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Abstract

Semantic Textual Similarity (STS) measures
the degree to which the underlying semantics
of paired sentences are equivalent. State-of-the-
art methods for STS task use language models
to encode sentences into embeddings. However,
these embeddings are limited in representing
semantics because they mix all the semantic
information together in fixed-length vectors,
which are difficult to recover and lack explain-
ability. This paper presents a token-level match-
ing inference algorithm, which can be applied
on top of any language model to improve its
performance on STS task. Our method calcu-
lates pairwise token-level similarity and token
matching scores, and then aggregates them with
pretrained token weights to produce sentence
similarity. Experimental results on seven STS
datasets show that our method improves the per-
formance of almost all language models, with
up to 12.7% gain in Spearman’s correlation.
We also demonstrate that our method is highly
explainable and computationally efficient.

1 Introduction

Measuring the similarity between two sentences
is an important task in many natural language pro-
cessing (NLP) applications. This makes Semantic
Textual Similarity (STS) a crucial preliminary step
in various domains, such as information retrieval
(Wang et al., 2020), machine translation (Castillo
and Estrella, 2012), plagiarism detection (Foltynek
etal., 2019), semantic search (Mangold, 2007), and
conversational systems (Santos et al., 2020).
Large pretrained language models (Devlin et al.,
2018; Liu et al., 2019) have achieved the state-
of-the-art performance on STS task (Reimers and
Gurevych, 2019; Gao et al., 2021; Chuang et al.,
2022). These approaches typically use language
models to encode input sentences into embeddings
and then calculate STS using similarity metrics
such as the cosine function. However, sentence em-
beddings have limitations in representing sentences,

as all the information of the sentence is aggregated
and mixed together in the fixed-length embedding.
This problem is especially pronounced for the STS
task, which requires fine-grained, low-level seman-
tic understanding and comparison (Majumder et al.,
2016). As a result, methods based on sentence em-
beddings often have difficulty being well-trained
and lack explainability for their predicted results.

Going beyond sentence embeddings, we propose
a token-level matching algorithm for STS. Our al-
gorithm works in the inference stage, so it can be
applied on top of any trained language model to im-
prove its performance. Specifically, given a trained
language model (also called base model), we use
it to generate token embeddings for the two input
sentences and calculate their pairwise token simi-
larity. We then design a novel scoring function to
calculate the matching score for each token. The
sentence similarity score is calculated by averaging
all the token matching scores with token weights,
which are learned unsupervisedly from a large cor-
pus. Our method captures fine-grained, token-level
information, which is more indicative, robust, and
explainable than sentence embeddings.

We conducted experiments on seven standard
STS datasets using six language models and their
variants as base models. Our method is able to
improve the performance of almost all existing lan-
guage models, especially those “poor” ones (up
to 12.7% improvement in Spearman’s correlation).
Specifically, our model improves SimCSE by 0.8%
to 2.2%, and improves ESimCSE by 0.6% to 1.2%,
which is the current state-of-the-art model on the
STS task. We also demonstrated the explainabil-
ity of our model by identifying the semantically
similar parts between two input sentences.

2 Related Work

Existing work on STS can be broadly divided
into two categories: lexicon-based and semantic-
based. Lexicon-based approaches (Richardson and
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Smeaton, 1995; Niwattanakul et al., 2013; Opitz
et al., 2021) calculate the correlation between the
character streams of two sentences being compared,
which can be applied at the level of characters or
words. Semantic-based approaches can be further
divided into three categories: word-based meth-
ods (Wang et al., 2016), which treat a sentence as
a list of words and compare the correlations be-
tween words; structure-based methods, which use
language tools such as grammar (Lee et al., 2014),
part-of-speech (Batanovi¢ and Boji¢, 2015), and
word order (Li et al., 2004) to process sentences and
compare their structure; and vector-based methods
(Reimers and Gurevych, 2019; Liu et al., 2021; Gao
etal., 2021; Wu et al., 2021; Chuang et al., 2022),
which calculate sentence embeddings that describe
each sentence as a vector and have achieved the
state-of-the-art performance on STS.

