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Abstract

Through the use of first name substitution ex-
periments, prior research has demonstrated the
tendency of social commonsense reasoning
models to systematically exhibit social biases
along the dimensions of race, ethnicity, and gen-
der (An et al., 2023). Demographic attributes
of first names, however, are strongly correlated
with corpus frequency and tokenization length,
which may influence model behavior indepen-
dent of or in addition to demographic factors.
In this paper, we conduct a new series of first
name substitution experiments that measures
the influence of these factors while controlling
for the others. We find that demographic at-
tributes of a name (race, ethnicity, and gender)
and name tokenization length are both factors
that systematically affect the behavior of social
commonsense reasoning models.

1 Introduction

Social science studies have shown that individ-
vals may face race or gender discrimination
based on demographic attributes inferred from
names (Bertrand and Mullainathan, 2004; Conaway
and Bethune, 2015; Stelter and Degner, 2018). Sim-
ilarly, large language models exhibit disparate be-
haviors towards first names, both on the basis of
demographic attributes (Wolfe and Caliskan, 2021)
and prominent named entities (Shwartz et al., 2020).
Such model behavior may cause representational
harms (Wang et al., 2022a) if names associated
with socially disadvantaged groups are in turn as-
sociated with negative or stereotyped attributes, or
allocational harms (Crawford, 2017) if models are
deployed in real-world systems, like resume screen-
ers (O’Neil, 2016; Blodgett et al., 2020).

The task of social commonsense reasoning (Sap
et al., 2019; Forbes et al., 2020), in which models
must reason about social norms and basic human
psychology to answer questions about interpersonal
situations, provides a particularly fruitful setting

Rachel Rudinger
University of Maryland, College Park
rudinger@umd.edu

Context: “[NAME] opened their mouth to speak | |Answer A: a very powerful and violent person X

land what came out shocked everyone. [Answer B: a very shy or quiet person x

‘Question: “How would you describe [NAME]?” | |Answer C: a very aggressive and talkative person /'

[NAME] = “Nichelle” ¥ nput [NAME] = “Nancy”
Tokenizer

Demographic attributes =1t SR \* Demographic attributes AN aTCIR TS

['niche’, '##lle', 'opened’, 'their', ‘mouth’, ...]

[‘nancy', 'opened’, 'their', ‘mouth’, ...]

mﬁ
BERT

<= Tiput

Predict Predict "=

[A: a very powerful and violent person B: a very shy or quiet person

Figure 1: A social commonsense reasoning multiple-
choice question example identified by SODAPOP (An
et al., 2023) where the model differentially associates
“Nichelle” with “violent” and “Nancy” with “quiet”. Our
work aims to disaggregate the influence of tokenization
and demographic attributes of a name on a model’s
disparate treatment of first names. We obtain the race
statistics from Rosenman et al. (2022).

for studying the phenomenon of name biases in
NLP models. Questions in the Social IQa dataset
(Sap et al., 2019), for example, describe hypothet-
ical social situations with named, but completely
generic and interchangeable, participants (e.g. “Al-
ice and Bob”). Social IQa questions require mod-
els to make inferences about these participants, yet
they maintain the convenient property that correct
(or best) answers should be invariant to name sub-
stitutions in most or all cases.

Leveraging this invariance property, prior
work (An et al., 2023) has demonstrated that so-
cial commonsense reasoning models acquire un-
warranted implicit associations between names and
personal attributes based on demographic factors
(Fig. 1). Building upon this finding, we investigate
a natural follow-up question: why?

