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Abstract

Radiology report summarization (RRS) is a
growing area of research. Given the Findings
section of a radiology report, the goal is to
generate a summary (called an Impression sec-
tion) that highlights the key observations and
conclusions of the radiology study. However,
RRS currently faces essential limitations. First,
many prior studies conduct experiments on pri-
vate datasets, preventing the reproduction of
results and fair comparisons across different
systems and solutions. Second, most prior
approaches are evaluated solely on chest X-
rays. To address these limitations, we propose
a dataset (MIMIC-RRS) involving three new
modalities and seven new anatomies based on
the MIMIC-III and MIMIC-CXR datasets. We
then conduct extensive experiments to evalu-
ate the performance of models both within and
across modality-anatomy pairs in MIMIC-RRS.
In addition, we evaluate their clinical efficacy
via RadGraph, a factual correctness metric.

1 Introduction

A radiology report is a document that provides in-
formation about the results of a radiology study. It
usually includes a Findings section with key obser-
vations from the study and an Impression section
with the radiologist’s overall conclusions. The lat-
ter is the most critical part of the report and is typi-
cally based on both the findings and the patient’s
condition. It can be helpful to automate the pro-
cess of generating the impression section because
it can be time-consuming and prone to errors when
done manually (Bhargavan et al., 2009; Alexander
et al., 2022). Recently, substantial progress has
been made towards research on automated radi-
ology report summarization (RRS) (Zhang et al.,
2020; Ben Abacha et al., 2021; Hu et al., 2022).
However, the field of RRS faces several key lim-
itations. First, the experimental results of many
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prior studies (Zhang et al., 2018, 2020) are reported
on private datasets, making it difficult to replicate
results or compare approaches. Second, existing
studies are mainly limited to a single modality (i.e.,
X-ray) and a single anatomy (i.e., chest) (Zhang
et al., 2020; Ben Abacha et al., 2021; Hu et al.,
2021). In some cases, researchers omit to disclose
the modality and anatomy of the radiology reports
used for their experiments (Karn et al., 2022). Fi-
nally, recent models (Karn et al., 2022; Hu et al.,
2022) present an increased complexity in archi-
tecture that offers only marginal improvements on
the existing evaluation metrics for summarization.
This further makes the replication of studies more
difficult.
To address the aforementioned limitations, we con-
struct a brand-new open-source dataset (named
MIMIC-RRS) for radiology report summarization
involving three modalities (X-ray, MRI, and CT)
and seven anatomies (chest, head, neck, sinus,
spine, abdomen, and pelvis). MIMIC-RRS is based
on the MIMIC-CXR (Johnson et al., 2019) and
MIMIC-III (Johnson et al., 2016) datasets and in-
troduces data from 12 new modality-anatomy pairs.
As a result, we introduce a new setting for evaluat-
ing the generalization capabilities of RRS models
across different modalities and anatomies.
In addition, we benchmark various pre-trained lan-
guage models on MIMIC-RRS. Through extensive
experiments within and across modality-anatomy
pairs, we show that adopting an appropriate pre-
trained model can achieve promising results com-
parable to previous studies. We also introduce a
metric to evaluate factual correctness of generated
summaries for any modality-anatomy pair.

2 Dataset Construction

In this section, we present the new MIMIC-RRS
dataset designed for radiology report summariza-
tion across multiple modalities and anatomies.
Comparisons with existing datasets are shown in
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Dataset Anatomy Modality Language Number

Zhang et al. (2018) Multiple Multiple English 87,127
Zhang et al. (2020) Multiple Multiple English 130,850
RIH (Zhang et al., 2020) Multiple Multiple English 139,654
OpenI (Demner-Fushman et al., 2016) Chest X-ray English 3,268
MIMIC-CXR (Johnson et al., 2019) Chest X-ray English 128,003
PadChest (Bustos et al., 2020) Chest X-ray Spanish 206,222

MIMIC-RRS (ours) Multiple Multiple English 207,782

Table 1: Comparisons with existing datasets for radiology report summarization.

Table 1. We detail the collection process and the
dataset statistics in the following subsections.

