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Abstract

Semantic proto-role labeling (SPRL) assigns
properties to arguments based on a series of
binary labels. While multiple studies have eval-
uated various approaches to SPRL, it has only
been studied in-depth as a standalone task us-
ing gold predicate/argument pairs. How do
SPRL systems perform as part of an infor-
mation extraction pipeline? We model SPRL
jointly with predicate-argument extraction us-
ing a deep transformer model. We find that
proto-role labeling is surprisingly robust in this
setting, with only a small decrease when us-
ing predicted arguments. We include a detailed
analysis of each component of the joint system,
and an error analysis to understand correlations
in errors between system stages. Finally, we
study the effects of annotation errors on SPRL.

1 Introduction

Semantic analyses of text have been framed (Gildea
and Jurafsky, 2000) as extracting structured infor-
mation in the form of predicates, arguments, and
their relations, often called semantic roles. Mul-
tiple schemas have been proposed for structuring
semantic roles, each with its own benefits and chal-
lenges. Semantic proto-roles (Dowty, 1991) offer
a way to decompose traditional inventories of the-
matic roles into simple properties that are both
easier to annotate and more generalizable to un-
seen arguments. These emerge from Dowty’s proto-
role theory, which assigns properties to arguments
based on how agent-like (volition, sentience) or
patient-like (change of state, was used) they are.
For example, in the sentence “The boy threw a
rock,” categorical role inventories assign argument
“boy” the role Agent, and argument “rock” the role
Patient. Work on decompositional semantics' has
formulated the task of semantic proto-role labeling
as the assignment of 14 different binary properties
to arguments (Reisinger et al., 2015a).

*Work done during an internship at Bloomberg.
"http://decomp.io/

Multiple systems have been proposed for au-
tomatically assigning proto-roles to predicate-
arguments pairs in text (Opitz and Frank, 2019;
Rudinger et al., 2018; Teichert et al., 2017; Tenney
et al., 2019), which have established the feasibility
and best practices for semantic proto-role labeling
(SPRL). At the same time, this task continues to
be either treated in total isolation, assuming gold
predicates and arguments, or included in Universal
Dependency Semantics (UDS) parsing pipelines
(Stengel-Eskin et al., 2020, 2021), which has not
included fine-grained analysis on semantic proto-
role properties themselves. How well does SPRL
work when integrated into a semantic extraction
pipeline? Are earlier errors compounded by SPRL?
Are the same tokens challenging for each stage of
the pipeline?

We answer these questions by constructing a
joint multi-task model for identifying predicates
and arguments, and assigning proto-role proper-
ties. Competitive with state-of-the-art for both
dependency- and span-based SPRL evaluation, a
careful component-wise analysis of our system al-
lows us to make the following contributions. 1)
Despite SPRL labeling errorful predicate argument
predictions, our results are still competitive with
having gold predicates and arguments, and far sur-
pass the only previous work that predicts proto-
roles jointly with predicates and arguments. Future
work should include SPRL scores with predicted
arguments. 2) Errors in predicates and arguments
do not negatively affect SPRL because the same
tokens that are challenging for argument identifi-
cation are challenging for SPRL. 3) We find that
most SPRL errors come from arguments with an-
notator disagreement, which suggests that these
are inherently hard; removing unskilled annotators
doesn’t change performance, suggesting that con-
flict alone is not the source of the problem. We
discuss implications for future work on SPRL after
our analysis.
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2 Semantic Proto-Roles

Semantic role labeling (SRL) was first formulated
as a natural language understanding task by Gildea
and Jurafsky (2000) and quickly proliferated (Sur-
deanu et al., 2003; Xue and Palmer, 2004; Prad-
han et al., 2005) as resources and common evalu-
ation frameworks were introduced (Carreras and
Marquez, 2004, 2005; Pradhan et al., 2007; Sur-
deanu et al., 2008; Haji¢ et al., 2009). SRL assigns
relationships or roles of an argument and its pred-
icate. Various labels build on different linguistic
theories: label inventories that are small and coarse
versus large and fine-grained. Common roles in-
clude Agent, Patient, Goal, and Location. Neural-
based systems that assign SRL jointly with other
related tasks, such as predicate and argument identi-
fication, perform just as well or better than models
trained on only SRL (Conia et al., 2021; Blloshmi
et al., 2021; He et al., 2018; Strubell et al., 2018;
Lietal., 2019).

