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Abstract

Recently it has been shown that state-of-the-art
NLP models are vulnerable to adversarial at-
tacks, where the predictions of a model can be
drastically altered by slight modifications to the
input (such as synonym substitutions). While
several defense techniques have been proposed,
and adapted, to the discrete nature of text adver-
sarial attacks, the benefits of general-purpose
regularization methods such as label smooth-
ing for language models, have not been studied.
In this paper, we study the adversarial robust-
ness provided by label smoothing strategies
in foundational models for diverse NLP tasks
in both in-domain and out-of-domain settings.
Our experiments show that label smoothing
significantly improves adversarial robustness
in pre-trained models like BERT, against vari-
ous popular attacks. We also analyze the rela-
tionship between prediction confidence and ro-
bustness, showing that label smoothing reduces
over-confident errors on adversarial examples.

1 Introduction

Neural networks are vulnerable to adversarial at-
tacks: small perturbations to the input ,which do
not fool humans (Szegedy et al., 2013; Goodfel-
low et al., 2014; Madry et al., 2017). In NLP
tasks, previous studies (Alzantot et al., 2018; Jin
et al., 2019; Li et al., 2020; Garg and Ramakr-
ishnan, 2020) demonstrate that simple word-level
text attacks (synonym substitution, word inser-
tion/deletion) easily fool state-of-the-art models,
including pre-trained transformers like BERT (De-
vlin et al., 2019; Wolf et al., 2020). Further, it has
recently been shown models are overconfident1 on
examples which are easy to attack (Qin et al., 2021)
and indeed, such over-confident predictions plague

∗The first two authors contributed equally to this paper.
Most of the work done while Soham Dan was at the University
of Pennsylvania.

1Confidence on an example is the highest softmax score
of the classifier prediction on that example.

much of modern deep learning (Kong et al., 2020;
Guo et al., 2017; Nguyen et al., 2015; Rahimi et al.,
2020). Label smoothing is a regularization method
that has been proven effective in a variety of ap-
plications, and modalities (Szegedy et al., 2016;
Chorowski and Jaitly, 2017; Vaswani et al., 2017).
Importantly, it has been shown to reduce overcon-
fident predictions and produce better confidence
calibrated classifiers (Muller et al., 2019; Zhang
et al., 2021; Dan and Roth, 2021; Desai and Durrett,
2020; Huang et al., 2021; Liu and JaJa, 2020).

In this work, we focus on the question: does
label smoothing also implicitly help in adversarial
robustness? While there has been some investi-
gation in this direction for adversarial attacks in
computer vision, (Fu et al., 2020; Goibert and
Dohmatob, 2019; Shafahi et al., 2019), there is
a gap in understanding of whether it helps with
discrete, text adversarial attacks used against NLP
systems. With the increasing need for robust NLP
models in safety-critical applications and a lack of
generic robustness strategies,2 there is a need to
understand inherent robustness properties of pop-
ular label smoothing strategies, and the interplay
between confidence and robustness of a model.

In this paper, we extensively study standard la-
bel smoothing and its adversarial variant, cover-
ing robustness, prediction confidence, and domain
transfer properties. We observe that label smooth-
ing provides implicit robustness against adversarial
examples. Particularly, we focus on pre-trained
transformer models and test robustness under vari-
ous kinds of black-box and white-box word-level
adversarial attacks, in both in-domain and out-of-
domain scenarios. Our experiments show that label
smoothing (1) improves robustness to text adver-
sarial attacks (both black-box and white-box), and
(2) mitigates over-confident errors on adversarial
textual examples. Analysing the adversarial exam-

2which are flexible, simple and not over-specialized to very
specific kinds of text adversarial attacks.
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ples along various quality dimensions reveals the
remarkable efficacy of label smoothing as a simple
add-on robustness and calibration tool.

