoder encodes the input sentence X into vec-
tors H¢, which can be denoted as:

HE2¢ = Encoder(X) (1)

where HE"¢ ¢ R"Xd and d is the dimension of the
hidden state.

Decoder predicts the index probability distribu-
tion step-by-step according to P(y;| X, Y<;). Since
Y. consists of the indices of the pointers and tags,
it needs to be mapped to the vocabulary indices
before inputted to the Decoder. We get the hidden
state at the ¢-th step by:

hPe¢ = Decoder(H®™; V) )

Finally, we get the index probability distribution
P, by:

GP° = Embed(G)

E®™ = Embed(X)

A" = ax H™ 4 (1 —a) x B™™

P(y:| X, Y<t) = Softmax([H™™ @ hy*°; GP*° @ hy*°))
3)

where Embed(-) is the embedding layer shared be-
tween the Encoder and Decoder, GG denotes the la-
bel token while X denotes the entity words. FiEne
denotes the input representation. & denotes the
dot product. For training, we use the cross-entropy
loss with teacher forcing. During inference, we
generate the target sequence auto-regressively.
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CADEC (2=ADR)

Muscle twitching, stiff neck, constant lightheadedness, always worrying about a brain tumor or something.

0.50,-0.05,Muscle twitching 2 stiff neck 2 constant lightheadedness 2 always worrying about a brain 2
0.50,-0.12,Muscle twitching 2 stiff neck 2 constant lightheadedness 2 always worrying about a brain tumor 2
0.75,-0.15,Muscle twitching 2 stiff neck 2 constant lightheadedness 2 always worrying 2

0.50,-0.18,Muscle twitching 2 stiff neck 2 constant lightheadedness 2 always worrying about a 2
0.50,-0.23,Muscle twitching 2 stiff neck 2 constant lightheadedness 2 always worrying about a tumor 2

0.86,-0.07,Muscle twitching 2 stiff neck 2 lightheadedness 2

0.75,-0.22,Muscle twitching 2 stiff neck 2 lightheadedness 2 always worrying about a brain tumor 2
0.50,-0.33,Muscle twitching 2 stiff neck 2 constant lightheadedness 2 always worrying about a brain tumor 2
0.75,-0.34,Muscle twitching 2 stiff neck 2 lightheadedness 2 always worrying about a brain tumor or something 2
0.75,-0.39,Muscle twitching 2 stiff neck 2 stiff neck 2 lightheadedness 2 always worrying about a brain tumor 2

Possibly diarrhea and stomach pain, but most likely none because I am taking this
with a nasty antibiotic for a sinus infection that definitely causes diarrhea and nausea.

I stopped taking it the next day and within 72 hours my swelling decreased significantly, muscle aches
and joint pain disappeared, memory loss is not as severe, breathing is easier, stamina is back etc.

0.67,-0.05,diarrhea 2 stomach pain 2

1.00,-0.14,diarrhea 2 stomach pain 2 diarrhea 2 nausea 2
0.86,-0.49.diarrhea 2 stomach pain 2 nausea 2
0.88,-0.57,diarrhea 2 stomach pain 2 diarrhea 2 nausea 2
0.86-0.76.diarrhea 2 stomach pain 2 diarrhea 2 nausea 2

0.80,-0.004,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.80,-0.16,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.89,-0.22,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.89,-0.30,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.89,-0.41,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2

1.00,-0.08,diarrhea 2 stomach pain 2 diarrhea 2 nausea 2
0.86,-0.23,diarrhea 2 stomach pain 2 diarrhea 2 nausea 2
0.86,-0.29,diarrhea 2 stomach pain 2 diarrhea 2 nausea 2
1.00,-0.44 diarrhea 2 stomach pain 2 diarrhea 2 nausea 2
1.00,-0.53,diarrhea 2 stomach pain 2 diarrhea 2 nausea 2 stomach pain 2

1.00,-0.09,swelling 2 muscle aches 2 joint pain 2 memory loss 2

0.80,-0.23,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.80,-0.25,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.89,-0.26,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina is 2
0.80-0.27,swelling 2 muscle aches 2 joint pain 2 memory loss 2 breathing is 2 stamina 2

CONLL2003 (2=LOC,3=PER ,4=0RG,5=MISC)

POLAND GOT MONEY FROM POST-WAR SWISS ACCOUNTS.