2.1 Data Collection

MIMIC-III One of our main contributions is
to generate RRS data from MIMIC-II involving
distinct combinations of modalities (i.e., medi-
cal imaging techniques) and anatomies (i.e., body
parts). To this end, we first select five of the most
frequently-occurring modality-anatomy pairs in
the pool of MIMIC-III reports: “CT Head”, “CT
Spine”, “CT Chest”, “CT Abdomen-Pelvis” and
“MR Head”. Note that we discard chest X-rays as
they are included in the MIMIC-CXR dataset. In
addition, we pick six modality-anatomy pairs that
occur infrequently in MIMIC-III to serve as out-of-
domain (OOD) test sets: “CT Neck”, “CT Sinus”,
“MR Pelvis”, “MR Neck”, “MR Abdomen”, “MR
Spine”. This set of pairs represents two types of
OOD cases: (1) the modality has not been seen
during training (one could train on CT neck and
test on MR Neck), and (2) the anatomy has not
been seen during training (for example, CT Sinus
is the only “sinus” dataset).
For each report, we extract the findings and impres-
sion section. However, the findings section is not
always clearly labeled as “findings". With the help
of a board-certified radiologist, we identify alter-
nate section headers that reference findings for each
modality-anatomy pair. As an example, for CT
head, findings may be referenced in reports with the
section headings “non-contrast head ct", “ct head",
“ct head without contrast", “ct head without iv con-
trast", “head ct", “head ct without iv contrast",
or “cta head". We identify 537 candidate section
headers that reference findings across our dataset.
We also discarded reports where multiple studies
are pooled in the same radiology report, leading
to multiple intricate observations in the impression

CT Abd-pelv CT Chest CT Head

15,989 12,786 31,402

CT Spine MR Head CT Neck

5,517 7,313 1,140

CT Sinus MR Spine MR Abdomen

1,267 2,821 1,061

MR Neck MR Pelvis X-ray Chest

230 253 128,003

Table 2: Dataset statistics for MIMIC-RRS. We report
the number of radiology reports from each modality-
anatomy pair.

section1. Our resulting dataset consists of 79,779
selected reports across 11 modality-anatomy pairs.

MIMIC-CXR MIMIC-CXR studies are chest X-
ray examinations. We follow preprocessing steps
reported in previous work (Delbrouck et al., 2022b),
and we only include reports with both a Findings
and an Impression section. This yields 128,003
reports.

2.2 Data statistics
In total, there are 207,782 samples in the MIMIC-
RRS dataset. The number of examples for each
modality and anatomy is provided in Table 2. To
further analyze this dataset, we report in Figure 1
the text lengths and vocabulary sizes associated
with reports from each modality-anatomy pair. We
find that for all modality-anatomy pairs, the find-
ings section is significantly longer than the im-
pression section (up to +315% for MR abdomen).
Additionally, the findings sections of chest X-ray
reports, which average only 49 words, are much
shorter than reports from other modality-anatomy

1We release our candidate section headers as well as code
to recreate the dataset from scratch (Appendix B).
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Figure 1: Section length and vocabulary size for reports
from each modality-anatomy pair.

pairs. In contrast, MR Abdomen and MR Pelvis
reports including findings sections that average 205
and 174 words, respectively. We see that CT Chest,
CT Head, and CT Abdomen-Pelvis reports have a
relatively large vocabulary size (given their sam-
ple size) with 20,909, 19,813, and 18,933 words.
Surprisingly, the CT Abdomen-Pelvis impressions
include a larger vocabulary than the findings. On
the other hand, MR pelvis and MR abdomen im-
pressions contain 36% and 37% fewer words than
their corresponding findings, respectively.
We assign reports from the following modality-
anatomy pairs to training, validation, and test
sets due to their large sample sizes: “CT ab-
domen/pelvis”, “CT Chest”, “CT Neck”, “CT
Spine”, “CT Head”, “MR Head”, and “X-ray
Chest”. The remaining reports (i.e., “MR Pelvis”,
“MR Spine”, “MR Neck”, “MR Abdomen”, and
“CT Sinus”) are used for OOD test sets2.

3 Algorithmic Analysis

In this section, we conduct experiments to analyze
the performance of different models on MIMIC-
RRS. We provide three categories of analyses: in-
modality-anatomy, cross-modality-anatomy, and
clinical efficacy.