2 Background

2.1 Text Adversarial Attacks

Our experiments evaluate the robustness of text
classification models under three state-of-the-art
text adversarial attacks TextFooler (black-box),
BAE (black-box) and SemAttack (white-box),
described below.3For a particular victim NLP
model and a raw text input, the attack produces
semantically-similar adversarial text as output. Im-
portantly, only those examples are attacked, which
are originally correctly predicted by the victim
model. The attacks considered are word-level, i.e.
they replace words in a clean text with their syn-
onyms to maintain the meaning of the clean text,
but change the prediction of the victim models.

• TextFooler (TF): (Jin et al., 2019) proposes
an attack which determines the word impor-
tance in a sentence, and then replaces the im-
portant words with qualified synonyms.

• BAE: (Garg and Ramakrishnan, 2020) uses
masked pre-trained language models to gener-
ate replacements for the important words until
the victim model’s prediction is incorrect.

• SemAttack (SemAtt): (Wang et al., 2022)
introduces an attack to search perturbations in
the contextualized embedding space by formu-
lating an optimization problem as in (Carlini
and Wagner, 2016). We specifically use the
white-box word-level version of this attack.

2.2 Label Smoothing

Label Smoothing is a modified fine-tuning proce-
dure to address overconfident predictions. It intro-
duces uncertainty to smoothen the posterior distri-
bution over the target labels. Label smoothing has
been shown to implicitly calibrate neural networks
on out-of-distribution data, where calibration mea-
sures how well the model confidences are aligned
with the empirical likelihoods (Guo et al., 2017).

• Standard Label Smoothing (LS) (Szegedy
et al., 2013; Muller et al., 2019) constructs

3The black-box attacks keep querying the model with its
attempts until the victim model is fooled while the white-box
attack has access to the gradients to the model. Further details
of the attacks are in (Jin et al., 2019; Garg and Ramakrishnan,
2020; Wang et al., 2022).

a new target vector (yLSi ) from the one-hot
target vector (yi), where yLSi = (1 − α)yi +
α/K for a K class classification problem. α
is a hyperparameter selection and its range is
from 0 to 1.

• Adversarial Label Smoothing (ALS) (Goib-
ert and Dohmatob, 2019) constructs a new tar-
get vector (yALS

i ) with a probability of 1− α
on the target label and α on the label to which
the classification model assigns the minimum
softmax scores, thus introducing uncertainty.

For both LS and ALS, the cross entropy loss is
subsequently minimized between the model pre-
dictions and the modified target vectors yLSi , yALS

i .

3 Experiments
In this section, we present a thorough empirical
evaluation on the effect of label smoothing on ad-
versarial robustness for two pre-trained transformer
models: BERT and its distilled variant, dBERT,
which are the victim models. 4 We attack the vic-
tim models using TF, BAE, and SemAttack. For
each attack, we present results on both the standard
models and the label-smoothed models on various
classification tasks: text classification and natural
language inference. For each dataset we evaluate
on a randomly sampled subset of the test set (1000
examples), as done in prior work (Li et al., 2021;
Jin et al., 2019; Garg and Ramakrishnan, 2020). We
evaluate on the following tasks, and other details
about the setting is in Appendix A.8:

• Text Classification: We evaluate on movie re-
view classification using Movie Review (MR)
(Pang and Lee, 2005) and Stanford Sentiment
Treebank (SST2) (Socher et al., 2013) (both
binary classification), restaurant review clas-
sification: Yelp Review (Zhang et al., 2015a)
(binary classification), and news category clas-
sification: AG News (Zhang et al., 2015b)
(having the following four classes: World,
Sports, Business, Sci/Tech).