We identify two possible factors that cause a
model’s disparate treatment towards names: de-
mographic attributes and tokenization length. We
hypothesize that names associated with different
demographic attributes, in particular race, ethnic-
ity, and gender may cause a model to represent
and treat them differently. These demographic
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Figure 2: Histograms of first names by tokenization lengths (2a, 2b), race/ethnicity (2c), or gender (2d). We
normalize the count to 1 and show the distribution by percentage. Raw count plots are in appendix A.

attributes are also strongly correlated with cor-
pus frequency and tokenization length (Wolfe and
Caliskan, 2021). Tokenization (or segmentation)
breaks down an input sentence into a series of sub-
word tokens from a predefined vocabulary, each
of which is then, typically, mapped to a word em-
bedding as the input to a contemporary language
model. A name’s tokenization length refers to
the number of subwords in the name following tok-
enization. In this work, we refer to singly tokenized
and multiply tokenized names as those consisting
of one or multiple tokens after tokenization, re-
spectively. As a result, singly tokenized names are
represented with a single embedding vector, while
multiply tokenized names are represented by two
or more. With these potential confounds, we at-
tempt to address the research question: In social
commonsense reasoning, to what extent do demo-
graphic attributes of names (race, ethnicity, and
gender) and name tokenization length each have
an impact on a model’s treatment towards names?

We first conduct an empirical analysis to un-
derstand the distribution of tokenization lengths
in names given demographic attributes, and vice-
versa. Adopting the open-ended bias-discovery
framework, SODAPOP (An et al., 2023), we then
analyze the impact of demographic attributes and
tokenization length on model behavior. We find
that both factors have a significant impact, even
when controlling for the other. We conclude that
due to correlations between demographics and to-
kenization length, systems will not behave fairly
unless both contributing factors are addressed. Fi-
nally, we show that a naive counterfactual data aug-
mentation approach to mitigating name biases in
this task is ineffective (as measured by SODAPOP),
concluding that name biases are primarily intro-
duced during pre-training and that more sophisti-
cated mitigation techniques may be required.

2 Demographic Attributes and
Tokenization Length are Correlated

Previously, Wolfe and Caliskan (2021) have shown
that White male names occur most often in pre-
training corpora, and consequently, White male
names are more likely to be singly tokenized. We
replicate this finding by collecting 5,748 first names
for 4 races/ethnicities (White, Black, Hispanic, and
Asian) and 2 genders (female and male) from a
U.S. voter files dataset compiled by Rosenman et al.
(2022) (specific data processing and name inclusion
criteria are in appendix B.1). We compute and plot
the conditional probabilities of tokenization length
given demographic attributes (race/ethnicity and
gender) and vice-versa in Fig. 2 using the BERT
tokenizer (Devlin et al., 2019; Wu et al., 2016). Let
ST be the event that a name is singly tokenized.
We see in Fig. 2 that P(White|ST'), P(ST|White),
P(Male|ST), and P(ST|Male) are substantially
higher than other conditional probabilities involv-
ing ST, confirming Wolfe and Caliskan (2021).
These observations suggest that a model tends to
represent White names and male names differently
from others in terms of the tokenization length.
Given these substantial differences in tokenization
lengths across demographic groups, we are moti-
vated to investigate whether tokenization is a pri-
mary cause of disparate treatment of names across
demographic groups. It is important to note here
that, even if tokenization were the primary cause of
disparate treatment of names across demographic
groups, this discovery would not in itself resolve
the fairness concerns of representational and allo-
cational harms based on race, ethnicity and gender,
but it might point to possible technical solutions.
However, as we will show in the next section, dis-
'We present similar results for RoOBERTa (Liu et al., 2019)

and GPT-2 (Radford et al., 2019) tokenizer (Sennrich et al.,
2015) in Fig. 6 (appendix A).
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Figure 3: tSNE projections of SR vectors for 686 names. The same projection is visualized by different factors.

parate treatment of names across demographic at-
tributes persists strongly even when controlling for
tokenization length (and vice-versa).

3 Analyzing the Influences via SODAPOP

We follow SODAPOP (An et al., 2023) to investi-
gate how the two factors in § 2 influence a Social
IQa model’s behavior towards names.

3.1 Experiment Setup

SODAPOP leverages samples from Social 1Qa (Sap
et al., 2019), a social commonsense reasoning mul-
tiple choice questions (MCQ) dataset. Each MCQ
consists of a social context ¢, a question ¢, and three
answer choices 71, 72, 73, one of which is the only
correct answer. An example is shown in Fig. 1.