Our method is conceptually similar to BERT-
Score (Zhang et al., 2019), a token-level evalua-
tion metric for text generation. However, there are
two significant differences between these two ap-
proaches: (1) BERTScore is an evaluation metric,
while our method is an algorithm for calculating
STS; (2) The key designs for token matching score
and token weights are also different.

3 The Proposed Method

Given a pair of two sentences s = (t1,t2, - ,t|q|)
and 5 = (1,19, , f|§|) where ¢; (¢;) is the i-th to-
ken in sentence s (), our goal is to learn a function
f(s,5) € R that calculates the semantic similarity
between s and 5.

Token-Level Similarity Matrix We can calculate
token embeddings for s and $ using any language
model, including pretrained language models (De-
vlin et al., 2018; Liu et al., 2019), or language
models specifically finetuned for the STS task (Li
et al., 2020; Gao et al., 2021; Chuang et al., 2022).
Given sentence s and s, the language model gen-
erates the token embedding matrix X € Rls/*d
and X € R|§|Xd, where each row corresponds to
a d-dimension token embedding. The token-level
similarity matrix for s and 5 is then calculated as
S = XX, in which the entry S;; indicates the
similarity between token ¢; and ¢ e

Token Matching Score The token matching score
measures the likelihood that a given token in one
sentence can be matched to a token in the other sen-
tence. This score takes into account two aspects:

(1) significance. Similar to BERTScore (Zhang
et al., 2019), we match a token to its most similar
token in the other sentence. For example, the sig-
nificance score of ¢; € s is sig(t;) = max; c;Sy;.
(2) uniqueness. It is important to note that a high
score for sig(t;) does not necessarily mean that ¢;
can be matched to a certain token in S, but rather
that S;; is high for all t; € 3. To measure how
unique sig(t;) is, we define the uniqueness score
of t; as uni(t;) = max; s Sij —2nd-max; ;Sij,
i.e., the difference between the maximum and the
second maximum value of row S;.. We provide an
ablation study on the two parts in our experiments.

The token matching score is defined as the sum
of the above two scores:

S(ti) = sig(t;) + uni(t;)

=2- maX£j€§Sij — 2nd—maxlgj eész‘j.

ey

Similarly, for {; € §, we have S({;) = 2 -
maxy;esS;j — 2nd-maxy,esS;;.

Token Weighting Tokens typically have differ-
ent levels of semantic importance. Previous work
(Zhang et al., 2019) uses inverse document fre-
quency (IDF) as token weights, as rare words can
be more indicative than common words. However,
in many cases, high-frequency words can be seman-
tically important (e.g., “not”) while low-frequency
words may be semantically unimportant (e.g., spe-
cific numbers). To address the mismatch between
token importance and token frequency, we propose
learning token weights from plain texts.

Specifically, we choose unsupervised SIimCSE
(Gaoetal., 2021) as the training model, which takes
an input sentence and predicts itself in a contrastive
objective with dropout used as noise. During the
training stage of SimCSE, instead of using the last-
layer embedding of CLS token as the sentence em-
bedding, we assign a trainable weight parameter w;
for each token ¢ in the vocabulary and calculate the
weighted average ) . w;t; as the sentence em-
bedding for s, where t; is the last-layer embedding
of token ¢ € s. In this way, the token weights w
can be trained together with the model parameters
of SimCSE on a large unsupervised corpus, which
has been shown to be more semantically precise
than frequency-based token weights.