• Natural Language Inference: We investigate
two datasets for this task: the Stanford Natu-
ral Language Inference Corpus (SNLI) (Bow-
man et al., 2015) and the Multi-Genre Natural
Language Inference corpus (MNLI) (Williams
et al., 2018), both having three classes. For
MNLI, our work only evaluates performance

4Additional results on more datasets, models, other attacks
and α values, are presented in the Appendix.
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SST-2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.45 0 0.45 0 0.45
TF 91.97 92.09 96.38 88.92 78.43 63.62

BAE 91.97 92.09 57.11 53.42 86.92 68.35
SemAtt 91.97 92.09 86.41 54.05 80.12 64.55
dBERT(α) 0 0.45 0 0.45 0 0.45

TF 89.56 89.68 96.29 89.77 76.28 61.60
BAE 89.56 89.68 59.28 56.52 83.55 66.11

SemAtt 89.56 89.68 91.68 69.69 78.93 62.42

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.45 0 0.45 0 0.45
TF 94.83 94.67 88.26 77.47 59.02 42.46

BAE 94.83 94.67 74.83 62.82 60.66 43.98
SemAtt 94.83 94.67 52.65 30.49 62.32 44.99
dBERT(α) 0 0.45 0 0.45 0 0.45

TF 94.73 94.47 90.11 74.52 57.60 41.40
BAE 94.73 94.47 77.79 63.65 60.01 42.74

SemAtt 94.73 94.47 52.07 34.05 60.40 43.27

Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.45 0 0.45 0 0.45
TF 97.73 97.7 99.32 92.90 64.85 55.36

BAE 97.73 97.7 55.35 45.14 68.28 57.38
SemAtt 97.73 97.7 93.55 36.17 74.53 60.24
dBERT(α) 0 0.45 0 0.45 0 0.45

TF 97.47 97.4 99.45 93.36 61.75 54.63
BAE 97.47 97.4 58.14 45.59 64.27 57.14

SemAtt 97.47 97.4 97.37 43.92 71.34 60.57

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.45 0 0.45 0 0.45
TF 89.56 89.23 96.5 96.15 68.27 52.61

BAE 89.56 89.23 74.95 74.82 76.13 57.42
SemAtt 89.56 89.23 99.11 91.94 75.41 58.01
dBERT(α) 0 0.45 0 0.45 0 0.45

TF 87.27 87.1 98.12 96.86 65.19 50.80
BAE 87.27 87.1 74.08 72.91 72.89 55.49

SemAtt 87.27 87.1 98.43 92.84 71.17 54.96

Table 1: Comparison of standard models and models fine-tuned with standard label smoothing techniques (LS)
against various attacks for in-domain data. We show clean accuracy, attack success rate and average confidence
on successful adversarial texts. For each dataset, the left column are the results for standard model, and the right
column are for LS models where α denotes the label smoothing factor (α=0: no LS). ↑ (↓) denotes higher (lower) is
better respectively. dBERT denotes the distilBERT model.

on the matched genre test-set in the OOD set-
ting presented in subsection 3.2 .

3.1 In-domain Setting

In the in-domain setting (iD), the pre-trained trans-
former models are fine-tuned on the train-set for
each task and evaluated on the corresponding test-
set. For each case, we report the clean accuracy, the
adversarial attack success rate (percentage of mis-
classified examples after an attack) and the average
confidence on successfully attacked examples (on
which the model makes a wrong prediction).5 Ta-
ble 1 shows the performance of BERT and dBERT,
with and without label-smoothing. We choose la-
bel smoothing factor α = 0.45 for standard label-
smoothed models in our experiments.

We see that label-smoothed models are more ro-
bust for every adversarial attack across different
datasets in terms of the attack success rate, which
is a standard metric in this area (Li et al., 2021;
Lee et al., 2022). Additionally, the higher confi-
dence of the standard models on the successfully
attacked examples indicates that label smoothing
helps mitigate overconfident mistakes in the adver-
sarial setting. Importantly, the clean accuracy re-
mains almost unchanged in all the cases. Moreover,
we observe that the models gain much more robust-
ness from LS under white-box attack, compared

5Details of each metric are presented in Appendix A.2.

to the black-box setting. We perform hyperparam-
eter sweeping for the label smoothing factor α to
investigate their impact to model accuracy and ad-
versarial robustness. Figure 1 shows that the attack
success rate gets lower as we increase the label
smooth factor when fine-tuning the model while
the test accuracy is comparable6. However, when
the label smoothing factor is larger than 0.45, there
is no further improvement on adversarial robust-
ness in terms of attack success rate. Automatic
search for an optimal label smoothing factor and
its theoretical analysis is important future work.