Argument identification can be formulated as
dependency-based (find the argument’s syntactic
head) or span-based (find the entire argument span).
The CoNLL 2004 and 2005 shared tasks (Carreras
and Marquez, 2004, 2005) used spans: an argument
is correct only if all argument tokens are correctly
identified with the correct argument role. CoNLL
2008 and 2009 (Surdeanu et al., 2008; Hajic et al.,
2009) used a dependency-based method, which
only requires that the syntactic head of the argu-
ment be tagged with the correct argument role. Un-
derstandably, span-based is more challenging and
scores lag behind dependency-based systems (Li
etal., 2019).

SPRL (Dowty, 1991) offers an alternative
(Reisinger et al., 2015a) by decomposing tradi-
tional semantic roles into properties. The two proto-
roles are “cluster-concepts” called Proto-Agent and
Proto-Patient, which each correspond to an inven-
tory of properties. Certain properties (such as voli-
tion or instigation) tend to belong to Proto-Agents,
while others (such as change of state and was used)
tend to belong to Proto-Patients. This analysis of-
fers increased granularity but without sparsification
of the training data.

The state-of-the-art SPRL dependency-based
system fine-tunes BERT (Devlin et al., 2019) with
a multi-layer Perceptron to assign labels using a
linear combination of different BERT layer embed-
dings (Tenney et al., 2019). For span-based, the
leading system uses an attention-based ensemble

and trainable “argument marker embeddings” to
indicate which tokens are arguments (Opitz and
Frank, 2019). Stengel-Eskin et al. (2020) and
Stengel-Eskin et al. (2021) jointly predict UDS
graph structures (i.e., the spans of predicates and
arguments) with all UDS properties, including se-
mantic proto-roles. Both use a sequence-to-graph
transductive model, and Stengel-Eskin et al. (2021)
is able to improve the transductive model by inte-
grating transformer architecture. Systems are rarely
evaluated in both dependency- and span-based set-
tings, and none have been evaluated on anything
but gold predicates and arguments.

3 Data

We report results on two English-language datasets
for SPRL: SPR1 (Reisinger et al., 2015b) and SPR2
(White et al., 2016). SPR1 contains 4,912 Wall
Street Journal sentences from PropBank (Kings-
bury and Palmer, 2002; Palmer et al., 2005; Gildea
and Palmer, 2002) annotated by a single annotator
based on a set of 18 proto-role properties. 9,738
arguments were annotated for the likelihood (on a
Likert scale from 1 to 5) that a property holds for
that argument. SPR2 contains 2,758 English Web
Treebank (Bies et al., 2012) sentences annotated
for a smaller set of 14 properties using a revised,
streamlined protocol. In this release, multiple anno-
tators ensured two-way redundancy for each prop-
erty judgment.

Following previous work (Opitz and Frank,
2019; Rudinger et al., 2018; Teichert et al., 2017;
Tenney et al., 2019), we formulate SPRL as a 18
(SPR1) or 14 (SPR2) way multi-label binary clas-
sification problem and map Likert labels {1, 2, 3}
to 0, and {4, 5} to 1. The task has also been for-
mulated as a regression problem in which SPRL
scores are predicted as continuous values (Opitz
and Frank, 2019; Rudinger et al., 2018), but we
do not include this formulation as a part of our
analysis. We additionally map judgments labeled
“inapplicable” to 0 to ensure consistency with pre-
vious work. We use standard train/dev/tests splits
provided in the data. We additionally do analysis
on inter-annotator agreement in SPR2 shown in
Appendix B.2.

4 Joint End-to-End SPRL

We construct a joint end-to-end SPRL system based
on BERT (Devlin et al., 2019) with classification
heads for each sub-task (Figure 1). We fine-tune
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Figure 1: Our model fine-tunes a pre-trained transformer. Only the embedding for the first token of each sequence
is passed through the predicate classifier. Input to the argument and property classifiers is each token embedding

concatenated with the embedding for the predicate.