3.1 In-modality-anatomy
To benchmark the performance of different mod-
els on the proposed MIMIC-RRS dataset, we con-
duct experiments within each modality-anatomy
pair (i.e., the training and test procedures are per-
formed using only one modality-anatomy pair).
We evaluate three types of pre-trained sequence-to-
sequence models, namely T5 (Raffel et al., 2020),
BART (Lewis et al., 2020), BioBART (Yuan et al.,
2022), and their variants.3 Results are reported in

2We release data splits publicly so that future work can
fairly compare new results.

3We do not evaluate several pre-trained models (e.g., Clini-
calBERT (Alsentzer et al., 2019), BioClinicalBERT (Alsentzer

Table 3.
Several observations can be drawn from these
experiments. First, simply adopting pre-
trained sequence-to-sequence language models can
achieve results comparable to previous state-of-the-
art approaches designed for radiology summariza-
tion. Indeed, using BART-L as a backbone achieves
the best performance, confirming the necessity of
exploiting appropriate pre-trained language models.
Secondly, the performances across different model
types vary (i.e., BART-L/BART-B, BioBART-L/
BioBART-B). Yet, we notice that the number of
training parameters matters; large models report
the best results. According to our evaluations,
the BART models achieve better results across all
modality-anatomy pairs. Surprisingly, it is worth
noting that the BioBART models do not achieve
better results than BART, although BioBART is
pre-trained on a biomedical corpus. One explana-
tion could be that BioBART models are pre-trained
on abstracts from PubMed, which are not within
the same domain as radiology reports.
In summary, we note several key findings for future
studies: (i) “Less is more”: starting from an appro-
priate backbone instead of designing complicated
modules; (ii) the model size matters; (iii) the pre-
training domain matters: knowledge from clinical
notes or medical literature does not easily translate
to radiology reports.

3.2 Cross-modality-anatomy
In this section, we conduct experiments across
modality-anatomy pairs (i.e., models are trained
on reports from a subset of modality-anatomy pairs
and then evaluated on all pairs, including the OOD
test sets). We report the cross-modality-anatomy
scores in Figure 2. A few interesting observations
can be made. First, there are some associations
between different anatomies and modalities. For
example, the model trained on “CT Head” can also
achieve promising results on the “MR Head” set.
Secondly, training the model with all the modality-
anatomy pairs (denoted as ALL) achieves the best
generalization, obtaining the best results across
all modalities and anatomies including the OOD
test sets. We leave further exploration of cross-
modality-anatomy associations and zero-shot OOD

et al., 2019), and Clinical-T5 (Lu et al., 2022)) that specialize
in the clinical text since they were trained on the text from
MIMIC-III, which overlaps with our dataset. The MIMIC-
RRS test set is included in their pre-training data. Thus, we
do not adopt them in our experiments to avoid potential data
leakage and ensure a fair comparison.
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Models MR Head CT Spine CT Neck CT Head CT Chest CT Abd/Pel X-ray Chest
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

WGSum - - - - - - - - - - - - - - - - - - 48.4 33.3 46.7
AIG-CL - - - - - - - - - - - - - - - - - - 51.0 35.2 46.7
T5-S 38.2 18.3 28.5 35.8 18.6 28.9 39.0 20.0 29.1 43.1 25.3 36.5 39.5 18.5 29.3 28.9 10.6 21.2 47.8 32.2 43.5
BioBART-B 42.4 21.2 32.0 47.8 27.9 40.0 40.4 19.6 29.3 46.0 27.4 38.9 41.4 19.1 30.3 33.1 12.5 23.2 49.6 33.8 45.3
BioBART-L 42.1 21.4 32.6 47.8 28.1 40.8 40.3 19.4 29.6 45.5 26.7 38.6 40.2 17.8 28.9 32.5 11.7 22.6 49.3 33.3 44.9
BART-B 42.0 21.5 32.1 49.0 29.7 41.6 41.4 20.9 30.2 46.4 28.1 39.5 41.6 19.5 30.6 33.1 12.9 23.6 51.0 34.9 46.4
BART-L 43.7 22.1 32.8 49.8 29.7 41.4 42.0 20.5 30.4 46.6 27.3 39.0 41.8 18.6 29.6 33.9 12.4 23.2 51.7 34.9 46.8

Table 3: The benchmarking comparisons of different approaches, including task-specific models (i.e., WGSum (Hu
et al., 2021) and AIG-CL (Hu et al., 2022)) and pre-trained language models (i.e., T5-S, BioBART-B, BioBART-L,
BART-B, and BART-L). R1, R2, and RL denote ROUGE-1, ROUGE-2, and ROUGE-L, respectively.