Figure 1: Adversarial success rate versus label smooth-
ing factors (on AG News and SST-2 with BAE attack.)

We also investigate the impact of adversarial la-
bel smoothing (ALS) and show that the adversarial
label smoothed methods also improves model’s ro-
bustness in Table 2.

6More results for different α values are in Appendix A.9
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SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.45 0 0.45 0 0.45
TF 89.56 88.5 96.5 96.5 68.27 41.22

BAE 89.56 88.5 74.95 74.87 76.13 44.93
SemAtt 89.56 88.5 99.11 91.53 75.41 44.97

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.45 0 0.45 0 0.45
TF 94.83 94.37 88.26 77.74 59.02 32.87

BAE 94.83 94.37 74.83 64.15 60.66 33.45
SemAtt 94.83 94.37 52.65 27.13 62.32 34.72

Table 2: Comparison of standard models versus mod-
els trained with ALS against various attacks on SNLI
and AG_news. ↑ (↓) denotes higher (lower) is better
respectively.

3.2 Out-of-Domain setting

We now evaluate the benefits of label smoothing
for robustness in the out-of-domain (OOD) setting,
where the pre-trained model is fine-tuned on a par-
ticular dataset and is then evaluated directly on a
different dataset, which has a matching label space.
Three examples of these that we evaluate on are
the Movie Reviews to SST-2 transfer, the SST-2 to
Yelp transfer, and the SNLI to MNLI transfer.

In Table 3, we again see that label-smoothing

MR→SST2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TF 90.71 91.06 90.9 90.93 69.47 58.41

BAE 90.71 91.06 62.83 63.1 75.2 62.6
SemAtt 90.71 91.06 82.68 76.07 67.64 57.9

dBERT(α) 0 0.45 0 0.45 0 0.45
TF 88.19 88.99 94.28 94.59 64.95 57.2

BAE 88.19 88.99 65.41 65.72 71.89 61.5
SemAtt 88.19 88.99 88.56 86.21 66.51 58.14

SNLI→MNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TF 73.4 72.1 94.82 92.79 58.04 46.43

BAE 73.4 72.1 82.56 80.72 63.00 49.45
SemAtt 73.4 72.1 99.73 98.75 60.32 47.35

dBERT(α) 0 0.45 0 0.45 0 0.45
TF 65.4 62.1 94.50 92.59 54.54 44.81

BAE 65.4 62.1 77.68 75.52 58.88 47.83
SemAtt 65.4 62.1 99.39 96.78 57.10 45.43

SST-2 → Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TF 92.5 92.4 99.57 98.27 60.80 54.28

BAE 92.5 92.4 63.68 60.71 64.27 55.66
SemAtt 92.5 92.4 95.80 68.17 68.37 57.45

dBERT(α) 0 0.45 0 0.45 0 0.45
TF 91.7 91.1 99.78 98.02 59.12 53.30

BAE 91.7 91.1 68.70 63.45 61.37 54.21
SemAtt 91.7 91.1 99.02 82.15 67.01 57.37

Table 3: Comparison of standard models and LS models
for various attacks on OOD data where α denotes the
label smoothing factor (α=0: no LS).

helps produce more robust models in the OOD set-
ting although with less gain compared to iD setting.
This is a challenging setting, as evidenced by the
significant performance drop in the clean accuracy
as compared to the in-domain setting. We also see
that the standard models make over-confident er-
rors on successfully attacked adversarial examples,
when compared to label-smoothed models.

3.3 Qualitative Results

In this section, we try to understand how the gener-
ated adversarial examples differ for label smoothed
and standard models. First we look at some qualita-
tive examples: in Table 4, we show some examples
(clean text) for which the different attack schemes
fails to craft an attack for the label smoothed model
but successfully attacks the standard model.

Victim Attack Text
SST2 BAE clean at once half-baked and overheated.
BERT adv at once warm and overheated .
MR TF clean no surprises .
dBERT adv no surprise .