BERT and the encoder parameters are shared across
tasks. We favor BERT as opposed to newer en-
coders for a direct comparison to Tenney et al.
(2019) and Opitz and Frank (2019).2

We construct representations of the input sen-
tences to enable the system to efficiently identify
predicates, arguments, and SPRL. For each sen-
tence, we construct an instance with a candidate
predicate prepended onto the sentence with a sep-
arator. We use linear classification heads® with
sigmoid functions to produce classification prob-
abilities for each token. We place a classification
head on the prepended predicate token to determine
if it is a predicate. For argument and SPRL, we
use separate classification heads on each token in
the sentence. Dependency-based models predict
argument for the dependency head only, whereas
span-based models use an IOE tagging and soft-
max outputs. The resulting argument-tagged sub-
words are pooled and concatenated with the pred-
icate representation taken from the sentence into
the SPRL binary classification heads. Since we cre-
ate an input for each possible predicate, we reduce
the number of examples originating from incorrect
predicates by only using predicate candidates that
were verbs. Full model and training details appear
in Appendix A.3.

Our model architecture is very similar to Tenney
et al. (2019), except we extend it for predicate and
argument identification. Additionally, we do not
use a linear combination of BERT layers, instead
taking BERTs last layer of BERT.*

“Newer encoders would likely do better, but our goal is an
analysis and not obtaining new state-of-the-art scores.

*We experimented with multi-layer Perceptrons (ReLU
activation) as heads, but found no consistent improvement.

“In 2019, it was common to use a combination of layer

SPR1 SPR2

macro micro macro micro
Dependency Prediction
This Paper 72.7 855 65.0 83.3
This Paper + ar prediciion 73.7 85.5 68.1 82.4
This Paper + predicatc + Arg prediction 74.0 853 647 83.8
Rudinger et al. (2018) 71.1 83.3 - -
Tenney et al. (2019) - 86.1 83.8°
Span Prediction
This Paper 714 837 650 82.9
This Paper + arg prediction 71.8 84.1  65.7 81.9
This Paper + predicatc + Arg prediction 73.0 84.3 65.2 81.6
Opitz and Frank (2019) 69.3 82.0 69.7 83.4
Opitz and Frank (2019) +serr 73.8 835 675 83.9
Stengel-Eskin et al. (2020) Transductive parser - - 65.4 -
Stengel-Eskin et al. (202 1)6 TFMR +EN + BERT - 69.8 83.3
Span Prediction (Ensembles)
Opitz and Frank (2019) easemble 72.1 83.6 709 84
OpilZ and Frank (2019) Ensemble + BErT 71.5 86.8 69.9 84.9

Table 1: F1 scores on proto-role property prediction
when using gold predicates and arguments. Our models
were trained concurrently with argument classification,
and also predicate classification tasks (where indicated).
All other models besides Stengel-Eskin et al. (2020,
2021) do not perform joint inference. Bold indicates
best performance within a section.

5 Experiments

We run multiple experiments to isolate the behavior
of different components of our system, such as
training on only SPRL, as well as the full pipeline.
For all experiments, we train both a dependency-
based and span-based model.

embeddings based on ELMO, but since then systems use only
the final output layer. Results in Table 1 verify that layer
combinations are not necessary for this task.

5This score is for BERT-base, which we use in our experi-
ments. The authors gained a small boost of 0.3 F1 points by
using BERT-large.

®Scores for the system reported by Stengel-Eskin et al.
(2021) were obtained using their released code. These scores
represent the best-performing setting: TFMR + EN, tuning
the top 8 layers of BERT.
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SPR1 SPR2

Recall Strict F1 Recall Strict F1
Dependency Prediction | Preds | Arg Heads | Properties | Preds | Arg Heads | Properties
Gold Predicates - 93.2 77.5(-8) - 95.7 79.0 (-3.4)
+ Predicate Prediction 948 | 952 78.0(-7.3) | 834 | 978 81.8(-2)

Recall Strict F1 Recall Strict F1
Span Prediction Preds | Arg Spans | Properties | Preds | Arg Spans | Properties
Gold Predicates - 91.6 78.8 (-5.3) | - 86.7 77.8 (-4.1)
+ Predicate Prediction 952 | 912 77.6 (-6.7) | 92.4 | 87.6 74.7 (-6.9)

Table 2: F1 scores for each prediction task using strict scoring. Since it is more important to see how many
predicates and arguments the model guessed correctly, we report on recall for predicates and arguments. For the
proto-role properties, the micro-F1 score is reported. Red italics show the drop in F1 score from gold scores.

Scoring SPRL is typically reported as mi-
cro/macro averaged F1 across the individual SPR
binary properties. We report Gold F1 scores that as-
sume the previous stages of the pipeline produced
correct predicates and arguments. However, when
considering SPRL run on predicted predicates and
arguments, we need to adjust the scoring such that
we penalize the SPRL score due to mistakes ear-
lier in the pipeline. For other tasks, such as entity
linking, we can simply mark a link as “missed” if
we fail to recognize an entity with a NER system.
However, because SPRL is a binary classification
task, scoring is more complex.