Mike Cito, 17, was expelled from St Pius X High School in Albuquerque after an October game in
which he used the sharpened chin strap buckles to injure two opposing players and the referee.

0.80,-0.08,POLAND 2 POST-WAR 5 SWISS 5
1.0,-0.23,POLAND 2 SWISS 5

0.50,-0.37,POLAND 2 POST-WAR SWISS 5
1.0,-1.33,POLAND 2 POST-WAR POST-WAR 5 SWISS 5
0.80,-1.41,POLAND 2 POST-WAR ACCOUNTS 5 SWISS 5

0.67,-0.01,Mike Cito 3 St Pius X 4 Albuquerque 2
1.0,-0.19,Mike Cito 3 St Pius X High School 4 Albuquerque 2
0.67,-0.48, Mike Cito 3 St Pius X School 4 Albuquerque 2
0.67,-0.58,Mike Cito 3 St Pius X 3 Albuquerque 2
0.67,-0.61,Mike Cito 3 St Pius X 2 Albuquerque 2

1.0,-0.1.0,POLAND 2 SWISS 5

0.80,-0.25,POLAND 2 POST-WAR 5 SWISS 5
0.80,-0.74,POLAND 2 POST-WAR 5 SWISS 5 SWISS 5
1.0,-0.76,POLAND 2 SWISS 5 SWISS 5
0.80,-0.78,POLAND 2 POST-WAR 5 SWISS 5 POST-WAR 5

1.0,-0.11,Mike Cito 3 St Pius X High School 4 Albuquerque 2
0.67,-0.14,Mike Cito 3 St Pius X 4 Albuquerque 2

0.80,-0.41,Mike Cito 3 St Cito X High School 4 Albuquerque 2
0.67,-0.44,Mike Cito 3 St Pius X School 4 Albuquerque 2

0.86,-0.48, Mike Cito 3 St Pius X High School 4 Albuquerque 2 St Pius X 4

There is the international prestige Singapore would enjoy, but "more importantly there is a genuine national interest in fostering better global free trade and an open market", said Tan Kong Yam,
head of Business Policy at the National University of Singapore.

0.86,-0.04,Singapore 2 Tan Kong Yam 3 Business Policy 4 National University of Singapore 4
1.0,-0.07,Singapore 2 Tan Kong Yam 3 National University of Singapore 4

0.86,-0.36,Singapore 2 Tan Kong Yam 3 Business Policy 5 National University of Singapore 4
0.67,-0.68,Singapore 2 Tan Kong Yam 3 Business Policy 4 National University of Singapore 4
0.80,-0.68,Singapore 2 Tan Kong Yam 3 Business Policy of National University of Singapore 4

1.0,-0.06,Singapore 2 Tan Kong Yam 3 National University of Singapore 4

1.0,-0.34,Singapore 2 Tan Kong Yam 3 National University of Singapore 4 National University of Singapore 4
1.0,-0.44,Singapore 2 Tan Kong Yam 3 National University of Singapore 4 Tan Kong Yam 3
0.86,-0.44,Singapore 2 Tan Kong Yam 3 National University of Singapore 4 Singapore 2

0.80,-0.45,Singapore 2 Tan Kong Yam 3 National University of Singapore 4

ACE04 (2=LOC,3=GPE ,4=WEA,5=VEH,6=PER,7=0ORG,8=FAC)

I believe our issues do relate directly to the appointing of electors for the state of Florida.