Table 4: Examples for which an attack could be found
for the standard model but not for the label smoothed
model. The Victim column shows the dataset and the
pretrained model (dBERT denotes distilBERT).

We also performed automatic evaluation of the
quality of the adversarial examples for standard and
label smoothed models, adopting standard metrics
from previous studies (Jin et al., 2019; Li et al.,
2021). Ideally, we want the adversarial sentences to
be free of grammar errors, fluent, and semantically
similar to the clean text. This can be quantified
using metrics such as grammar errors, perplexity,
and similarity scores (compared to the clean text).
The reported scores for each metric are computed
over only the successful adversarial examples, for
each attack and model type.7

SST-2 Perplexity (↑) Similarity
Score (↓)

Grammar
Error (↑)

BERT (α) 0 0.45 0 0.45 0 0.45
TF 400.31 447.58 0.800 0.779 0.33 0.38

BAE 300.74 305.28 0.867 0.855 −0.05 −0.04

AG_News Perplexity (↑) Similarity
Score (↓)

Grammar
Error (↑)

BERT (α) 0 0.45 0 0.45 0 0.45
TF 342.02 355.87 0.782 0.772 1.37 1.40

BAE 169.37 170.73 0.851 0.845 0.97 1.00

Table 5: Evaluation of adversarial text examples. The
results in bold indicates worse adversarial attack quality.

7Additional details can be found in AppendixA.3.
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Table 5 shows that the quality of generated adver-
sarial examples on label smoothed models is worse
than those on standard models for different metrics,
suggesting that the adversarial sentences generated
by standard models are easier to perceive. This
further demonstrates that label smoothing makes it
harder to find adversarial vulnerabilities.

4 Conclusion

We presented an extensive empirical study to inves-
tigate the effect of label smoothing techniques on
adversarial robustness for various NLP tasks, for
various victim models and adversarial attacks. Our
results demonstrate that label smoothing imparts
implicit robustness to models, even under domain
shifts. This first work on the effects of LS for text
adversarial attacks, complemented with prior work
on LS and implicit calibration (Desai and Durrett,
2020; Dan and Roth, 2021), is an important step
towards developing robust, reliable models. In the
future, it would be interesting to explore the combi-
nation of label smoothing with other regularization
and adversarial training techniques to further en-
hance the adversarial robustness of NLP models.

5 Limitations

One limitation of our work is that we focus on ro-
bustness of pre-trained transformer language mod-
els against word-level adversarial attacks, which
is the most common setting in this area. Future
work could extend this empirical study to other
types of attacks (for example, character-level and
sentence-level attacks) and for diverse types of ar-
chitectures. Further, it will be very interesting to
theoretically understand how label smoothing pro-
vides (1) the implicit robustness to text adversarial
attacks and (2) mitigates over-confident predictions
on the adversarially attacked examples.

6 Ethics Statement

Adversarial examples present a severe risk to ma-
chine learning systems, especially when deployed
in real-world risk sensitive applications. With the
ubiquity of textual information in real-world appli-
cations, it is extremely important to defend against
adversarial examples and also to understand the ro-
bustness properties of commonly used techniques
like Label Smoothing. From a societal perspective,
by studying the effect of this popular regulariza-
tion strategy, this work empirically shows that it
helps robustness against adversarial examples in

in-domain and out-of-domain scenarios, for both
white-box and black-box attacks across diverse
tasks and models. From an ecological perspec-
tive, label smoothing does not incur any additional
computational cost over standard fine-tuning em-
phasizing its efficacy as a general-purpose tool to
improve calibration and robustness.
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A Appendix

• A.1 Pictorial Overview of the Adversarial At-
tack Framework

• A.2 Description of the Evaluation Metrics

• A.3 Details of Automatic Attack Evaluation

• A.4 Additional results on Movie Review
Dataset

• A.5 Additional white-box attack on label-
smoothed models

• A.6 Additional results for α = 0.1

• A.7 Additional results on ALBERT model

• A.8 Dataset overview and expertiment details

• A.9 Attack success rate versus label smooth-
ing factors for different attacks (TextFooler
and SemAttack)

• A.10 Average number of word change versus
Confidence

A.1 Overview of the Framework

Figure 2: Here we show an example generated by word-
level adversarial attack TextFooler (Jin et al., 2019) on
SST-2 data. By replacing excitement with its synonym
exhilaration, the text classification model changes its
prediction from Negative to Positive, which is incorrect.