ROUGE-1 ROUGE-2 ROUGE-L

Figure 2: Cross-modality-anatomy results from BART-L are visualized here using heatmaps. Colors from light to
dark represent the values from low to high in each column. As discussed in Section 3.2, the model variant “ALL”
reports the strongest performances.

T5-S BioBART-B BioBART-L BART-B BART-L

MR Head 21.5 24.8 25.3 25.0 26.1
CT Spine 23.8 37.0 37.0 38.5 38.3
CT Neck 21.2 23.6 23.6 24.0 24.9
CT Head 31.8 34.2 34.0 35.2 34.7
CT Chest 24.0 26.0 24.3 26.0 25.2
CT Abd/Pel 12.6 15.9 15.3 16.1 15.9
X-ray Chest 39.8 40.9 41.0 42.3 43.0

Table 4: F1-RadGraph scores on MIMIC-RRS test sets
across different anatomies and modalities.

transfer for future work.

3.3 Clinical-Efficacy
In addition to evaluating our systems using
the ROUGE-1, ROUGE-2, and ROUGE-L met-
rics (Lin, 2004), we use a factual correctness
metric to analyze clinical efficacy. Most prior
works (Zhang et al., 2020; Smit et al., 2020; Hu
et al., 2022) mainly use the F1CheXbert metric,
an F1-score that evaluates the factual correctness
of the generated impressions using 14 chest radio-

graphic observations. Unfortunately, this metric
is unsuitable for MIMIC-RRS, which contains re-
ports from other modality-anatomy pairs beyond
chest X-rays.
For this reason, instead of using F1CheXbert, we
propose to use RadGraph (Jain et al., 2021) to eval-
uate the clinical correctness of the generated im-
pressions. RadGraph is a dataset containing board-
certified radiologist annotations of radiology re-
ports corresponding to 14,579 entities and 10,889
relations (Appendix A.1). We used the released pre-
trained model to annotate our reports and asked one
board-certified radiologist to subjectively validate
that the printed entities of the RadGraph model on
our data are correct (examples are shown in Ta-
ble 5). After confirming the effectiveness of the
model, we follow Delbrouck et al. (2022a) to com-
pute the F1-RadGraph scores. The score evaluates
the correctness of the generated named entities in
the hypothesis impression compared to the ground-
truth impression. We report these results in Ta-
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ble 4. It can be observed that the BART models
can achieve the best performance with respect to
clinical efficacy. The results are consistent with the
ROUGE scores, further confirming the effective-
ness of adopting BART as the backbone instead of
designing complicated solutions.

4 Related Work

In this section, we discuss prior research related
to the radiology report summarization task. The
first attempt at automatic summarization of radi-
ology findings into natural language impression
statements was proposed by Zhang et al. (2018).
Their contribution was to propose a first baseline
on the task, using a bidirectional-LSTM as encoder
and decoder. Importantly, they found that about
30% of the summaries generated from neural mod-
els contained factual errors. Subsequently, Zhang
et al. (2020) proposed the F1CheXbert score to
evaluate the factual correctness of the generated
impression. They also used reinforcement learning
to optimize the F1CheXbert score directly. Finally,
both Hu et al. (2021) and Hu et al. (2022) used
the Biomedical and Clinical English Model Pack-
ages in the Stanza Python NLP Library (Zhang
et al., 2021) to extract medical entities. The former
study used the entities to construct a Graph Neural
Network, which was used as input in their summa-
rization pipeline. In contrast, the latter study used
the entities to mask the findings duringcontrastive
pre-training.

