Deep Active Learning for Morphophonological Processing

Seyed Morteza Mirbostani, Yasaman Boreshban
Dpt. of Computer Engineering, University of Guilan, Rasht, Iran
{m.mirbostani, boreshban}@msc.guilan.ac.ir

Salam Khalifa, Seyed Abolghasem Mirroshandel, and Owen Rambow
Dpt. of Linguistics and Institute for Advanced Computational Science (IACS)
Stony Brook University, Stony Brook, USA
{first.last}@stonybrook.edu

Abstract
Building a system for morphological
processing is a challenging task in

morphologically complex languages like
Arabic. Although there are some deep
learning based models that achieve successful
results, these models rely on a large amount
of annotated data. Building such datasets,
specially for some of the lower-resource Arabic
dialects, is very difficult, time-consuming,
and expensive. In addition, some parts of
the annotated data do not contain useful
information for training machine learning
models. Active learning strategies allow
the learner algorithm to select the most
informative samples for annotation. There has
been little research that focuses on applying
active learning for morphological inflection
and morphophonological processing. In this
paper, we have proposed a deep active learning
method for this task. Our experiments on
Egyptian Arabic show that with only about
30% of annotated data, we achieve the same
results as does the state-of-the-art model on the
whole dataset.

1 Introduction

Recently, there has been lots of interest in
morphological (re-)inflection processing
(Narasimhan et al., 2015; Kirov and Cotterell, 2018;
Belth et al., 2021). Having an acceptable model
for morphological processing will help improve
the performance of different natural language
processing (NLP) tasks like speech synthesis
(Halabi, 2016), morphological disambiguation
(Khalifa et al., 2020; Inoue et al., 2021), and
machine translation (Sennrich and Haddow, 2016;
Erdmann et al., 2019; Alhafni et al., 2020). Despite
recent progress in this field of study, there are
lots of challenges for low-resource languages.
Especially for utilizing successful but data-hungry
deep learning (DL) models, the need for annotated
data is vital. However, data annotation is a hard,

expensive, and time-consuming task. In addition,
lots of annotated data does not contain useful
information for improving the quality of a learning
algorithm. In this paper, we propose a deep active
learning (DAL) algorithm for morphophonological
processing that is able to decrease the need for
annotated data, by using only informative samples.
In our experiments, we have chosen Arabic, a
morphologically rich language. In addition, lots
of Arabic dialects are very low-resource and
the results from this study can help in building
required datasets in a smarter way. Among
Arabic dialects, Cairene Egyptian Arabic has
been selected, because it is well-studied and has
many resources and it is appropriate for our DAL
simulation experiments. It should be noted that the
proposed method is not specific to Arabic and it
can be utilized on other languages or dialects.

As our baseline, we have chosen a very
successful transformer model for character-level
transduction tasks (Wu et al., 2021). We propose a
pool-based DAL method in this study. To find the
most uncertain (informative) samples, we combine
an entropy strategy with a clustering method to
keep an acceptable balance between the uncertainty
and diversity of the chosen samples. The results of
our experiments on the selected dataset show the
success of the proposed DAL method.

2 Previous Work

In this section, we give a brief review of
morphological inflection processing methods.
Some recent DAL methods will also be reviewed.

There are several approaches for applying
DL models for the morphological inflection
problem (Yang et al., 2022; Wehrli et al.,
2022; Batsuren et al., 2022; Wu et al., 2021;
Dankers et al., 2021), which achieve successful
results on different languages. Most of these
models use character-level neural transducers using
transformers, data augmentation, and recurrent

793

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 793-803
July 9-14, 2023 ©2023 Association for Computational Linguistics

neural network (RNN)s.

In Arabic, there is also much non-neural research
on morphological modeling, including finite
state technology (Habash and Rambow, 2006),
precompiled tabular morphological analyzers
(Buckwalter, 2002, 2004; Graff et al., 2009; Taji
et al., 2018), and allomorphy modeling through
linguistically descriptive rules (Habash et al.,
2022).