A.2 Evaluation Metrics

The followings are the details of evaluation metrics
from previous works (Lee et al., 2022; Li et al.,
2021):
Clean accuracy = # of correctly predicted clean examples

# of clean examples

Attack Succ. Rate = # of successful adversarial examples
# of correctly predicted clean examples

where successful adversarial examples are derived
from correctly predicted examples
Adv Conf = sum of confidence of successful adv examples

# of successful adversarial examples
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A.3 Attack evaluation

We performed automatic evaluation of adversarial
attacks against standard models and label smoothed
models following previous studies (Jin et al., 2019;
Li et al., 2021). Following are the details of the
metrics we used in Table 5:
Perplexity evaluates the fluency of the input using
language models. We use GPT-2 (Radford et al.,
2019) to compute perplexity as in (Li et al., 2021) .
Similarity Score determines the similarity between
two sentences. We use Sentence Transformers
(Reimers and Gurevych, 2019) to compute sen-
tence embeddings and then calculate cosine sim-
ilarity score between the clean examples and the
corresponding adversarially modified examples.
Grammar Error The average grammar error in-
crements between clean examples and the corre-
sponding adversarially modified example.8

A.4 Additional results on Movie Review
Dataset

Here we provide results of movie review datasets
(Pang and Lee, 2005) under in-domain setting.

MR Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
TextFooler 84.4 83.7 92.54 92.0 67.93 58.33

BAE 84.4 83.7 62.09 61.17 74.33 62.4
SemAtt 84.4 83.7 83.18 76.34 68.8 58.18

distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 82.3 82.6 94.9 95.88 64.64 57.17

BAE 82.3 82.6 67.31 67.19 70.54 60.88
SemAtt 82.3 82.6 90.16 87.77 65.55 57.33

Table 6: Comparison of standard models and label
smoothed models against various attacks for Movie Re-
view dataset.

A.5 Additional results on an additional
white-box attack

In this section, we use another recent popular white-
box attack named Gradient-based Attack (Guo
et al., 2021). This is a gradient-based approach that
searches for a parameterized word-level adversar-
ial attack distribution, and then samples adversarial
examples from the distribution. We run this attack
on standard and label smoothed BERT models and
the results are listed below.

We observe that the label smoothing also help
with adversarial robustness against this attack

8we use https://pypi.org/project/
language-tool-python/ to compute grammar error.

Grad
Attack

Clean
Acc (↑)

Attack Succ
Rate(↓)

Adv
Conf (↓)

BERT (α) 0 0.45 0 0.45 0 0.45
SST-2 91.97 92.09 98.38 82.94 98.75 76.35

AG_news 94.9 94.8 98.63 68.88 95.35 63.25
Yelp 95.3 95.5 99.90 87.02 99.24 76.52
SNLI 89.7 90.2 96.1 86.36 59.99 37.28

SST2 → Yelp 88.6 88.4 99.89 94.84 98.37 77.52

Table 7: Comparison of standard models and label
smoothed BERT models against gradient-based attack
across different datasets.

across four datasets under iD setting. The results
also show that, similar to SemAttack, the grad-
based attack benefits more from label smoothing
compared to black-box attacks like TextFooler and
BAE.

A.6 Additional results of α = 0.1

Table 8 and 9 are the additional results to show
when label smoothing α = 0.1, how the adversarial
robustness of fine-tuned language models changes
under iD and OOD scenarios.

Table 10 are the additional results for adversarial
label smoothing α = 0.1.

A.7 Additional results on ALBERT

In this section, we include experiment results for
standard ALBERT and label smoothed ALBERT
in Table 11. We observe that the label smoothing
technique also improves adversarial robustness of
ALBERT model across different datasets.