Subgroup names For controlled experiments,
we obtain at most 30 names for each subgroup cate-
gorized by the intersection of race/ethnicity, gender,
and tokenization length (BERT tokenizer), result-
ing in a total of 686 names. Table 1 (appendix)
shows the specific breakdown for each group.

Success rate vectors Using millions of MCQ
instances, SODAPOP quantifies the associations
between names and words using success rate vec-
tors (SR vectors): a vector whose entries are the
probability of a distractor 7; containing word w
to fool the model, given that name n is in the
context. For illustration, out of 5,457 distrac-
tors containing the word “violent” we generated
for the name “Nichelle” (Fig. 1), 183 misled the
model to pick the distractor over the correct an-
swer choice. The success rate for the word-name
pair (“violent”, “Nichelle”) is % = 3.28%. We
present more details, including the formal mathe-
matical definition of success rate, in appendix B.2.

Clustering of the success rate vectors The clus-
tering of SR vectors can be visualized by tSNE
projections. To quantify the tightness of clustering

between two groups of SR vectors A, B, we first
find the centroids ¢4, ¢/ by averaging 3 random SR
vectors within each group. Then, for each SR vec-
tor & (including the 3 random vectors for centroid
computation), we assign a label a if its euclidean
distance is closer to c_A), otherwise b. We check the
accuracy x of this naive membership prediction.
The membership prediction accuracy on SR vec-
tors produced by a fair model would be close to
0.5, indicating that name attributes are not easily
recoverable from their corresponding SR vectors.
We evaluate the statistical significance using a vari-
ant of the permutation test. The null hypothesis is
that the SR vectors of groups A and B are no more
clusterable than a random re-partitioning of A U B
would be. We randomly permute and partition the
SR vectors into A’, B’ with the same cardinality
each and relabel them. We predict the member-
ship of SR vectors based on their distance to the
new centroids ¢4, ¢4/, obtaining accuracy z’. The
p-value P(x’ > x) is estimated over 10, 000 runs.

3.2 Results: Both Factors Matter

We use the 686 names across all subgroups, al-
most evenly distributed by demographic attributes,
and obtain the tSNE projection of their SR vec-
tors (obtained using BERT, and the dimension is
736) in Fig 3. We observe clear clustering by tok-
enization length, race/ethnicity, and gender. Since
tokenization length is generally correlated with cor-
pus frequency, we also see weak clustering of the
SR vectors by frequency.

We report the membership prediction accuracy
of SR vectors (obtained by running SODAPOP on a
finetuned BERT model for Social 1Qa) for all pairs
of subgroups in Fig. 4a. Each cell in the figure
shows the separability of SR vectors for names
from two groupings. To illustrate, the top left
cell shows singly tokenized White male names are
highly separable (> 80%) from singly tokenized
White female names; the entire heatmap shows the
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Figure 4: Membership prediction accuracy of SR vectors (pairwise comparisons). An ideal accuracy is ~ 0.5. “TL":
tokenization length. “F”: female. “M”: male. * indicates statistical significance at p < 0.001 and t at p < 0.01.

results for all pairs. As we vary one and control
the other confounding factors, we find that each of
race/ethnicity, gender, and tokenization length are
name attributes that lead to systematically differ-
ent model behavior, as measured by membership
prediction accuracy. Almost all prediction accu-
racy is close to 1.0, indicating perfect separation
of the clusters, with p < 0.001 in nearly all set-
tings. We see in Fig. 4a, for instance, that SR
vectors of singly tokenized Black female names
and singly tokenized White female names are per-
fectly classified, so race is still a pertinent factor
even controlling for gender and tokenization. In
contrast, SR vectors for singly tokenized Asian
male and Asian female names are not distinguish-
able, although gender appears to influence model
behavior under most other controlled settings.