In recent years, DAL has been used in some
sub-fields of NLP. Zhang et al. (2017) and Ru
et al. (2020) achieved satisfactory results in text
classification using active learning (AL) with
convolutional neural networks and adversarial
uncertainty sampling, respectively. Different
acquisition functions using the conditional random
field model have been applied in named entity
recognition (Shen et al., 2017; Prabhu et al.,
2019; Liu et al.,, 2020). In neural machine
translation, Peris and Casacuberta (2018) used
an attention-based function, and Liu et al. (2018)
applied a reinforcement learning method. In
another study, Zhao et al. (2020) proposed a
word frequency-based acquisition function to train
neural machine translation actively. More recently,
Muradoglu and Hulden (2022) introduced a DAL
method for lemma inflection in written modern
standard Arabic and some other languages. Their
method uses entropy at the word level, while we
find that the max of character-level entropy for a
word performs best.

3 Background and Problem Definition

Morphophonology involves studying the
relationship between morphology and phonology.
The goal is to analyze data in order to discover
the underlying forms and ordered rules that
explain the observed data (Hayes, 2008). Arabic
morphophonology is particularly interesting
due to its complex templatic and concatenative
morphology. Changes in morphophonology can
happen on the stem pattern and also on word
boundaries and stem. In addition, phonological
alterations can be triggered by the addition
of morphemes in concatenative morphology
cases. The main problem of this paper is
morphophonological generation, in which an
underlying representation (UR) is transformed into
a surface form (SF). We also investigate analysis,
i.e., learning to transform a SF to a UR.

UR SF SF Arabic
#$Ayil=In=uh# #$aylInu# abls
#HAfiZ=In=hA# #HafZinha# | lasl>
#bi-ti-SAdf=U# #bitSadfu# ‘j.'n Lay

Table 1: Samples of (UR, SF) pairs of the used dataset.

TRAIN DEV EVAL
All 13,170 5,180 6,974
oov - 2,189 2,271

Table 2: The sizes of different splits of the used dataset.

4 Dataset

We use the Arabic morphophonology dataset
created by Khalifa et al. (2022). It uses a broad
phonemic transcription. They generated URs from
the CALIMA gy morphological analyzer (Habash
et al., 2012) for every SF extracted from the ECAL
dataset (Kilany et al., 2002). They also added the
analyzer’s segmentation to the UR part, delimiting
word boundaries with #, prefixes with —, and
suffixes with =. The dataset contains pairs of
(UR, SF) as shown in Table 1. The split of this
dataset is based on ECAL’s split, which contains
TRAIN, DEV, and EVAL subsets. Due to the
fact that ECAL’s splits are based on running texts,
some words can occur in more than one split.
Therefore Khalifa et al. (2022) also created subsets
of the DEV and EVAL sets, called DEV-OOV and
EVAL-OOV, which only contain non-overlapping
words with the TRAIN split. The sizes of these
splits are given in Table 2.

S Proposed Method

In this section, we give a brief description of the
baseline network. Then, the proposed DAL method
will be explained in more detail.

5.1 Baseline Network

We have done several experiments to choose the
most successful model for our AL experiments.
Among different existing successful approaches
(e.g., (Wehrli et al., 2022) and (Wu et al.,,
2021)), we chose Wu et al. (2021)’s system
as our baseline system for conducting the
DAL experiments because of its successful
results on the utilized dataset. This is
a transformer-based model that outperformed
existing sequence-to-sequence models based on
RNN for character-level transduction tasks, such as

794

morphological inflection generation, and achieved
state-of-the-art results. Due to the fact that in
character-level transduction tasks, the dataset sizes
are significantly smaller than other tasks like
machine translation, they have proposed a smaller
transformer. In the next subsection, we will
describe our proposed algorithm.

5.2 Active Learning Method

In this research, we have used the pool-based AL
method in combination with the entropy strategy
and clustering to determine uncertain samples
based on the model’s prediction preserving the
diversity of chosen samples. The AL method
considers all the available data of the pool,
U, which contains 13,170 samples, unannotated.
Initially, about 10% of the samples (i.e., 1,400
samples) are chosen randomly from ¢/ for the data
annotation process. In the first cycle of training the
model, 500 samples from these 1,400 annotated
samples are used for tuning, 7, and the rest of
the labeled samples (i.e., 900 samples) are used as
the initial training dataset, £. The tune dataset is
fixed throughout the procedure and determines the
model with the highest accuracy during each AL
training cycle. However, the training dataset, £,
is increased by 0 samples (i.e., 250 samples) per
training cycle.