We believe this paper is an original contribution to
the aforementioned line of work. As instigated by
Zhang et al. (2018), our goal is to release a new
summarization corpus and baselines on new modal-
ities and anatomies. We do so by releasing an RRS
dataset with data from 11 new modality-anatomy
pairs. In addition, we extend the work performed
by Zhang et al. (2020) by proposing a new metric to
evaluates the factual correctness and completeness
of the generated impression, namely the RadGraph
score. Finally, we improve on the work of Hu et al.
(2021, 2022) in two ways: (1) we use semantic
annotations from a pre-trained model trained using
annotations from board-certified radiologists, as
opposed to Stanza which leverages unsupervised
biomedical and clinical text data; (2) we leverage
relation annotations between entities, a feature that
was not available in prior work.

5 Conclusion and Discussion

In this paper, we highlight and address several
weaknesses associated with the radiology report
summarization task. First, from a data perspective,
we propose a publicly available dataset named
MIMIC-RRS involving data samples from twelve
modality-anatomy pairs, with 79,779 samples
from MIMIC-III and 128,003 samples from
MIMIC-CXR.

Second, we conducted more than 40 experiments
and over 400 cross-modality-anatomy evaluations
to benchmark the performance of different models.
We show that instead of designing complicated
modules, we can start from an appropriate
backbone model such as BART.

Finally, we proposed an elegant and simple met-
ric, F1-RadGraph, to evaluate the factual correct-
ness of summaries generated for any modality and
anatomy. In the future, we hope that our work
broadens the scope of the radiology report summa-
rization task and contributes to the development of
reliable RRS models that generalize well to new
anatomies and modalities.

Limitations

We note two limitations of our paper. First,
our work does not extensively evaluate all the
available pre-trained models that could be suit-
able for this task, e.g., ELECTRA (Clark et al.,
2020), BioLinkBERT (Yasunaga et al., 2022),
GatorTron (Yang et al., 2022), RadBERT (Yan
et al., 2022), and PubMedBERT (Gu et al., 2021).
The aim of this work is not to report the strongest
possible score but rather to address weaknesses of
existing radiology report summarization studies (in
terms of data and evaluation). Yet, we are confi-
dent our proposed solutions report a strong baseline
for future work. Second, although F1-RadGraph
seems like an appropriate metric to evaluate our
new modalities and anatomies (and appears to be
consistent with ROUGE scores), it has only been
evaluated subjectively and not systematically.
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A Details of RadGraph Scores

A.1 The Introduction of RadGraph

Figure 3: Example of the RadGraph annotations. Figure
taken from (Jain et al., 2021).

To design our new evaluation metric, we leverage
the RadGraph dataset (Jain et al., 2021) containing
board-certified radiologist annotations of chest X-
ray reports, which correspond to 14,579 entities
and 10,889 relations. RadGraph has released a
PubMedBERT model (Gu et al., 2021) pre-trained
on these annotations to annotate new reports. An
example of annotation can be seen in Figure 3.
Before moving on to the next section, we quickly
describe the concept of entities and relations:

Entities An entity is defined as a continuous span
of text that can include one or more adjacent words.
Entities in RadGraph center around two concepts:
Anatomy and Observation. Three uncertainty levels
exist for Observation, leading to four different enti-
ties: Anatomy (ANAT-DP), Observation: Definitely
Present (OBS-DP), Observation: Uncertain (OBS-
U), and Observation: Definitely Absent (OBS-DA).

Relations A relation is defined as a directed edge
between two entities. Three levels exist: Suggestive
Of (., .), Located At (., .), and Modify (., .).

A.2 Metric Computation

Using the RadGraph annotation scheme and pre-
trained model, we designed an F-score style reward
that measures the factual consistency and complete-
ness of the generated impression (also called hy-
pothesis impression) compared to the reference
impression.
To do so, we treat the RadGraph annotations of
an impression as a graph G(V,E) with the set of
nodes V = {v1, v2, . . . , v|V |} containing the en-
tities and the set of edges E = {e1, e2, . . . , e|E|}
the relations between pairs of entities. The graph
is directed, meaning that the edge e = (v1, v2) ̸=
(v2, v1). An example is depicted in Figure 4. Each
node or edge of the graph also has a label, which