We obtain experimental results for RoOBERTa
and GPT-2 in appendix C. We observe that these
additional results also demonstrate a similar trend
as BERT, generally supporting the hypothesis that
models exhibit disparate behavior for different
names based on their demographic attributes as
well as tokenization length. However, the results
for RoBERTa and GPT-2 are less strong than that
of BERT. We speculate a variety of reasons that
could give rise to the different results among these
models. One potential major cause is the different
tokenization algorithms used by the models: BERT
uses WordPiece (Wu et al., 2016) while RoOBERTa
and GPT-2 use Byte-Pair Encoding (Sennrich et al.,

2015) for tokenization. Due to this difference, the
tokenization length of a name can vary in these
models. For example, “Nancy” is singly tokenized
in BERT but is broken down into [“N”, “ancy”]
in RoOBERTa or GPT-2. Beyond tokenization, the
different pre-training algorithms and training cor-
pora will also likely contribute to the slightly dif-
ferent observations between Fig. 4 and Fig. 10.

4 Counter-factual Data Augmentation

We apply counter-factual data augmentation (CDA)
to the Social IQa training set as we attempt to fine-
tune a model that is indifferent to both tokenization
length and the demographic attributes of names.
We choose to experiment with CDA because it
would shed light on the source of name biases. If
biases mostly arise from finetuning, we expect fine-
tuning on Social IQa with CDA would largely ad-
dress the problem; otherwise, biases mostly origi-
nate from pre-training and are not easily overridden
during finetuning.

For each Social IQa sample, we identify the
original names using Stanford NER (Finkel et al.,
2005). We find that more than 99% of samples
contain one or two names. We create copies of
the MCQ samples and replace the identified names
with random names from our sampled sub-groups
such that the overall name frequency is evenly dis-
tributed over tokenization lengths and demographic
attributes, resulting in an augmented set whose size
increases by 16x. We finetune a BERT model
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with the augmented set (details in appendix B.2).
However, this naive solution is rather ineffective
(Fig. 4b). This negative result is not surprising
as it aligns with the observations that SODAPOP
could detect biases even in models debiased with
state-of-the-art algorithms (An et al., 2023). It also
indicates that pre-training contributes to the biased
model behavior. Hence, a more sophisticated solu-
tion is needed to tackle this problem.

5 Related Work

Social biases in language models Multiple re-
cent works aim to detect social biases in language
models (Rudinger et al., 2018; Zhao et al., 2018,
2019; Nangia et al., 2020; Li et al., 2020; Nadeem
et al., 2021; Sap et al., 2020; Parrish et al., 2022).
Some works specifically diagnose biases in social
commonsense reasoning (Sotnikova et al., 2021;
Anetal., 2023), but they do not explain what causes
amodel to treat different names dissimilarly; in par-
ticular, these works do not consider the influence
of tokenization length on model behavior towards
different names.

Name artifacts Previous research indicates that
language models exhibit disparate treatments to-
wards names, partially due to their tokenization
or demographic attributes (Maudslay et al., 2019;
Czarnowska et al., 2021; Wang et al., 2022b). How-
ever, thorough analyses of the factors influencing
first name biases are lacking in these works. While
Wolfe and Caliskan (2021) study the systematic
different internal representations of name embed-
dings in language models due to the two factors,
we systematically study how the two factors both
connect with the disparate treatment of names by a
model in a downstream task.

6 Conclusion

We have demonstrated that demographic attributes
and tokenization length are both factors of first
names that influence social commonsense model
behavior. Each of the two factors has some inde-
pendent influence on model behavior because when
controlling one and varying the other, we observe
disparate treatment of names. When controlling
for tokenization length (e.g. Black male singly-
tokenized names vs White male singly-tokenized
names) we still find disparate treatment. Con-
versely, when we control for demographics (e.g.
Black female singly-tokenized vs Black female

triply-tokenized names), the model also treats those
names differently. Because demographic attributes
(race, ethnicity, and gender) are correlated with
tokenization length, we conclude that systems will
continue to behave unfairly towards socially disad-
vantaged groups unless both contributing factors
are addressed. We demonstrate the bias mitiga-
tion is challenging in this setting, with the simple
method of counterfactual data augmentation unable
to undo name biases acquired during pre-training.