After training the model on the £ dataset for
the first time, all the pool samples are passed
to the model for prediction. For each UR, the
probability values are determined by computing
the softmax of the model’s output logits. Most
data sampling strategies in the AL method are
based on some uncertainty criteria. In the
case of sequence-to-sequence models focusing
on character-level tasks, the sampling method
based on entropy criteria is a suitable choice for
uncertainty detection.

The output logits for each character of the
predicted SF word, wsp, corresponds to the
elements of a character vocabulary generated
according to the predicted SF words. Using
Equation (1), each set of logits, ch, is used to
calculate the probability vector of a character in
wsp. Here, P;(ch) is the probability value of the
ith element in the probability vector, ch; is the
logit of the i*" element, and N is the vocabulary
size.

Chi

P,(ch) = (1)

The entropy of a character ch, E’(ch), is
calculated by Equation (2) based on the probability
values of all possible generated characters
vocabulary.

N

E'(ch) = =) Pi(ch)log Pi(ch) (2)
=1

Equation (3) determines the entropy of the word
wsp by choosing the maximum value among all
its characters’ entropy values. That is, predicted
labels with the lowest confidence have the highest
entropy.

E(wsg) = max E'(ch) 3)

chewsr

In each AL cycle, the trained model selects the
next cycle’s additional (informative) samples. ¢
number of UR words with the highest wgsg entropy
are sampled without replacement. According to
Equation (4), these most informative samples, w*,
are annotated and combined with the current £
dataset to be utilized by the baseline system in the
next AL cycle for training.

w* = argmax F(w) 4
weld

We augment this approach with a clustering
technique to maintain diversity during the sampling
process. In this approach, o number of UR words,
« > §, with the highest wsp entropy are selected
for clustering. The optimal number of clusters is
determined by computing the sum of the squared
error (SSE) for various cluster counts, k. In each
observation, S;, centroids are determined by taking
the mean value, p;, of all the points, w, in each
cluster. The sum of the deviation of the points from
centroids for all clusters combined determines SSE.
An observation’s cluster count, k, is optimal only
if its SSE is minimal among all observations.

k
SSE=> "> lw— pl?)

i=1 wes;

The best cluster count in each AL cycle is used
for clustering. The ultimate goal is to find § most
informative UR words with an acceptable diversity
of total « (i.e., 1,000) samples.

A character-based word embedding model based
on RNN is trained on datasets £ and T to extract
features for performing efficient clustering. Using
a word embedding model enables us to have a sense

795

of UR words and their semantic relations with their
corresponding SF words, considering £ and 7 data
points are labeled.

A word embedding model is used to vectorize
a samples selected from U/. Two sequences of
one-hot vectors, representing a pair of UR and SF,
pass through two long short-term memory (LSTM)
networks, and the norm of the difference between
output embeddings is fed to a sigmoid activation
function. A sample from the dataset is a related pair,
and samples with the highest Levenshtein distance
from each other are non-related. These samples are
combined and used to train the network. The model
converts a word to a vector based on a character
vocabulary generated from the unique characters
of the training set.

After standardizing the vectors, they are fed to
principal component analysis (PCA) in order to
retain the most significant features and minimize
the computational costs by reducing dimensions.
The features dimension is reduced to 3 components
for clustering. o samples were divided into clusters
using the k-means method. Then, proportional to
the size of clusters, & samples are selected from
each group. These samples will be annotated and
moved to £ for the next AL training cycle.

6 Experimental Results

The details of the model’s parameters and other
variables in our experiments can be seen in
Appendix A. To evaluate our proposed DAL
method, we have run all experiments 5 times and
the average and standard deviation of accuracy are
visualized in Figure 1. We have reported random
training (passive learning), AL with entropy, and
AL with combined entropy and clustering method
for each cycle of training.

As can be seen in Figure 1, the proposed
DAL method (with and without clustering) grows
much faster than the random curve and presents
an asymptotical shape which shows that it has
extracted all the useful information present in
U when it reaches the asymptote using only
4,000 samples (i.e., about 30% of the training
set). In contrast, the random (passive) learner
requires the entire training set to achieve maximum
performance. This is true for all evaluation sets,
except for EVAL-OOV, where the random (passive)
learner reaches maximum performance after 6,000
samples. We have no explanation for this unusual
behavior of EVAL-OOQOYV, but we do observe that

the overall top performance on EVAL-OOV is 2
percentage points lower than on DEV-OOV, while
EVAL and DEV have similar results. This supports
the hypothesis that EVAL-OOV contains some very
difficult cases which the underlying system (with
active or passive learning) cannot learn, so that
active and passive learning converge earlier.

