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Abstract

Addressee recognition aims to identify ad-
dressees in multi-party conversations. While
state-of-the-art addressee recognition models
have achieved promising performance, they
still suffer from the issue of robustness when
applied in real-world scenes. When exposed
to a noisy environment, these models re-
gard the noise as input and identify the ad-
dressee in a pre-given addressee closed set,
while the addressees of the noise do not be-
long to this closed set, thus leading to the
wrong identification of addressee. To this
end, we propose a Robust Addressee Recog-
nition Model (RARM), which discretizes the
addressees into a codebook, making it able to
represent addressees in the noise and robust
in a noisy environment. Experimental results
show that the introduction of the addressee
codebook helps to represent the addressees in
the noise and highly improves the robustness
of addressee recognition even if the input is
noise.

1 Introduction

Different from two-party conversation, multi-
party conversation has more than two interlocu-
tors (Traum, 2003; Uthus and Aha, 2013; Meng
et al., 2018; Gu et al., 2021). Beyond response
generation or selection (Hu et al., 2019; Liu et al.,
2019; Gu et al., 2020; Wang et al., 2020b), there
is also a need for recognizing the addressee of
the multi-party conversation (Ouchi and Tsuboi,
2016; Zhang et al., 2018; Le et al., 2019).

Addressee recognition aims to identify the in-
terlocutors indicate to whom they are speaking.
Ouchi and Tsuboi (2016) formalize the task as
given a context to predict an addressee, the sys-
tem is required to select an addressee appearing
in the previous context. Meng et al. (2018) real-
ize the importance of speaker modeling and pro-
pose speaker classification as a surrogate task for
general speaker modeling. Zhang et al. (2018) use

User 1 I have a problem with videos.. frames so slow ...

User 2 Just Divx videos off the net i assume ?  ... User 1

User 3 I fear that i can't identify because i forgot ... User 2

User 2 There're admins here that can help you ... User 3

Noise What is your favorite food ? User  
1?, 2?, 3?
×

User Utterance Add.

What is your favorite food ?

Figure 1: Example of multi-party conversation in a
noisy environment.

a novel dialogue encoder to update speaker em-
beddings in a role-sensitive way. Le et al. (2019)
not only focuses on predicting the addressee of the
last utterance but also aims to predict all the miss-
ing addressees. Gu et al. (2021) propose a unified
multi-party pretrain model and design five self-
supervised tasks based on the interactions among
utterances and interlocutors.

These works suppose that the multi-party con-
versation happens in a quiet environment, which
can lead to serious system failure when exposed
to a noisy environment. Many other works re-
cently focus on robust learning in practice (Wang
et al., 2020a; Xue et al., 2020; Liu et al., 2021;
Wang et al., 2022). However, these robust learning
works mainly focus on two-party conversations
and introduce noises by replacing, inserting, swap-
ping, and deleting characters at the word level
or words at the sentence level. The main differ-
ence between two-party conversation and multi-
party conversation is that two-party conversation
mainly focuses on perturbations at the seman-
tic level, while beyond semantic perturbation, the
multi-party conversation should consider the per-
turbations that are not intended for the current con-
versation, even if the noise is semantically com-
plete. As shown in Figure 1, the noise is seman-
tically complete but doesn’t belong to the current
conversation.
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Since the number of addressees in a noisy en-
vironment is unknowable, giving a fixed length of
the addressee matrix is not feasible. On account
of the above issues, we propose the Robust Ad-
dressee Recognition Model (RARM), which dis-
cretizes the addressees into a codebook and repre-
sents addressees by addressee codes. We evaluate
our method on two types of addressee noise: in-
domain addressee noise (ID-AN) and out-domain
addressee noise (OD-AN). The ID-AN is the noise
that has the same domain as the current multi-
party conversation, and OD-AN is the noise that
doesn’t have.