We consider two different SPRL scoring meth-
ods for false negative predicate or arguments: (1)
a lenient score that assumes 0 for all properties,
which means that missed arguments do not have
any of the properties. (2) A strict score that forces
the label incorrect for all properties, which assumes
we get all property predictions wrong thereby mark-
ing them incorrect. We do not modify the SPRL
score for false positive arguments (for which there
are no gold labels) since this would change the set
of arguments over which each run of the system is
evaluated. For example, in the sentence “Bob sat
on the chair and I laid on the ground”, if the model
predicts that “ground” is an argument for “sat”,
then the model would produce property predictions
for “ground” even though there are no annotations
for this token. Those predictions are ignored en-
tirely, because it is not guaranteed that other runs
will also include predictions for this token.

We evaluate each component of our system sep-
arately to determine the effects of the pipeline. (1)
Train only the SPRL classifiers using gold pred-
icates and arguments. (2) Train arguments and
SPRL assuming gold predicates. (3) Train predi-
cates, arguments, and SPRL using inputs first fil-
tered to consider only verbs as predicates. We repli-

cate this training for both span and dependency-
based predictions. For each setting, we evaluate
under different conditions by decoding assuming
gold or predicted labels from earlier in the pipeline.

6 Results

We present an overview of the results for our joint
system, but full results appear in Appendix B. Table
1 shows our SPRL system compares favorably to
previous work. We show three systems: trained on
only SPRL, trained on arguments and SPRL, and
trained on predicates, arguments, and SPRL. In all
cases, we decode SPRL predictions assuming gold
predicates and arguments. Our model matches or
surpasses previous span and dependency results on
SPR1, but lags slightly behind on span-based SPR2.
This confirms previous work that found SPR2 more
difficult than SPR1, perhaps because SPR2 has less
data and more complex predicates and arguments.

Table 2 shows performance using our strict
pipeline scoring, in which we map proto-role prop-
erty predictions to incorrect for false negative ar-
guments. The drop in F1 from using gold labels is
shown in red. While we do worse in a pipeline, with
the largest gap being 8 points for dependency-based
SPRI, jointly learning predicates slightly improves
strict F1 performance on SPRL in the dependency-
based models, but degrades performance in the
span-based models. Furthermore, SPR1 suffers a
larger drop in the strict scoring regime than SPR2,
perhaps because SPR2 models were already pre-
dicting many of the “harder” arguments incorrectly.

How are SPRL errors related to mistakes ear-
lier in the pipeline? SPRL performance was much
lower for arguments that would have been missed
earlier in the pipeline. (See Table 3.) Table 2 shows
this effect: models with smaller drops from gold
were already making errors on incorrect arguments,
whereas models with larger drops were likely bet-
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Correct args | Incorrect args

Dataset | Model Size Fi Size Fli
SPR1 Dependency 17,712 | 86.4 | 1,296 | 67.3
+ Predicate prediction | 18,090 | 86.0 | 918 65.0
Span 17,406 | 84.9 | 1,602 | 71.9
+ Predicate prediction | 17,334 | 85.3 | 1,674 | 69.0
SPR2 Dependency 7,770 | 82.9 | 350 | 68.4
+ Predicate prediction | 7,938 | 84.0 | 182 74.0
Span 7,042 | 83.1 | 1,078 | 70.5
+ Predicate prediction | 7,112 | 82.8 | 1,008 | 70.9

Table 3: F1 score (micro-averaged) on subsets of argu-
ments the model predicted correctly and arguments the
model predicted incorrectly. All models in this table
concurrently predict arguments and SPRL. Models that
additionally predict predicates are noted.

ter at handling “difficult” examples. These difficult
examples seem to correlate with annotation diffi-
culty. We measure the performance of the system
on annotation subsets based on the difference in
Likert scores from the annotator. The larger the
disagreement in Likert scores betweeen annota-
tors, the worse the model performance (Appendix
B.1.2.) To rule out the role of poor annotators, we
removed those who had low inter-annotator agree-
ment with others. However, this had almost no
effect on F1, suggesting that it is the examples
themselves that are challenging, and not the quality
of the annotations. Perhaps these arguments are
challenging for both tasks, or possibly the BERT
encoder learns a poor representation of them. For-
tunately, this means that when arguments are cor-
rectly discovered, SPRL does a good job on them
and that correcting errors may improve both tasks.