Unfortunately, we could not obtain evidence
from this dataset that the proposed hybrid method
(combining entropy and clustering) is effective.

Our model is designed to be language and
model independent. It can be applied on
different languages and it can be used on top of
different character-based DL models. However,
the proposed method should be applied on new
languages and dialects in further studies. We expect
that further studies will show that clustering can
be effective, especially if many diverse phenomena
are present in the data.

7 Error Analysis

We performed an error analysis on 100 randomly
chosen errors from the DEV-OOV set, generated
by models trained on 1,900 samples using AL
with entropy and random selection methods. On
this sample size, the random selection approach
achieves an error rate of 12.9%, which reduces to
7.8% through AL (a 40% error reduction). We
distinguish three basic types of errors: the system
deletes a letter (i.e., phoneme) it should not; the
system changes a letter it should not; the system
adds a letter it should not, or does not delete a
letter it should. We summarize results in Table 3.
Starting at the top, we see that letter deletion is
greatly reduced by moving from random selection
to AL; affix deletion is a special case, where an
entire affix is not realized, and this problem is
eliminated. Letter change is also greatly reduced.
However, a special case of letter change becomes
more prominent: vowel length changes. This is a
common effect in Arabic phonology due to changes
in syllabification resulting from adding affixes.
Finally, we see that letter addition remains a
problem, with the special case of the system failing
to delete a letter in fact increasing. The only case
which is reduced is the special case of i-deletion in
the active participle, which the AL setting appears
to learn much better. We then have a fairly small
category with multiple errors, which remains about
the same. As we expect when the error rate
goes down, the proportion of problem cases in the

796

(a)

(b)

951

90 A

Accuracy
0
w

954

90 A

Accuracy
©
w

80 4 —— EVAL (AL with Entropy & Clustering) 80 1 ‘J —— DEV (AL with Entropy & Clustering)
—— EVAL (AL with Entropy) —— DEV (AL with Entropy)
—— EVAL (Random) —— DEV (Random)
—— EVAL-OOV (AL with Entropy & Clustering) —— DEV-OO0V (AL with Entropy & Clustering
75 EVAL-OOV (AL with Entropy) 75] DEV-OOV (AL with Entropy)
—}— EVAL-OOV (Random) —— DEV-O0V (Random)
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Samples Samples

Figure 1: Inflection task (UR to SF): The average and standard deviation of the accuracy of the baseline model
trained using AL with entropy, AL with combined entropy and clustering, and random training methods, and
evaluated on (a) EVAL, EVAL-OOV, (b) DEV, and DEV-OOV datasets

corpus goes up. We distinguish three cases. First,
foreign words have lexically idiosyncratic rules
which cannot be learned. Second, almost all Arabic
dialects replace the /1/ of the definite determiner
/Al/ with the first letter of the following noun if
it is coronal (“sun-letter assimilation”). However,
Egyptian optionally also does this for /j/ and /k/,
and the optionality is reflected in the training data
which makes consistent learning impossible. Third,
the corpus has a number of actual errors in the gold
standard, usually in the UR. So in summary, the
AL system has improved in all error types except
for the letter addition categories.

Error Type AL | Random
letter deletion 11 25
affix deletion 0 2
letter change 11 17

no v shortening 5 2
v shortening 7 4
letter addition 8 6
6 2
2 5

no letter deletion
no AP i deletion

multiple errors 14 13
foreign 1 1
sun letter 10 8
gold error 25 15
Sum 100 100

Table 3: Error analysis (counts)

8 Conclusion

In this paper, we have proposed a deep active
learning method for the morphological inflection
processing task. The proposed method can be
used on different languages; however, as a case
study, we have focused on the Egyptian Arabic
dialect. The results of our experiment demonstrate
the outstanding efficiency of the proposed method:
With only 30% of the total training dataset, we
achieve the same accuracy as the state-of-the-art
model trained on whole dataset.