The main contributions are as follows: (1) We
formalize the task of Robust Addressee Recogni-
tion (RAR) task in multi-party conversation and
propose the Robust Addressee Recognition Model
(RARM), which discretizes the addressees into a
codebook, making addressee recognition robust
in a noisy environment. (2) We conduct exper-
iments on two types of noise: in-domain and
out-domain noise, experimental results show that
the addressee codebook helps to represent the ad-
dressees in noise effectively and highly improves
the robustness of addressee recognition even if the
input is in-domain or out-domain noise.

2 Methods

2.1 Task Definition

We follow Ouchi and Tsuboi (2016) to define the
addressee recognition. Given a multi-party con-
versation S, the task is to select an addressee for
the last utterance q in the candidate set A.

GIV EN : S = (q, C) (1)

PREDICT : â ∈ A (2)

where C is context. When considering noise N ,
the formulation of robust addressee recognition is
updated as:

GIV EN : S = (q, C) (3)

PREDICT : â ∈ {A,N} (4)

2.2 Robust Addressee Recognition Model

One straightforward way to represent the noise is
to add an extra vector in the addressee matrix,
while it is too rough to represent all addressees in
the noise into the same vector. In this section, we
propose to utilize VQ-VAE (van den Oord et al.,
2017) to discretize addressees into a codebook.

Encoder
q, C

Z = {z1, z2, ..., zn}

Addressee 

Addressee  
Discrete loss

p(Z|h)

h

Addressee Codebook

e1 e3 eKe2

...

...

Figure 2: The architecture of the proposed method.

There are three parts in the RARM: an encoder
for query and context representation, a discrete
addressee codebook for addressee representation,
and a classifier for addressee classification. The
model architecture is illustrated in Figure 2.

2.3 Encoder
We use Transformer (Vaswani et al., 2017) with 12
layers as Encoder, and the input is the concatena-
tion of query q and context C with special token
‘[SEP]’. The representation of the input sequence
is defined as:

h = Transformer(q, C) (5)

where h is the hidden states at the position of spe-
cial token ‘[CLS]’.

2.4 Discrete Addressee Codebook
Addressee codebook is an embedding table e ∈
RK∗d where K is discrete latent variables size. We
follow van den Oord et al. (2017) to discretize the
addressee into the codebook as follows:

p(z1|h) =




1 if k = argmin

j
||h− ej ||2

0 otherwise
(6)

thus h is mapped onto the embedding ek as:

z1 = ek, where k = argmin
j

||h− ej ||2 (7)

In order to augment the representation of ad-
dresses, we discretize an addressee into a code set
Z instead of one code. The difference between h
and z1 is fed back to the discrete process and re-
peats the steps above n times as follows:

h1 = h− z1 (8)

z2 = Discrete(h1) (9)
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Types Hu et al. (2019)
Ouchi and Tsuboi (2016)

length-5 length-10 length-15

ID-AN 93517 / 1500 / 1500 138336 / 8571 / 9800 148567 / 9292 / 10691 146943 / 9244 / 10615

OD-AN 93517 / 1500 / 1500 138336 / 8571 / 9800 148567 / 9292 / 10691 146943 / 9244 / 10615

Overall 311725 / 5000 / 5000 461120 / 28570 / 32668 495226 / 30974 / 35638 489812 / 30815 / 35385

Table 1: The statistics of the constructed ID-AN, OD-AN, and Overall data in the dataset.

Models Types Hu et al. (2019) Ouchi and Tsuboi (2016)
length-5 length-10 length-15

BERT
ID-AN 59.3 51.3 46.6 46.2
OD-AN 81.7 74.5 70.1 68.9
Overall 80.4 71.7 67.3 66.8

MPC-BERT
ID-AN 64.6 56.1 53.3 51.8
OD-AN 84.4 77.4 74.8 73.5
Overall 83.8 75.1 72.6 70.4

RARM w/o codebook
ID-AN 61.3 53.8 50.4 48.6
OD-AN 82.6 75.8 72.7 70.3
Overall 81.5 72.8 70.1 68.4