Additionally, since we follow previous work by
collapsing proto-role annotations marked “inap-
plicable” into the O class, we investigate the ef-
fect of excluding “inapplicable” property annota-
tions in Table 7 and find a consistent boost of at
least 3 F1 points by excluding inapplicable anno-
tations, suggesting future work may benefit from
handling applicability judgements differently, such
as in Stengel-Eskin et al. (2020, 2021), who use a
hurdle model in which a first classifier determines
whether or not a property applies before making
the property value judgement. Together, the ef-
fects of Likert disagreements and inapplicability
of proto-role annotations additionally suggests that
normalizing the different annotator responses, as
in White et al. (2020), who use a mixed effects
model, might lead to better outcomes in SPRL. See
Appendix B.1 for a more detailed analysis of all
results.

7 Discussion

Our end-to-end SPRL system demonstrates the ef-
ficacy of SPRL when combined with a full sys-
tem. We are competitive with both span-based
and dependency-based models and find that joint
identification of predicates and arguments still pro-
duces a high-performing SPRL system. Future
work should evaluate this setting, using both span-
and dependency-based models and our proposed
scoring method. Furthermore, our work points to
the need for focused improvement on challenging
arguments, which is harming both argument identi-
fication and SPRL. Do these errors show the limits
of SPRL since annotators also get them wrong? Do
we need better encoder training? Will downstream
tasks that consume SPRL labels be robust to these
errors? What is the feasibility of a reinforcement
learning system that trains on the model’s own out-
put? These questions remain for future work.

Limitations

Our analysis of the behavior of SPRL focused on
intrinsic task scores. Higher SPRL scores suggest a
better system. In practice, we do not yet understand
how these scores affect downstream uses of SPRL
labels. Furthermore, SPRL datasets are relatively
small and are English only. As we are limited to
the labels in the existing datasets, we are uncertain
about how our results would generalize to larger
datasets, new domains, and other languages.

Ethics Statement

When deploying a system such as ours on real text,
e.g., news, one should carefully consider the impli-
cations of labeling real entities with certain proto-
role properties. For example, answering the ques-
tion of whether or not an actor instigated some
action could have serious ramifications in the real
world. Care should be taken so that such cases
might be, for example, flagged for human review.
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SPR1 SPR2

Train

Precision 45.1 49.4
Recall 100 100
F1 62.2 66.2
Dev

Precision 474 53.1
Recall 100 100
F1 64.3 69.4
Test

Precision 45.1 54.2
Recall 100 100
F1 62.1 70.3

Table 4: Results for the predicate filtering step for every
split.

A Training details

We simplify the complex task of joint predicate-
argument-proto-role learning, as the space of pos-
sible predicates, arguments, and proto-role labels
is O(|R|n?) for a sentence of n tokens and a set of
proto-role properties R. (There are O(n) possible
predicates and O(n?) possible argument spans.)
First, we made the decision not to train the model
on its own output—ie, we use an oracle to identify
gold predicate and argument tokens so that non-
predicate sequences and non-argument tokens are
ignored in the loss step.

A.1 Pre-processing

We shift some of the complexity to the data pro-
cessing step before any learning occurs by crafting
sequences such that only one predicate is consid-
ered at a time: for example, the sentence “He stole
my toy!” would be split into four separate data
points:

He <SEP> He stole my toy!
stole <SEP> He stole my toy!
my <SEP> He stole my toy!
toy! <SEP> He stole my toy!

The model learns to focus on the first token as
the candidate predicate of the sentence. For ex-
ample, in the sequence stole <SEP> He stole
my toy, the model must answer the questions: If
stole is the predicate, what are the arguments of the
sentence, and what are their proto-role properties?
We truncate sequences to a fixed maximum length
of 50 and pad shorter sequences to the right.

A.2 Predicate filtering

The number of training instances would be quite
large if every token of every sentence was used as
a predicate candidate, as above. So we undergo
a predicate filtering step in which we only select
tokens that are labeled as verbs (ie, anything with
a POS tag beginning with VB) in the datasets. For
every dataset and split, this initial predicate filtering
step has a recall of 100. After filtering, the number
of training instances in SPR1 is reduced to 8,999
from 83,789, and in SPR2, is reduced to 7,452 from
46,138. Model output for argument identification
and SPRL on false positive predicates is ignored in
the loss function and evaluations. Table 4 shows
full results for the predicate filtering.