0.67,-0.06,1 6 our 3 electors for the state of Florida 6 the state of Florida 3
0.80,-0.31,I 6 our 3 electors for the state of Florida 6 the state of Florida 3 Florida 3
0.89,-0.32.1 6 our 6 electors for the state of Florida 6 the state of Florida 3
0.50,-0.32.1 6 our 3 electors for the state of Florida 6 the state of Florida 3
0.50,-0.33.1 6 our 3 electors for the state of Florida 6 the state of Florida 3

1.0,-0.01,I 6 our 6 electors for the state of Florida 6 the state of Florida 3 Florida 3
0.89,-0.10,1 6 electors for the state of Florida 6 the state of Florida 3 Florida 3

0.80,-0.20,1 6 our 3 electors for the state of Florida 6 the state of Florida 3 Florida 3
0.91,-0.47,1 6 our 6 electors for the state of Florida 6 the state of Florida 3 state 3 Florida 3
0.89,-0.48.1 6 our 6 electors for the state of Florida 6 the state of Florida 3

One hundred South Koreans will be in the northern capital Pyongyang, to meet their North Korean relatives.

0.83,-0.08,0ne hundred South Koreans 6 the northern capital 3 the northern capital Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3
0.77,-0.09,0ne hundred South Koreans 6 South 3 the northern capital 3 the northern capital Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3
0.77,-0.17,0ne hundred South Koreans 6 South 2 the northern capital 3 the northern capital Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3
0.67,-0.20,0ne hundred South Koreans 6 the northern capital 3 the northern capital Pyongyang 3 their 3 their North Korean relatives 6 North Korean 3
0.62,-0.20,0ne hundred South Koreans 6 South 3 the northern capital 3 the northern capital Pyongyang 3 their 3 their North Korean relatives 6 North Korean 3

0.92,-0.03,0ne hundred South Koreans 6 South 3 the northern capital 3 Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3

1.0,-0.03,0ne hundred South Koreans 6 the northern capital 3 Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3

0.92,-0.12,0ne hundred South Koreans 6 South Koreans 6 the northern capital 3 Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3

0.77,-0.17,0ne hundred South Koreans 6 South Koreans 6 the northern capital 3 the northern capital Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3
0.92,-0.23,0ne hundred South Koreans 6 South Koreans 3 the northern capital 3 Pyongyang 3 their 6 their North Korean relatives 6 North Korean 3

Netanyahu supporters are calling either for a change in the law or for simultaneous elections for the Knesset and Prime Minister, which would allow their candidate to run.

0.73,-0.07 Netanyahu 6 Netanyahu supporters 6 the Knesset and Prime Minister 6 their 6 their candidate 6

1.0,-0.17 Netanyahu 6 Netanyahu supporters 6 the Knesset 7 Prime Minister 6 their 6 their candidate 6

0.5454545454544859,-0.347797691822052, Netanyahu 6 Netanyahu candidate 6 the Knesset and Prime Minister 6 their 6 their candidate 6
0.7999999999999359,-0.3507174551486969,Netanyahu 6 Netanyahu supporters 6 the Knesset and Prime Prime Minister 6 their 6 their candidate 6
0.8333333333332694,-0.35162267088890076,Netanyahu 6 Netanyahu supporters 6 Knesset 7 Prime Minister 6 their 6 their candidate 6

0.9999999999999332,-0.010539926588535309,Netanyahu 6 Netanyahu supporters 6 the Knesset 7 Prime Minister 6 their 6 their candidate 6
0.7272727272726645,-0.10700102150440216,Netanyahu 6 Netanyahu supporters 6 the Knesset and Prime Minister 6 their 6 their candidate 6
0.7272727272726645,-0.37671196460723877 Netanyahu 6 Netanyahu supporters 6 the Knesset and Prime Minister 7 their 6 their candidate 6
0.7272727272726645,-0.6056239604949951 Netanyahu 6 Netanyahu supporters 6 the Knesset and Prime Minister candidate 6 their 6 their candidate 6
0.8333333333332694,-0.6295873522758484,Netanyahu 6 Netanyahu supporters 6 the Knesset 6 Prime Minister 6 their 6 their candidate 6

Table 8: Case Study. Candidates before (upper) and after (lower) calibration. Each candidate is formatted as "F1,
log-probability, target sequence”. The number denotes the corresponding entity type.
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