we denote as viL for an entity i (for example “OBS-
DP" or “ANAT") and eijL for a relation e = (vi, vj)
(such as “modified" or “located at").
To design our RadGraph score, we focus on the
nodes V and whether or not a node has a relation
in E. For a hypothesis impression y, we create a
new set of triplets Ty = {(vi, viL ,R)}i=1:|V |. The
value R is 1 if (vi, vj)j=1:|E|,i ̸=j ∈ E, 0 other-
wise. In other words, a triplet contains an entity,
the entity label, and whether or not this entity has a
relation. We proceed to construct the same set for
the reference report ŷ and denote this set Tŷ.
Finally, our score is defined as the harmonic mean
of precision and recall between the hypothesis set
Ty and the reference set Tŷ, giving a value between
0 and 100. As an illustration, the set V , E and T
of the graph G in Figure 4 are shown as follows:
V = {mild, fluid, overload, overt, pulmonary,
edema}
E = {(mild,overload), (overload, fluid), (edema,
pulmonary)}
T = {(mild, obs-dp, 1), (fluid, obs-dp, 0), (over-
load, obs-dp, 1), (overt, obs-da, 0), (pulmonary,
anat-dp, 0), (edema, obs-da, 1)}

Figure 4: Graph view of the RadGraph annotations for
the report in Figure 3.

B Code and Data Release

Our research has been carried out using the
ViLMedic library (Delbrouck et al., 2022b). Our
code is available at https://github.com/jbdel/
vilmedic. This link is anonymized and complies
with the double-blind review process. More specif-
ically, we release the code of the RadGraph score
as well as the training of our baseline. We also re-
lease the script to download, pre-process, and split
the radiology reports of the MIMIC-III database
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CT Spine CT Sinus MR Neck MR Head

Table 5: Examples of entites detected by RadGraph (used in the RGER metric) on out-of-domain anatomy/modality
radiology reports. Relations are omitted for clarity.

as per our experiments. To download the MIMIC-
III database, researchers are required to formally
request access via a process documented on the
MIMIC website. There are two key steps that
must be completed before access is granted: (i)
the researcher must complete a recognized course
in protecting human research participants, includ-
ing Health Insurance Portability and Accountability
Act (HIPAA) requirements. (ii) the researcher must
sign a data use agreement, which outlines appropri-
ate data usage and security standards, and forbids
efforts to identify individual patients.

C More Results

We present the results (including four metrics, i.e.,
ROUGE-1, ROUGE-2, ROUGE-L, and RadGraph
scores) of all the experiments on Figure 5-9 for
further research in this field. We also show the
output of RadGraph (for entities) on a few samples
of our new dataset in Table 5.

D Ethics Statement

The MIMIC-CXR and MIMIC-III datasets are de-
identified to satisfy the US Health Insurance Porta-
bility and Accountability Act of 1996 (HIPAA)
Safe Harbor requirements. Protected health in-
formation (PHI) has been removed. Therefore,
the ethical approval statement and the need for
informed consent were waived for the studies on
this database, which was approved by the Mas-
sachusetts Institute of Technology (Cambridge,
MA) and Beth Israel Deaconess Medical Center
(Boston, MA). This research was conducted in ac-
cordance with the Declaration of Helsinki, describ-
ing the ethical principles of medical research in-
volving human subjects.
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ROUGE-1 ROUGE-2

ROUGE-L RadGraph Score

Figure 5: Cross-modality-anatomy results from T5-S are visualized here using heatmpas. Colors from light to dark
represent the values from low to high in each column.
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ROUGE-1 ROUGE-2

ROUGE-L RadGraph Score

Figure 6: Cross-modality-anatomy results from BART-B are visualized here using heatmaps. Colors from light to
dark represent the values from low to high in each column.
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ROUGE-1 ROUGE-2

ROUGE-L RadGraph Score

Figure 7: Cross-modality-anatomy results from BART-L are visualized here using heatmaps. Colors from light to
dark represent the values from low to high in each column.
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ROUGE-1 ROUGE-2

ROUGE-L RadGraph Score

Figure 8: Cross-modality-anatomy results from BioBART-B are visualized here using heatmaps. Colors from light
to dark represent the values from low to high in each column.
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ROUGE-1 ROUGE-2

ROUGE-L RadGraph Score

Figure 9: Cross-modality-anatomy results from BioBART-L are visualized here using heatmaps. Colors from light
to dark represent the values from low to high in each column.
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