A.3 Hyperparameters

Using the hyperparameters from previous work as
a starting point, we fine-tuned the learning rate and
batch size and then kept them fixed based on the
highest validation macro-F1 for final experiments.
We report scores from a single run from each final
experiment. We use a batch size of 8, run for 30
epochs with no early stopping, and choose scores
based on the best validation macro-F1. Our learn-
ing rate is 0.00001. For each property, we apply
loss weights equal to the inverse frequency of that
property. Our model, which uses BERT-base, con-
tains 109M trainable parameters, and took roughly
2-6 hours to train on a single GPU depending on
the size of the dataset, whether or not we were
predicting predicates, and whether or not we were
predicting argument spans. We used the Pytorch
Lightning’ framework to build and train our model.

B Full results

The full proto-role property identification results
for all model configurations using a linear classifi-
cation head can be found arranged in a grid in Table
5. The grid shows the three training methods and
the three scoring methods. For training, we have
three columns indicating whether or not the model
was trained to predict predicates, arguments, and
proto-role properties. For training settings in which
we do not train the model to predict predicates, note
that we do not create sequences with incorrect pred-
icates (ie, the model would never see the sequence
He <SEP> He stole my toy!) and the model
only sees instances with correct predicates.

"https://www.pytorchlightning.ai, Apache-2.0
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H H Dependency H Spans H
Train Test SPR1 SPR2 SPR1 SPR2

P|A|R|P|A|R macro | micro || macro | micro || macro | micro || macro | micro
v v 72.7 85.5 65.0 83.3 71.4 83.7 65.0 82.9

|/ v 73.7 85.5 68.1 82.4 71.8 84.1 65.7 81.9
|/ VR4 72.9 84.4 67.6 81.3 64.0 85.0 60.0 80.3
|/ v | /* 62.2 77.5 64.1 79.0 594 78.8 57.1 74.8

VR AR v 74.0 85.3 64.7 83.8 73.0 84.3 65.2 81.6
VAR AR VR4 73.3 84.5 64.3 83.2 64.8 85.3 59.1 79.9
VR AR | /* 64.7 79.5 62.1 81.9 60.0 78.8 56.5 74.8
AR ARA I REraRs 72.9 83.9 64.3 83.2 64.2 84.9 58.9 79.8
AR ARA Rarars 63.1 78.0 62.0 81.8 59.0 77.6 56.4 74.7

Table 5: Full grid of results using a linear classification head. P/A/R refers to the three tasks: predicate/argument/role
identification. In the column labeled “Train”, we see which of the three tasks the model is trained to predict. In the
column labeled “Test”, we see which of the three tasks is accounted for in the score. Gold scores are shown in the
top row of each section. ” indicates lenient F1. * indicates strict F1.

Dependency Spans
SPR1 SPR2 SPR1 SPR2
Train Preds Arg Heads Preds Arg Heads Preds Arg Spans Preds Arg Spans
P|A|R| FI P R F1 F1 P R Fl1 Fl1 P R Fl1 Fl P R Fl1
|/ - 77.1 | 93.2 | 844 - 82.1 | 95.7 | 88.4 - 62.3 | 91.6 | 74.1 - 70.8 | 86.7 | 78
VANV V] 948 | 735952 | 83 834 | 619 | 978|758 | 952 | 657|912 |764 | 924 | 74.1 | 87.6 | 80.3

Table 6: Predicate and argument identification results for all joint models. We show all three of precision, recall,
and F1 for argument identification. For dependency-based models, we show results for correctly retrieving only the
argument head. For span-based, we only count the argument span as correctly retrieved if every single token in the

Span was correct.

For scoring, we show three different scoring
methods: (1) gold scores, which assume correct
predicates and arguments earlier in the pipeline,
for direct comparison to previous work; (2) lenient
scores, which assume O for all proto-role properties,
treating SPRL as a “proto-role retrieval” task; and
(2) strict scores, which map proto-role properties
to the wrong label if predicates and arguments are
falsely predicted as O earlier in the pipeline. We
do not modify the SPRL score for false positives
in predicate and argument identification since this
would chnage the set of arguments over which the
system is evaluated. The corresponding results for
predicate and argument identification can be found
in Table 6.

B.1 Evaluating on subsets of data

To attempt to tease out the reasons for various er-
rors in the model predictions, we take varying sub-
sets of the data and evaluate separately on each
subset. We report sizes of the different subsets we
evaluate in Table 8.