Future research includes applying this method
to different low-resources Arabic dialects and
other languages for building datasets, using other
baseline algorithms, working on new uncertainty
measures, and exploring for which datasets the
clustering method can be helpful. We also intend to
investigate how we can exploit our insight from the
error analysis that the letter addition cases remain
high (or even increase).

Acknowledgements

We would like to thank three anonymous reviewers
for their comments. Experiments were performed
on the SeaWulf HPC cluster maintained by RCC
and the Institute for Advanced Computational
Science (IACS) at Stony Brook University and
made possible by National Science Foundation
(NSF) grant No. 1531492.

797

Limitations

Like lots of deep learning algorithms, our work
also needs GPU resources. In common learning
problems, models will be trained once on the
existing training datasets, using dev sets for tuning
the models. Then the trained model would be ready
for use. In contrast, in active learning, we need
to train the model several times (i.e., whenever
new annotated samples are added to the current
training set, the model should be re-trained), which
increases the need for GPU resources. However,
the need for GPU, is not related to our proposed
method and it is due to the nature of active
learning. In addition, one can run the active
learning method once (rather than iteratively) for
building an acceptable dataset.

It should be noted that we have designed the
algorithm in a way to be independent of the target
language and utilized model. However, we only
tested our method on Egyptian Arabic dialect and
the accuracy of the model should be investigated
on other languages and dialects using different
learning models in further studies.

Ethics Statement

The current work is a fundamental research and it
is not essentially related to a particular application.
We do not predict any ethical concerns from the
algorithms and technologies proposed in this work.
We have utilized publicly available dataset and
open source libraries, which have been published
before.

References

Bashar Alhafni, Nizar Habash, and Houda Bouamor.
2020. Gender-aware reinflection using linguistically
enhanced neural models. In Proceedings of the
Second Workshop on Gender Bias in Natural
Language Processing, pages 139-150.

Khuyagbaatar Batsuren, Gébor Bella, Aryaman
Arora, Viktor Martinovic, Kyle Gorman, Zden¢k
Zabokrtsk}’/, Amarsanaa Ganbold, Sirka Dohnalova,
Magda Sevéeikova, Katefina Pelegrinova, Fausto
Giunchiglia, Ryan Cotterell, and Ekaterina
Vylomova. 2022. The SIGMORPHON 2022
shared task on morpheme segmentation. In
Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,

and Morphology, pages 103-116, Seattle,
Washington. Association for Computational
Linguistics.

Caleb Belth, Sarah Payne, Deniz Beser, Jordan Kodner,
and Charles Yang. 2021. The greedy and recursive

search for morphological productivity. arXiv preprint
arXiv:2105.05790.

Tim Buckwalter. 2002. Buckwalter Arabic
morphological analyzer version 1.0. Linguistic Data
Consortium (LDC) catalog number LDC2002L49,
ISBN 1-58563-257-0.

Tim Buckwalter. 2004. Buckwalter Arabic
Morphological Analyzer Version 2.0. LDC
catalog number LDC2004L.02, ISBN 1-58563-324-0.

Verna Dankers, Anna Langedijk, Kate McCurdy, Adina
Williams, and Dieuwke Hupkes. 2021. Generalising
to German plural noun classes, from the perspective
of a recurrent neural network. In Proceedings
of the 25th Conference on Computational Natural
Language Learning, pages 94-108.

Alexander Erdmann, Salam Khalifa, Mai Oudah,
Nizar Habash, and Houda Bouamor. 2019. A
little linguistics goes a long way: Unsupervised
segmentation with limited language specific
guidance. In Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 113—-124.

David Graff, Mohamed Maamouri, Basma Bouziri,
Sondos Krouna, Seth Kulick, and Tim Buckwalter.
2009. Standard Arabic Morphological Analyzer
(SAMA) Version 3.1. Linguistic Data Consortium
LDC2009E73.

Nizar Habash, Ramy Eskander, and Abdelati Hawwari.
2012. A morphological analyzer for egyptian Arabic.
In Proceedings of the twelfth meeting of the special
interest group on computational morphology and
phonology, pages 1-9.

Nizar Habash, Reham Marzouk, Christian Khairallah,
and Salam Khalifa. 2022. Morphotactic modeling in
an open-source multi-dialectal Arabic morphological
analyzer and generator. In Proceedings of the
19th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 92—102, Seattle, Washington. Association for
Computational Linguistics.