The final STS score of the input sentences (s, $)
is the weighted average of all token scores:

’ 2 Ztﬁs Wy, 2 Zfieé wy,

o)
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Model STS12  STS13  STS14  STSI5  STS16  STS-B  SICK-R Avg. gain
Sentence-BER Ty 67.6/70.3 70.0/77.4 67.4/745 75.8/80.4 69.8/76.0 73.1/782 704/738  +52
Sentence-BERT}yge 71.1/73.7 70.1/78.1 702/763 77.9/82.4 73.8/79.2 772/81.1 71.4/755  +4.9
ConSERT e 65.9/65.7 73.6/81.6 659/72.7 75.5/81.4 74.0/80.3 73.0/78.0 659/68.2  +4.9
ConSER Ty 69.9/71.6 82.1/85.6 71.4/762 82.1/84.2 77.0/80.8 76.9/81.5 71.1/71.7  +3.0
Mirror-BER T e 59.7/63.7 59.3/80.0 53.4/71.1 688/79.9 62.5/78.4 57.9/761 67.7/69.3 +12.7
Mirror-RoBERTape ~ 65.3/67.8 80.5/81.8 72.0/73.7 79.7/80.9 77.4/79.1 77.6/79.7 70.0/70.5  +1.6
SimCSE-BERT g 68.4/67.4 824/84.9 744/76.7 80.9/83.3 78.6/82.4 769/825 722/723  +22
SimCSE-BERT urge 70.9/70.8 84.2/86.8 76.4/79.1 84.5/85.9 79.8/83.4 79.3/844 73.9/728  +2.0
SimCSE-RoBERTan. ~ 70.2/71.1 81.8/82.5 73.2/74.8 81.4/82.2 80.7/81.7 80.2/82.0 68.6/69.6  +1.1
SimCSE-ROBERTang ~ 72.9/73.5 84.0/84.8 75.6/76.8 84.8/85.2 81.8/82.5 82.0/82.9 71.3/720  +08
ESimCSE-BER Ty 73.4/699 833/85.7 77.3/77.8 82.7/842 73.8/82.4 802/82.9 723/728  +1.1
ESimCSE-BERTjee  73.2/72.6 85.4/86.8 77.7/79.5 84.3/85.5 78.9/822 80.7/84.0 74.9/73.1  +12
ESimCSE-RoBERTap 69.9/71.2 82.5/83.0 74.7/76.0 83.2/83.7 80.3/81.6 81.1/82.7 70.6/71.5  +1.1
ESimCSE-RoBERTay, 73.2/73.8 84.9/85.4 769/77.8 84.9/85.4 81.2/81.9 82.8/83.4 723/72.9  +0.6
DiffCSE-BERTpase 72.3/66.5 84.4/837 76.5/755 83.9/83.0 80.5/80.6 80.6/80.7 71.2/700  -13
DiffCSE-RoBERTay.. ~ 70.1/70.9 83.4/83.1 75.5/76.0 82.8/82.6 82.1/82.8 82.4/83.6 71.2/72.2  +0.5

Table 1: Spearman’s correlation results (in %) on seven STS datasets. The numbers before “/” are the results of the
original models, and the numbers after “/” are the results of applying our method on top of the original model. The

higher number is highlighted.

4 Experiments

4.1 Evaluation Setup

We evaluate our method on seven STS datasets:
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS Benchmark (Cer et al., 2017),
and SICK-Relatedness (Marelli et al., 2014). Each
dataset consists of sentence pairs and their cor-
responding ground-truth similarity scores. We
use Spearman’s correlation to evaluate the pre-
dicted results of our method and all baseline meth-
ods on the test set. Baseline methods include
Sentence-BERT (Reimers and Gurevych, 2019),
ConSERT (Yan et al., 2021), Mirror-BERT (Liu
et al., 2021), SimCSE (Gao et al., 2021), ESim-
CSE (Wu et al., 2021), and DiffCSE (Chuang et al.,
2022). We use the pretrained models released by
the authors as our base model, then compare the
performance of our method with them, as shown
in Table 2. The Sentence-BERT and ConSERT
models were downloaded from https://github.
com/yym6472/ConSERT, while the other pretrained
models can be directly loaded by their names using
HuggingFace API. We use the last hidden layer
representation of the [CLS] token as the sentence
embedding, because it performs much better than
the representation after the pooling layer in almost
all cases.