SST-2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.45 0 0.45 0 0.45
TF 92.66 92.78 94.68 90.73 76.29 65.63

BAE 92.66 92.78 60.15 65.02 83.67 70.17

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.45 0 0.45 0 0.45
TF 94.9 94.5 77.66 56.72 58.78 42.59

BAE 94.9 94.5 65.54 49.74 59.98 43.79

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

α 0 0.45 0 0.45 0 0.45
TF 90.1 90.3 94.89 93.69 69.66 53.67

BAE 90.1 90.3 76.91 75.86 75.05 56.42

Table 11: Comparison of standard models and label
smoothed models against TextFooler and BAE attacks
for ALBERT model.

664

https://pypi.org/project/language-tool-python/
https://pypi.org/project/language-tool-python/


SST-2 Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TF 91.97 92.2 96.38 94.4 78.43 74.39

BAE 91.97 92.2 57.11 55.22 86.92 82.29
distilBERT(α) 0 0.1 0 0.1 0 0.1

TF 89.56 89.68 96.29 95.14 76.28 70.77
BAE 89.56 89.68 59.28 58.44 83.55 78.16

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TF 94.83 95.0 88.26 78.39 59.02 55.17

BAE 94.83 95.0 74.83 65.58 60.66 56.24
distilBERT(α) 0 0.1 0 0.1 0 0.1

TF 94.73 94.53 90.11 81.66 57.6 53.43
BAE 94.73 94.53 74.83 67.7 60.01 54.64

Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TF 97.73 97.77 99.32 97.99 64.85 63.18

BAE 97.73 97.77 55.35 52.88 68.28 66.28
distilBERT(α) 0 0.1 0 0.1 0 0.1

TF 97.47 97.5 99.45 98.91 61.75 60.35
BAE 97.47 97.5 58.14 51.86 64.27 63.04

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TF 89.56 88.87 96.5 96.74 68.83 64.96

BAE 89.56 88.87 74.95 75.1 76.13 72.65
distilBERT(α) 0 0.1 0 0.1 0 0.1

TF 87.27 87.03 98.12 96.94 65.19 62.41
BAE 87.27 87.03 74.08 73.82 72.89 69.57

Table 8: Comparison of standard models and label
smoothed models against various attacks for in-domain
data where α denotes the label smoothing factor, 0 in-
dicating no LS. 9 ↑ (↓) denotes higher (lower) is better
respectively.

SNLI → MNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 73.4 71.9 94.82 94.85 58.04 48.56

BAE 73.4 71.9 82.56 77.19 63 49.3
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 65.4 65.2 94.5 94.17 54.54 52.63

BAE 65.4 65.2 77.68 75.15 58.88 56.16

SST-2 → Yelp Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT (α) 0 0.1 0 0.1 0 0.1
TextFooler 92.5 92.0 99.57 99.13 60.8 58.13

BAE 92.5 92.0 63.68 63.37 64.27 60.63
distilBERT(α) 0 0.45 0 0.45 0 0.45
TextFooler 91.7 91.4 99.78 99.34 59.12 56.42

BAE 91.7 91.4 68.7 67.07 61.37 57.73

Table 9: Comparison of standard models versus label
smoothed models against various attacks for OOD data
where α denotes the label smoothing factor (α=0: no
LS). ↑ (↓) denotes higher (lower) is better respectively.

SNLI Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.1 0 0.1 0 0.1
TF 89.56 90.4 96.5 95.02 68.27 67.54

BAE 89.56 90.4 74.95 75.96 76.13 73.83

AG_news Clean
Acc (↑)

Attack Success
Rate (↓)

Adv
Conf (↓)

BERT(α) 0 0.1 0 0.1 0 0.1
TF 94.83 94.6 88.26 85.27 59.02 53.17

BAE 94.83 94.6 74.83 69.1 60.66 54.99

Table 10: Comparison of standard models versus mod-
els trained with ALS against various attacks on SNLI
and AG_news. ↑ (↓) denotes higher (lower) is better
respectively.