RARM w/o AD loss
ID-AN 65.9 57.7 54.5 52.9
OD-AN 85.1 79.4 75.8 74.1
Overall 84.5 76.3 72.7 71.1

RARM
ID-AN 67.7 58.3 55.2 52.6
OD-AN 86.4 79.2 77.6 74.7
Overall 85.1 76.9 73.8 71.5

Table 2: Automatic evaluation results on the dataset. ID-AN/OD-AN means performances only on ID-AN/OD-AN
data. Overall means overall performance on all clean, ID-AN, and OD-AN data.

where Discrete means the discrete process in
equation (6) and (7). Thus the final representation
of an addressee is computed as:

Z = {z1, z2, ..., zn} (10)

we set n = 3 in all experiments. Thus a resulting
addressee is selected as follows:

Pa = Softmax (W ([z1 : z2 : z3]) + b) (11)

â = Argmax
a∈{A,N}

(Pa) (12)

2.5 Training
The RARM is trained with two losses as follows:

Classification loss with VQ-VAE aims to train
the codebook and recognize addressees with the
code. We follow (van den Oord et al., 2017) to
train our model with loss defined as follows:

lossvq = −logp(y|Z) + ||Z − sg[h]||22
+β||h− sg[Z]||22

(13)

where sg stands for the stopgradient operator that
has zero partial derivatives. The first term is clas-
sification loss. The middle term is the codebook

loss that optimizes the codebook embedding. En-
coder is optimized by the first and the last term,
and we set β = 0.25 in all experiments.

Addressee Discrete loss is utilized to discretize
addressee into the codebook. Zhao et al. (2017)
has proved the effect of bag-of-words (BOW) loss
on discrete latent variables, we define the ad-
dressee discrete loss as follows:

lossdiscrete = −
yq∑

i=0

logp(yi|Z) (14)

where yq is the query words set.

3 Experiment

3.1 Experimental Setups and Dataset
We evaluated our proposed methods on Ubuntu
IRC benchmarks (Le et al., 2019) and (Ouchi and
Tsuboi, 2016). We define two types of addressee
noise: in-domain addressee noise (ID-AN) and
out-domain addressee noise (OD-AN). The ID-
AN is the noise that has the same domain as the
current multi-party conversation, and OD-AN is
the noise that doesn’t have.
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Figure 3: (a): Visualization of the word embeddings that are close to the codes with 3D T-SNE. (b): Visualization
of the sampled embeddings that are close to the codes with 2D T-SNE.

For the construction of ID-AN, we replace the
query by sampling a query in another conversa-
tion in the same Ubuntu benchmark. As for OD-
AN, we replace the query by sampling a query in
the DailyDialog dataset (Li et al., 2017), which is
a high-quality chit-chat dialog dataset. The statis-
tics of the constructed ID-AN, OD-AN, and Over-
all data in the dataset are shown in Table 1. We
follow the splitting strategy of Gu et al. (2021)
and set the clean / ID-AN / OD-AN at the ratio
of 40%/30%/30% in train/dev/test set.

We set codebook size K to 200 and the dimen-
sion of embedding vector d to 768. The weight
of the addressee discrete loss is 0.02. The check-
point with the lowest loss on the validation set is
selected for testing.

We compare RARM with baselines: (1) BERT
is a pretrain bidirectional transformers classifica-
tion model with self-attention (Devlin et al., 2019).
(2) MPC-BERT is a pretrained language model
for multi-party conversation understanding, which
achieves SOTA performance in multi-party ad-
dressee recognition (Gu et al., 2021).

3.2 Automatic Evaluation

We follow Ouchi and Tsuboi (2016) to evaluate
the task with accuracy, three types of results are
listed in Table 2, ID-AN/OD-AN means perfor-
mances only on ID-AN/OD-AN data, and Over-
all means overall performance on all data with ID-
AN/OD-AN.