4.2 Main Result

Table 1 shows the Spearman’s correlation results on
the seven STS datasets. In each entry, the number

Model Name

Sentence-BERTp,se
Sentence-BERTge

sup-sbert-base
sup-sbert-large

ConSERThase unsup-consert-base

ConSERT age unsup-consert-large

Mirror-BER Ty e cambridgeltl/mirror-bert-base-
uncased-sentence

Mirror-BER Tiuge cambridgeltl/mirror-bert-large-

uncased-sentence
princeton-nlp/unsup-simcse-bert-
base-uncased
princeton-nlp/unsup-simecse-bert-
large-uncased
princeton-nlp/unsup-simcse-
roberta-base
princeton-nlp/unsup-simcse-
roberta-large
ffgcc/esimcese-bert-base-uncased
ESimCSE-BERTarge ffgcc/esimcese-bert-large-uncased
ESimCSE-RoBERTay,. ffgcc/esimese-roberta-base
ESimCSE-RoBERTay,,. ffgcc/esimese-roberta-large
DiffCSE-RoBERTapy.. voidism/diffcse-bert-base-

uncased-sts
DiffCSE-RoBERTaj,ge

SimCSE-BERT e
SimCSE-BERT age
SimCSE-RoBERTayc

SimCSE-RoBERTajyge
ESimCSE-BERT e

voidism/diffcse-roberta-base-sts

Table 2: Base models and their names.

before “/” is the result of the original model (using
the embedding of the CLS token as the sentence
embedding), while the number after ““/” is the re-
sult of applying our method on top of the original
model. The last column shows the average abso-
lute gain of our method compared to the baseline
method across all tasks.

Our method can improve the results for almost
all models. The improvement is particularly signif-
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Variant STS-B  SICK-R

TOKEN MATCHING FUNCTION

2-max—2nd-max (our model) 82.0 69.6
max 81.6 69.3
max—2nd-max 68.1 56.0
TOKEN WEIGHTS

Pretrained weights (our model) 82.0 69.6
IDF weights 79.9 67.5
No weights 80.2 68.6
max, IDF weights (BERTScore) 79.9 67.8

Table 3: Ablation study of different token matching
score functions and token weights. The base model is
SimCSE-RoBERTay..

icant if the original model does not perform well,
e.g., Sentence-BERT (+5.2% and +4.9%) and Con-
SERT (+4.9% and +3.0%). From another perspec-
tive, our method can be seen as a universal booster
for language models on the STS task. For example,
our method can improve the Spearman’s correla-
tion of all base models to around 80 or even higher
on STS-B dataset, regardless of the original per-
formance of the base model. This indicates that
even “poor” language models can still generate
high-quality token embeddings that preserve token
similarity information very well. However, existing
language models only use a single embedding to
represent a sentence, which mixes all the informa-
tion of the sentence together and makes it difficult
for language models to be well-trained.

4.3 Ablation Study

We investigate the impact of different token match-
ing functions and token weights, which are two key
components of our method. The base model here is
SimCSE-RoBERTay,, but the conclusion is simi-
lar for other base models. The results are reported
in Table 3. For the token matching function, we
find that the performance slightly drops when using
only max and substantially drops when using only
max—2nd-max . This suggests that significance
is more important in measuring token matching
scores, while considering uniqueness further im-
proves the performance. For token weights, we ob-
serve that IDF weights do not perform well and are
even worse than the variant with no token weights.
We also evaluate the variant of max + IDF weights,
which is the same design as BERTScore (Zhang
et al., 2019). Our model outperforms BERTScore
by around 2% on both datasets.