B.1.1 Arguments predicted correctly and
incorrectly

To further investigate the question of how errors
earlier in the pipeline propagate later in the pipeline,
we take a subset of arguments which the model pre-
dicted correctly and a subset of arguments which
the model predicted incorrectly, and calculate the
F1 scores for each subset. We report these scores in
Table 3. We see large differences in the F1 scores
between these subsets, suggesting that arguments
that are difficult for the model to identify are also
difficult for proto-role property classification.

An example of an argument that all configura-
tions of our SPR2 models struggled with is itali-
cized in the sentence below, with the predicate in
bold:

Ilike I Move CA - Los Angeles Movers,
they moved me before, but this time they
were awesome :)

None of the models were able to retrieve this ar-
gument correctly (neither the head, nor the span).
They all made mistakes on at least some proto-role
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Figure 2: F1 score (micro-averaged) for the full joint
SPR2 models on subsets of arguments based on the
difference of Likert ratings given by two annotators.

property predictions: common mistakes among all
configurations of the model included false nega-
tives for sentient, false positives for awareness, and
false positives for change of location.

Interestingly, only the span-based models pre-
dicted that the argument was not sentient, showing
that the non-head tokens in the span confused the
model. On the other hand, both the dependency-
based models understandably predicted that the
head of the argument, Movers, changed location,
while the span-based models did not make this mis-
take.

We notice that this sentence might have been dif-
ficult for annotators to judge, so we proceed with
evaluations of subsets based on annotator judge-
ments and agreement to tease out the association
between examples that are difficult for annotators
and examples that are difficult for the model.

B.1.2 Differences in Likert ratings

For SPR2, which is doubly-annotated, we hypoth-
esized that we could locate examples that are dif-
ficult for the model to classify by the difference
between the two annotators’ Likert ratings in each
property judgement. We construct several different
subsets of data, which we refer to as LDi. LDj
is the subset of property annotations in which the
difference between Likert ratings between two an-
notators is exactly . We show F1 scores for differ-
ent combinations of these subsets in Figure 2, and
provide the sizes of each subset in Table 8. We see
that the score on the subset containing only prop-
erty judgements with complete agreement between
annotators is far higher than all other scores. As
we add property judgements with larger and larger

mmm Dependency
100 A B Spans

Micro-F1

= 0.60

=0.70 =0.75 = 0.80

Figure 3: F1 scores (micro-averaged) for the full joint
SPR2 models based on subsets of arguments requir-
ing both annotators to have a minimum pairwise inter-
annotator agreement. The x-axis shows the [AA require-
ments that determine the subsets.

disagreement between annotators, the scores drop
substantially.

B.1.3 Pairwise inter-annotator agreement

In section B.2, we show inter-annotator agreement
K scores averaged over each property. We also
calculate x pairwise for each annotator and report
these scores in Table 10. We then investigate the ex-
tent to which including annotations by annotators
with low pairwise agreement affects F1 by creat-
ing subsets of data which excludes annotations by
annotators with an inter-annotator agreement be-
low some cutoff. We report these scores in Figure
3. Surprisingly, we note that excluding annotators
with low pairwise inter-annotator agreement has
almost no affect on the F1 score, suggesting that an-
notator “skill” is less important than the difficulty
of each example in SPRL F1.

B.1.4 Applicability judgements

Finally, we investigate the extent to which the ap-
plicability judgements correlate with difficulty of
property prediction. For both SPR1 and SPR2, an
“applicable” judgement, indicating whether or not
the proto-role property was applicable to the argu-
ment in the context of the sentence, was collected
for each property in addition to the Likert judge-
ments. As a reminder, annotations marked inap-
plicable were collapsed into the 0 class regardless
of the Likert rating. Thus, in Table 7, we show F1
scores on the subset of annotations marked “appli-
cable” by both annotators (or, in the case of SPR1,
the single annotator) versus F1 scores on the entire
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Dataset | Model Applicable | All
SPR1 Dependency 88.9 85.5
+ Predicate prediction 88.5 85.3
Span 88.2 84.1
+ Predicate prediction 88.2 84.3
SPR2 Dependency 86.3 82.4
+ Predicate prediction 86.9 83.8
Span 86.6 81.9
+ Predicate prediction 86.0 81.6

Table 7: F1 score (micro-averaged) on the subset of
property annotations marked “applicable” versus the F1
for all property annotations. In the case of SPR2, the
subset only contains annotations where both annotators
agreed the property was applicable.