Dataset No. of classes Train/Test
size

Avg.
Length

MR 2 8530/1066 18.64
SST-2 2 6.7e4/872 17.4
Yelp 2 5.6e5/3.8e4 132.74

AG_news 4 1.2e5 /7600 38.68
SNLI 3 5.5e5 /1e4 22.01
MNLI 3 3.9e5/ 9815 28.96

Table 12: Summary of datasets

A.8 Dataset Overview and Experiments
Details

We use Huggingface (Wolf et al., 2020) to load the
dataset and to fine-tune the pre-trained models. All
models are fine-tuned for 3 epochs using AdamW
optimizer (Loshchilov and Hutter, 2017) and the
learning rate starts from 5e− 6. The training and
attacking are run on an NVIDIA Quadro RTX 6000
GPU (24GB). For both BAE and Textfooler attack,
we use the implementation in TextAttack (Morris
et al., 2020) with the default hyper-parameters (Ex-
cept for AG_news, we relax the similarity threshld
from 0.93 to 0.7 when using BAE attack). The Se-
mAttack is implemented by (Wang et al., 2022)
while the generating contextualized embedding
space is modified from (Reif et al., 2019). The re-
ported numbers are the average performance over 3
random runs of the experiment for iD setting, and
the standard deviation is less than 2%.

A.9 Attack success rate versus label
smoothing factors

As mentioned in Section 3.1, we plot the attack suc-
cess rate of BAE attack versus the label smoothing
factors. Here, we plot the results for the TextFooler
and SemAttack in Figure 3 and 4, and observe the
same tendency as we discussed above.

We also plot the attack success rate of
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Figure 3: Adversarial success rate versus label smooth-
ing factors for the TextFooler attack (on AG News and
SST-2.)

Figure 4: Adversarial success rate versus label smooth-
ing factors for the SemAttack (on AG News and SST-2.)

BAE/TextFooler attack versus the adversarial la-
bel smoothing factors in Figure 5 and 6.

Figure 5: Adversarial success rate versus adversarial
label smoothing factors for the BAE attack (on AG
News).

We additionally plot the clean accuracy versus
the label smoothing factor in Figure 7, and find out
that there is not much drop in clean accuracy with
increasing the label smoothing factors.

A.10 Average number of word change versus
Confidence

Word change rate is defined as the ratio between
the number of word replaced after attack and the

Figure 6: Adversarial success rate versus adversarial
smoothing factors for the TextFooler attack (on AG
News).

Figure 7: Clean accuracy versus label smoothing factors
(on AG News and SST-2.)

total number of words in the sentence. Here we plot
the bucket-wise word change ratio of adversarial
attack versus confidence, and observe that the word
change rate for high-confident examples are higher
for label smoothed models compared to standard
models in most cases. This indicates that it is more
difficult to attack label smoothed text classification
models. Also note that there is the word change
rate is zero because there is no clean texts fall into
those two bins.

Figure 8: Average word change ratio versus confidence
for in-domain inputs (No. of buckets: 10 and the number
of instances in first 5 buckets [0-0.5] are 0)

Moreover, we bucket the examples based on
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Figure 9: Average word change ratio versus confidence
for out-of-domain inputs (No. of buckets: 10 and the
number of instances in first 5 buckets [0-0.5] are 0)

Figure 10: Adversarial success rate versus confidence
for in-domain (Yelp) inputs. (Number of buckets: 10
and the number of instances in first 5 buckets [0-0.5]
are 0).

the confidence scores, and plot the bucket-wise
attack success rate (of the BAE attack on the Yelp
dataset) versus confidence in Figure 10 and Figure
11. We observe that the label smoothing technique
improves the adversarial robustness for high confi-
dence score samples significantly. In future work,
we plan to investigate the variations of robustness in
label-smoothed models as a function of the model
size.

Figure 11: Adversarial success rate versus confidence
for OOD inputs in the SST-2 → Yelp transfer setting.
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