Limitations

Incomplete representation of all demographic
groups We highlight that the names used in our
study are not close to a complete representation
of every demographic group in the United States
or world. In our study, we adopt the definition
of race/ethnicity from the US census survey, us-
ing US-centric racial and ethnic categorizations
that may be less applicable in other countries. We
adopt a binary model of gender (female and male),
based on the SSA dataset, which is derived from
statistics on baby names and assigned sex at birth;
this approach limits our ability to study chosen first
names, or to study fairness with respect to non-
binary and transgender people. For race/ethnicity,
our study is limited to US census categories of
White, Black, Hispanic, and Asian. We are unable
to include American Indian or Alaska Native in our
study, for instance, as we were unable to identify
any names from this group that met our inclusion
criteria of > 50% membership according to our
name data source.

Furthermore, by using first names as a proxy for
demographic attributes, we are only able to study
certain demographic attributes that plausibly corre-
late with names (e.g., race, ethnicity, and gender)
but not other demographic attributes that are likely
harder to infer from names (e.g., ability or sexual
orientation). Other demographic attributes that may
be discernible to varying degrees from first names
were excluded from the scope of this study (e.g.,
nationality, religion, age).

Assumption: Invariance under name substitu-
tion Invariance under name substitution, while a
valuable fairness criterion for Social 1Qa, may not
hold in all other task settings. For example, a fac-
toid QA system should provide different answers to
the questions “What year was Adam Smith born?”
(1723) and “What year was Bessie Smith born?”
(1894).
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Extended evaluation time and heavy computa-
tional costs Due to the huge number of MCQ
instances we construct for evaluation and a diverse
set of names to cover multiple demographic iden-
tities, it takes a considerably large amount of time
and computational resources to obtain the analy-
sis results. We detail the approximated time and
computational budget in appendix B.2. However,
it is worth noting that the extensive analysis on a
wide range of MCQ instances and names makes
our observations more statistically robust. A future
research direction may be optimizing the imple-
mentation of SODAPOP framework, which we use
as a major experiment setup to obtain the analysis,
for more efficient evaluation.

(In)effectiveness of counter-factual data aug-
mentation It is worth noting that the ineffec-
tive result we obtained is not surprising because
SODAPOP has demonstrated that models that are
trained with existing state-of-the-art debiasing al-
gorithms continue to treat names differently (An
et al., 2023). Although we find that controlling the
name distribution in the finetuning dataset to be
rather ineffective in mitigating the disparate treat-
ment of names, it is an open question if applying
CDA to the pre-training corpus would be more ef-
fective. A recent work proposes to apply CDA to
the pre-training corpus (Qian et al., 2022), and it
will likely be a great source to use for investigating
our open question here.

Ethics Statement

Potential risks Our paper contains an explicit
example of demographic biases in a social com-
monsense reasoning model (Fig. 1). This observa-
tion does not reflect the views of the authors. The
biased content is for illustration purpose only. It
should not be exploited for activities that may cause
physical, mental, or any form of harm to people.

The potential benefits from our work include: (1)
insights into the factors that influence a social com-
monsense reasoning model’s behavior towards first
names; (2) the potential for increased awareness of
these factors to encourage more cautious deploy-
ment of real-world systems; and (3) better insights
into the challenges of debiasing, and how demo-
graphic and tokenization issues will both need to
be addressed.

Differences in self-identifications We have cat-
egorized names into subgroups of race/ethnicity

and gender by consulting real-world data as we ob-
serve a strong statistical association between names
and demographic attributes (race/ethnicity and gen-
der). However, it is crucial to realize that a person
with a particular name may identify themselves dif-
ferently from the majority, and we should respect
their individual preferences and embrace the differ-
ences. In spite of the diverse possibilities in self-
identification, our observations are still valuable
because we have designed robust data inclusion
criteria (detailed in appendix B.1) to ensure the
statistical significance of our results.
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A Additional Analysis on Frequency,
Tokenization, and Demographic
Attributes of Names