Subset | SPR1 | SPR2
A0 8,925 997
Al 10,083 | 1,775
A2 n/a 5,348

LDO n/a 4,611
LDI n/a 1,563
LD2 n/a 830
LD3 n/a 570
LD4 n/a 546

Table 8: Sizes of each subset used in evaluations for
analysis. Ai is the subset of property annotations where
exactly ¢ annotators marked “Applicable” as “True.” LDi
is the subset of property annotations where the differ-
ence between Likert ratings between two annotators is
exactly i.

dataset. We see a consistent boost of at least 3 F1
points by only evaluating on applicable annotations.

B.2 Inter-annotator agreement

A possible limitation of the currently available SPR
data is relatively low average inter-annotator agree-
ment. White et al. (2016) report an agreement
of 0.617 using Spearman’s rank correlation coef-
ficient for SPR2. However, this agreement was
measured over the Likert scores, which our model
will not be predicting. We re-measured both the
Likert data and the collapsed binary data using Co-
hen’s kappa on a per-property basis. We see in
Table 9 that when measuring agreement using Co-
hen’s kappa, collapsing the Likert labels to {0, 1}
improves the agreement significantly, resulting in
every property having at least £ > 0.64.

We also calculated each annotator’s Cohen’s
kappa score pairwise against every other annotator
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Dataset | Property Likert « | Binary s
1&2 instigation 0.61 0.69
1&2 volition 0.77 0.86
1&2 awareness 0.82 0.88
1&2 sentient 0.82 0.88
1&2 change of location 0.59 0.71
1 exists as physical - -
1&2 existed before 0.74 0.79
1&2 existed during 0.79 0.86
1&2 existed after 0.68 0.76
1 created - -
1 destroyed - -
1&2 change of possession 0.66 0.80
1&2 change of state 0.59 0.66
1 stationary - -
1 location of event - -
1 physical contact - -
1&2 was used 0.59 0.66
1 pred changed arg - -
2 was for benefit 0.61 0.70
2 partitive 0.58 0.64
2 change of state continuous | 0.65 0.67
Average | 0.68 0.75

Table 9: Proto-role properties and their inter-annotator
agreement, measured using Cohen’s kappa, where appli-
cable. Note that because the SPR1 release was annotated
with one annotator, the agreement scores only apply to
SPR2.

(and averaged). We then experimented with scor-
ing our models on a subset of the data in which
only judgements by annotators with a certain inter-
annotator agreement were kept. The inter-annotator
agreement scores used in these experiments can be
found in Table 10.



Annotator ID | Likert x | Binary x | # Annotations
0 0.43 0.42 14

1 0.72 0.81 5,418
2 0.56 0.74 28

3 0.70 0.76 1,932
7 0.62 0.73 9,184
8 0.67 0.78 14

10 0.75 0.81 1,078
11 0.61 0.78 42

13 0.69 0.73 14

15 0.71 0.80 7,224
16 0.68 0.73 2,814
20 0.64 0.76 3,640
25 0.70 0.75 3,248
26 0.70 0.78 19,250
29 0.70 0.81 7,504
30 0.65 0.78 1,652
32 0.65 0.74 8,708
35 0.68 0.74 1,204
37 0.60 0.68 1,092
40 0.81 0.85 14

43 0.67 0.75 14,854
45 0.67 0.77 126
46 0.65 0.71 1,498
48 0.69 0.78 1,358
50 0.63 0.72 140
51 0.70 0.80 308
56 0.71 0.79 6,496
62 0.68 0.71 3,850
64 0.68 0.76 518
65 0.71 0.81 1,512
66 0.69 0.76 4,186
68 0.72 0.80 588
69 0.75 0.79 14
70 0.65 0.76 4,746
71 0.70 0.77 4,144
73 0.67 0.67 2,744
74 0.51 0.50 546
75 0.66 0.80 4,942
76 0.67 0.77 4,228
78 0.70 0.79 896
81 0.68 0.75 854
87 0.69 0.77 23,002
92 0.69 0.75 6,580
93 0.67 0.76 4,746
94 0.73 0.82 3,682
Average 0.67 0.75

Table 10: Pairwise inter-annotator agreement measured
with Cohen’s kappa. Italics show the lowest x value.

Bold shows the highest x value.
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