Nizar Habash and Owen Rambow. 2006. MAGEAD:
A morphological analyzer and generator for the
Arabic dialects. In Proceedings of the International
Conference on Computational Linguistics and the
Conference of the Association for Computational
Linguistics (COLING-ACL), pages 681-688, Sydney,
Australia.

Nawar Halabi. 2016.
phonetics for speech synthesis.
University of Southampton.

Modern standard Arabic
Ph.D. thesis,

Bruce Hayes. 2008. Introductory phonology, volume 7.
John Wiley & Sons.

Go Inoue, Salam Khalifa, and Nizar Habash. 2021.
Morphosyntactic tagging with pre-trained language
models for Arabic and its dialects. arXiv preprint
arXiv:2110.06852.

Salam Khalifa, Jordan Kodner, and Owen Rambow.
2022. Towards learning Arabic morphophonology.
In Proceedings of the seventh Arabic Natural

798

https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.11
https://doi.org/10.18653/v1/2022.sigmorphon-1.10
https://doi.org/10.18653/v1/2022.sigmorphon-1.10
https://doi.org/10.18653/v1/2022.sigmorphon-1.10

Language Processing Workshop (WANLP) at EMNLP
2022, pages 295-301s.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2020. Morphological analysis and disambiguation
for Gulf Arabic: The interplay between resources
and methods. In Proceedings of the 12th
Language Resources and Evaluation Conference,
pages 3895-3904.

H Kilany, H Gadalla, H Arram, A Yacoub,
A El-Habashi, and C McLemore. 2002. Egyptian
colloquial Arabic lexicon. LDC catalog number
LDC99L22.

Christo Kirov and Ryan Cotterell. 2018. Recurrent
neural networks in linguistic theory: Revisiting
pinker and prince (1988) and the past tense debate.
Transactions of the Association for Computational
Linguistics, 6:651-665.

Ming Liu, Wray Buntine, and Gholamreza Haffari.
2018. Learning to actively learn neural machine
translation. In Proceedings of the 22nd Conference
on Computational Natural Language Learning,

pages 334-344.

Mingyi Liu, Zhiying Tu, Zhongjie Wang, and Xiaofei
Xu. 2020. Ltp: A new active learning strategy
for bert-crf based named entity recognition. ArXiv,
abs/2001.02524.

Saliha Muradoglu and Mans Hulden. 2022. Eeny,
meeny, miny, moe. how to choose data for
morphological inflection. arXiv preprint
arXiv:2210.14465.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for
uncovering morphological chains. Transactions
of the Association for Computational Linguistics,
3:157-167.

Alvaro Peris and Francisco Casacuberta. 2018. Active
learning for interactive neural machine translation of
data streams. arXiv preprint arXiv:1807.11243.

Ameya Prabhu, Charles Dognin, and Maneesh Singh.
2019. Sampling bias in deep active classification: An
empirical study. arXiv preprint arXiv:1909.09389.

Dongyu Ru, Jiangtao Feng, Lin Qiu, Hao Zhou,
Mingxuan Wang, Weinan Zhang, Yong Yu, and Lei
Li. 2020. Active sentence learning by adversarial
uncertainty sampling in discrete space. arXiv
preprint arXiv:2004.08046.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
arXiv preprint arXiv:1606.02892.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2017. Deep
active learning for named entity recognition. arXiv
preprint arXiv:1707.05928.

Dima Taji, Jamila El Gizuli, and Nizar Habash. 2018.
An Arabic dependency treebank in the travel domain.
In Proceedings of the Workshop on Open-Source
Arabic Corpora and Processing Tools (OSACT),
Miyazaki, Japan.

Silvan Wehrli, Simon Clematide, and Peter Makarov.
2022. Cluzh at sigmorphon 2022 shared tasks on
morpheme segmentation and inflection generation.
In Proceedings of the 19th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonology,
and Morphology, pages 212-219.

Shijie Wu, Ryan Cotterell, and Mans Hulden.
2021. Applying the transformer to character-level
transduction. In Proceedings of the 16th Conference
of the European Chapter of the Association for
Computational Linguistics: Main Volume, pages
1901-1907, Online. Association for Computational
Linguistics.

Changbing Yang, Garrett Nicolai, Miikka Silfverberg,
et al. 2022. Generalizing morphological inflection
systems to unseen lemmas. In Proceedings of the
19th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 226-235.