We provide the complementary plots for Fig. 2 by
showing the raw counts of the names in Fig. 5.
We also present preliminary observations on the
connection between frequency, tokenization, and
demographic attributes of names for RoOBERTa and
GPT-2 tokenizer in this section. Theses results
(Fig. 6) are similar to those in § 2. White male
names are more likely to be singly tokenized in
RoBERTa or GPT-2 as well. We observe that the
conditional probability that a name is singly tok-
enized given that it is Asian is also quite high. We
speculate the reason for this is that Asian names
have fewer characters in their first names on aver-
age (4.40) compared to that of Black names (6.48)
and Hispanic names (6.41), which cause Asian
names to be more likely singly tokenized as well.

In addition, we count the occurrence of 608
names (a subset of the 5,748 names in § 2) in
Wikipedia? and BooksCorpus (Zhu et al., 2015),
which are used to pre-train BERT and RoBERTa.
Fig. 7 illustrates the distribution of name frequency
over different tokenization lengths. We see that, re-
gardless of the model, most singly tokenized names
have higher average frequency, whereas multiply
tokenized names share similar distributions with
lower frequency overall.

B Detailed Experiment Setup

B.1 Experiments for Preliminary
Observations

Names We collect people’s first names from a
U.S. voter files dataset compiled by Rosenman et al.
(2022). We filter out names whose frequency in
the dataset is less than 200. Since each name is not
strictly associated with a single race/ethnicity, but
rather reflects a distribution over races/ethnicities,
we analyze only names for which the percent-
age of people with that name identifying as that
race/ethnicity is above 50%. We assign a binary
gender label to each name by cross-referencing
gender statistics in the SSA dataset.® If the name
is absent from the SSA dataset, we omit that name.

2https: //huggingface.co/datasets/wikipedia
3https: //www.ssa.gov/oact/babynames/
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Figure 5: Histograms of first names by tokenization lengths (using BERT tokenizer) or race/ethnicity (raw counts).
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Figure 6: Histograms of first names by tokenization lengths, race/ethnicity, or gender using RoOBERTa or GPT-2
tokenizer. We normalize the count to 1 and show the distribution by percentage.

With these constraints, there is only one name for
the category “Other race/ethnicity”. For robust
statistical analysis, we choose not to include this
category but only the other four categories in the
data source, which are White, Black, Hispanic, and
Asian. There is a total of 5,748 names.

Models We use three popular language models
for the analysis, namely BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and GPT-2 (Radford
et al., 2019). BERT uses WordPiece (Wu et al.,
2016) for tokenization, while both RoOBERTa and
GPT-2 use Byte-Pair Encoding (Sennrich et al.,
2015) as their tokenization algorithm. BERT-base
has 110 million parameters. RoBERTa-base has
123 million parameters. GPT-2 has 1.5 billion pa-
rameters. No finetuning is needed for experiments
in § 2 because tokenization of input is invariant to

5
5

107 5 107 :
' f
! !
S10° 5.10° '
9 3 .
2 2
[} [}
S10° S 100
g g0
i i
1 2 3

2
Tokenization length Tokenization length

(a) BERT (b) RoBERTa

Figure 7: Distribution of name frequency in the pre-
training corpus over tokenization lengths.

further finetuning in a downstream task.

B.2 Experiments with SODAPOP

Social IQa To examine machine intelligence in
everyday situations, Sap et al. (2019) publish a
social commonsense reasoning multiple-choice
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BERT Tokenizer

Gender ‘ Male ‘ Female
Tokenizationlength | 1 2 3 |1 2 3
White 30 30 30|30 30 30
Black 30 30 30|30 30 30
Hispanic 30 30 30|30 30 30
Asian 30 30 7 |30 30 19

RoBERTa/GPT-2 Tokenizer

Gender ‘ Male ‘ Female
Tokenization length ‘ 1 2 3 ‘ 1 2 3
White 30 30 30|30 30 30
Black 24 30 30|12 30 30
Hispanic 9 30 30| 8 30 30
Asian 23 30 21|10 30 21