As shown in the table, our proposed RARM
achieves the best performance compared with
baselines. Though MPC-BERT achieves SOTA in
the addressee recognition task (Gu et al., 2021),
it fails to keep the robustness in in-domain and
out-domain noisy data. We observe that the per-
formance of ID-AN is much worse than OD-AN,
that’s because in-domain noise is closer to the con-

versation compared to out-domain noise, it is hard
to distinguish noise in the same domain.

Ablation study results are listed in Table 2. We
find that the performance decreases significantly
without codebook, demonstrating the importance
of discrete of the addressee codebook. The per-
formance drops without addressee discrete loss,
mainly because BOW loss helps to represent dis-
crete latent variables.

3.3 Analysis on Addressee Codebook

We sample 10 codes for visualization in Figure 3.
We calculate the word embeddings that are close
to the sampled codes by cosine similarity and vi-
sualize them in 3(a). We find that different codes
represent different semantic clusters. To further
study the meaning of each code, we sample and vi-
sualize five embeddings for each code in 3(b). The
figure shows that code 34 (dots in blue) is close to
‘ubuntu’, ‘linux’, and ‘microsoft’, which represent
the words related to the operating system. Simi-
larly, code 90 (dots in purple) is close to ‘CPU’,
‘disks’, and ‘memory’, which are related to disk
storage capacity.

3.4 Analysis on Addressee Representation

We randomly sample addressees in clean/ID-
AN/OD-AN data and visualize corresponding
codes in Figure 4. We visualize the word embed-
dings that are close to the addressee codes in clean
and OD-AN data in Figure 4(a). Since we conduct
experiments on Ubuntu datasets, the addressee
codes in clean data are discretized to Ubuntu-
related words, e.g., ‘bug’, ‘upgrade’, and ‘pack-
age’, while the correlation of addressee codes in
OD-AN with Ubuntu is small, e.g., ‘sunny’ and
‘seafood’. We find that it’s easy to distinguish
addressees in multi-party conversations from out-
domain noise since they don’t share the same
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Figure 4: (a)Visualization of sampled OD-AN codes and addressee codes with 2D T-SNE. (b)Visualization of
sampled ID-AN codes with 2D T-SNE. (c)Visualization of sampled addressee codes with 2D T-SNE.

codes.
We visualize the word embeddings that are

close to the addressee codes in clean and ID-AN
data in Figure 4(b) and 4(c). The figures show that
clean and ID-AN addressees share the same codes,
e.g., code 7, because the ID-AN is also sampled
from the Ubuntu IRC datasets, that is, in the same
domain. Though it is difficult to distinguish the
addressee in clean and ID-AN data at the code se-
mantic level, we observe that the cosine similarity
between codes in clean data is smaller than codes
in ID-AN data. Code 22 and code 133 in 4(b)
mainly represent ‘version’ and ‘upgrade’, we can
easily infer that the addressee mainly discusses the
problem of version upgrade. While code 34 and
code 189 represent operating system and disk stor-
age capacity respectively in 4(c), the correlation
between code 34 and code 189 is relatively small.

4 Conclusion

In this paper, to improve the robustness of multi-
party addressee recognition, we formalize the Ro-
bust Addressee Recognition (RAR) task and pro-
pose the Robust Addressee Recognition Model
(RARM), which discretizes the addressees into a
codebook, making it able to represent addressees
in noise. We evaluate our method in two types of
addressee noise: ID-AN and OD-AN. Experimen-
tal results demonstrate that the addressee code-
book helps to represent the addressees in noise
effectively and highly improves the robustness
of addressee recognition even if the input is in-
domain or out-domain noise.

5 Limitations

The main limitation is that the in-domain noise is
hard to recognize in noisy multi-party conversa-
tions. Though our proposed RARM achieves the

best performance compared to all baselines, we
find that if the content of the noise is close to the
multi-party conversation’s content, the average ac-
curacy of all methods is not high, how to improve
the performance on these hard samples is worthy
of further study.
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