Ye Zhang, Matthew Lease, and Byron Wallace. 2017.
Active discriminative text representation learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Yuekai Zhao, Haoran Zhang, Shuchang Zhou, and
Zhihua Zhang. 2020. Active learning approaches
to enhancing neural machine translation. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1796-1806.

A Implementation Details

We used a character-level transducer based on
transformers (Wu et al., 2021) as the baseline in our
computational experiments. A transformer with
4 encoder-decoder layers, 4 self-attention heads,
the embedding dimension of 256, and the hidden
size of 1024 for the feed-forward layer is used.
The number of parameters of the model with these
specifications is 7.37M, excluding embeddings and
the pre-softmax linear layer.

Experiments were performed on a system with
an Intel Core i7-8700K CPU 3.70GHz 6-Core, a
GeForce GTX 1080 8GB, and 64GB of memory.
The minimum resources required for each AL
training cycle is 3.38GBs of GPU and 3.5GBs of
RAM. A training cycle completes in less than 60
minutes.

The best hyper-parameter values of the
experiment are given in Table A.1. We conducted
multiple experiments with different values. For
AL cycle sampling, various methods such as
maximum entropy, maximum entropy limited to
vowel letters, and mean entropy were employed.
However, the results of the maximum entropy
outperformed others. Moreover, we performed all
the experiments 5 times and reported the average

799

https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163

and standard deviation of the results on Figure 1.

Regarding the implementation of the proposed
algorithm, we have used PyTorch, NumPy, Pandas,
Matplotlib, scikit-learn, and chars2vec software
packages.

Parameter Value
AL Initial Sampling Method random
AL Cycle Sampling Method entropy
AL Cycle Clustering Method k-means
AL Initial Training Samples Counts 900
AL Tuning Samples Counts 500
AL Pre-clustering Samples Counts 1000
AL Cycle Samples Counts 250
Training Batch Size 400
Evaluation Batch Size 16
Dropout 0.3
Character Embedding Dimension 50
PCA Components 3
Max Cluster Counts 8

Table A.1: The best hyper-parameter values of the
experiment

B Additional Results

Employing the proposed method, we conducted
the experiments in the reversed direction (i.e.,
SF to UR) for morphophonological analysis. As
demonstrated in Figure 2, the DAL methods
outperformed random training by extracting
all the informative samples of the pool set,
U, when reaching the asymptote using 8,000
samples. Since the current baseline is designed
for morphophonological generation tasks, its
performance is diminished for SF to UR. As
our proposed method is model-agnostic, a more
suitable baseline model for this task would achieve
higher accuracies in morphophonological analysis
for both passive and active learning.

800

(a) (b)

90 -
90 1
85
80 4 801
> > 751
o o
e e
3 3
877 g 701
< <
65
—— EVAL (AL with Entropy & Clustering) —— DEV (AL with Entropy & Clustering)
601 —— EVAL (AL with Entropy) 601 —— DEV (AL with Entropy)
—— EVAL (Random) —— DEV (Random)
—— EVAL-OOV (AL with Entropy & Clustering) —— DEV-O0V (AL with Entropy & Clustering)
—— EVAL-OOV (AL with Entropy) 55 1 —— DEV-O0V (AL with Entropy)
50 4 —— EVAL-OOV (Random) —— DEV-O0V (Random)
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Samples Samples

Figure 2: Analysis task (SF to UR): The average accuracy of the baseline model trained using AL with entropy, AL
with combined entropy and clustering, and random training methods, and evaluated on (a) EVAL, EVAL-OOV, (b)
DEYV, and DEV-OOV datasets for morphological inflection analysis

801

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
In the Limitation section after Paper’s conclusion.

¥ A2. Did you discuss any potential risks of your work?
In Ethics Statement section after Limitation section.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Please refer to the abstract and introduction (Section 1) of the paper.

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Sections 3 and 4.

¥/ B1. Did you cite the creators of artifacts you used?
Sections 3, 4, and appendix A.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Not applicable. Left blank.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Sections 3 and 4.

C ¥ Dpid you run computational experiments?
Appendix A.
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Appendix A.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

802

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A.

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Section 5, Appendix A, and Appendix B.

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Appendix A.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

803