Original inference method
s Our method

Original inference method
s Our method

Running time (s)
Running time (s)

4 8 16 32
Batch size

64 128 4 8 16 32
Batch size

64 128

(a) SIMCSE-RoBERTap,sc (b) SIimCSE-RoBERTajge

Figure 1: Running time of the original inference method
and our method on two base models for STS-B dataset.

Token Pretrained IDF
a man is performing a card trick score  weights  weights

0.004 3.540
0.023 5.637
0.016 1.801
0.724 7.005
0.320 8.853
0.014 2.097
0.336 5.094
0.016 7.687

doing

trick

with

play
cards

Predicted

1.007 0.987 0.985 [01933| BB 0937 0.979
X STS

[0.004 0.023 0.016 0.054 0.003 0.028 0320] 0.967

Token score

Pretrained
weights

IDF weights 3.540 5.637 1.801 6.883 1.179 7.194 8.853 0.959

Figure 2: Case study on a sample sentence pair from
STS-B dataset. See Section 4.5 for details.

4.4 Running Time Analysis

We investigate the running time of our method.
We set the base model as SIimCSE-RoBERTapse
or SimCSE-RoBERTay,, and then run the orig-
inal inference method and our inference method
on STS-B dataset with batch size ranging from 4
to 128 on an Nvidia Tesla P40 GPU. The results,
shown in Figure 1, indicate that our method only
incurs an average time overhead of 12.9% and 9.1%
on the two base models, respectively.

4.5 Case Study

As a case study, we consider a sentence pair from
STS-B dataset: “a man is performing a card
trick” and “a man is doing trick with play
cards”, whose ground truth similarity is the high-
est level. The token similarity matrix for this pair
is shown in Figure 2, with a dark/light blue back-
ground indicating the first/second highest scores in
each row, and bold/black numbers indicating the
first/second highest scores in each column.
Exactly matched tokens (“a”, “man”, “is”, and
“trick”) receive the highest scores, which are in-
dicated by color dark green. Tokens that cannot
be matched (“a”, “with”, and “play”) receive the
lowest scores, which are indicated by color light
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green. Tokens that are not exactly the same but are
semantically equivalent (“performing”-“doing”,
“card”-“cards”) receive scores that fall in the mid-
dle level. While using only max (i.e. significance)
as the token matching score may produce similar
result, adding the term max—2nd-max (i.e. unique-
ness) improves the reliability and distinguishability
of those scores. This is why our model performs
slightly better than max, as shown in Table 3.

Additionally, Figure 2 demonstrates that pre-
trained token weights are more accurate than IDF
token weights. Some semantically unimportant to-
kens, such as “a”, “is”, and “with”, are given too
much weight when using IDF method, which af-
fects the overall accuracy of the prediction. As a
result, the predicted STS using pretrained token
weights (0.967) is also more accurate than using
IDF token weights (0.959).

5 Conclusion

This paper presents a token-level matching algo-
rithm for calculating STS between pairs of sen-
tences. Unlike previous approaches that use pre-
trained language models to encode sentences into
embeddings, our method calculates the pairwise
token similarity, and then applies a token matching
functions to these scores. The resulting scores are
averaged with pretrained token weights to produce
the final sentence similarity. Our model consis-
tently improves the performance of existing lan-
guage models and is also highly explainable, with
minimal extra time overhead during inference.

Limitations

Our model does not follow existing sentence em-
bedding models that encode sentences into embed-
dings. Therefore, one limitation of our method is
that it is specifically designed for STS task (or more
precisely, sentence comparison task) and cannot be
easily transferred to other tasks, such as sentence
classification.

Additionally, our approach incurs a slight extra
time overhead of approximately 10%, which may
be unacceptable for applications that require high
time efficiency.

Our method only takes into account the semantic
comparison of individual tokens, rather than con-
sidering the meaning of combinations of tokens or
phrases. A possible direction for future work is
to incorporate the consideration of compositional
semantics, for example by grouping tokens into

phrases and applying a similar phrase-level match-
ing algorithm.
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