Table 1: Name counts in each subgroup categorized by
race/ethnicity, gender, and tokenization lengths. If there
is an insufficient number of names in a category, we use
the maximum number of names available in the dataset
released by Rosenman et al. (2022) that also satisfy our
inclusion criteria described in appendix B.1.

dataset Social IQa. Each MCQ consists of a so-
cial context, a question, and three answer choices,
one of which is the only correct answer. An ex-
ample from Social 1Qa is Context: “Kai made a
wish and truly believed that it would come true.”
Q: “How would you describe Kai?” Al: “a cynical
person” A2: “like a wishful person” A3: “a be-
lieving person” (correct choice). There are 33,410
samples in the training set and 1, 954 instances in
the development set.

Generating distractors To detect a model’s dis-
parate treatment towards names, SODAPOP substi-
tutes the name in a MCQ sample with names asso-
ciated with different races/ethnicities and genders,
and generate a huge number of new distractors to
robustly test what makes a distractor more likely
to fool the MCQ model, thus finding the model’s
implicit associations between names and attributes.
We follow the same algorithm proposed by An et al.
(2023) to generate distractors using a masked-token
prediction model (RoBERTa-base). We generate
distractors from the correct choice of 50 MCQ sam-
ples in Social IQa (Sap et al., 2019). We utilize the
same list of names for distractor generation as in
SODAPOP. In our study, we take the union of all
the distractors generated with different names for a
context to form new MCQ samples for more robust

results. The total number of MCQ constructed via
this step is 4,840,776.

Success rate Recall that each MCQ in Social IQa
consists of a social context ¢, a question ¢, and three
answer choices 71, 72, 73, one of which is the only
correct answer. Formally, for an arbitrary distractor
Ti, the success rate of a word-name pair (w, n) is

SR(w,n) = P(argmaxM(c,q,Tj) =1
je{1,2,3}

(w € tok(m)) A (n € tok(c))), (1)

where M (c, ¢, 7;) produces the logit for answer
choice 7; using a MCQ model M, and tok splits
the input by space so as to tokenize it into a bag of
words and punctuation. A success rate vector for
a name n composes |V| entries of SR(w,n) for
all w € V, where V is the set of vocabulary (i.e.,
words appearing in all distractors above a certain
threshold). Specifically, we set the threshold to be
1,000 in our experiments.

Models We conduct experiments using three pop-
ular language models, namely BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and GPT-
2 (Radford et al., 2019). The size of each model is
specified in appendix B.1. We finetune each model
on the Social 1Qa training set with a grid search for
hyperparameters (batch size = {3, 4, 8}, learning
rate = {1e~2,2e7°,3e 7%}, epoch = {2, 4,10}). Al-
though different hyper-parameters lead to varying
final performance on the development set of Social
1Qa, we find them to be within a small range in
most cases (within 1% — 2%). Since our analysis
does not highly depend on the performance of a
model, we arbitrarily analyze a model that has a
decent validation accuracy among all. In our study,
the BERT-base model is finetuned with batch size
3, learning rate 2¢~° for 2 epochs and achieves
60.51% on the original dev set. The RoBERTa-
base model is finetuned with batch size 8, learning
rate 1e~® for 4 epochs and achieves 70.51% on the
original dev set. The GPT-2 model is finetuned with
batch size 4, learning rate 2¢~° for 4 epochs and
achieves 61.91% on the original dev set. To fine-
tune on the counter-factually augmented dataset,
we conduct grid search for batch size = {2, 3, 8},
learning rate = {1e=°,2e 75} for 1 epoch. We ob-
tain similar dev set accuracy for these setting, all
about 60%.
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The evaluation time for 4 million MCQs across
more than 600 names is costly. We approximate
that it takes about 7 days using 30 GPUs (a com-
bination of NVIDIA RTX A4000 and NVIDIA
TITAN X) for each model. However, we note that
a smaller number of MCQ instances and names
may sufficiently capture the biased behavior of a
model. We choose to include an extremely large
number of test instances and a wide range of names
to ensure the robustness of our study. Although
important, it is out of the scope of this paper to find
the optimal size of the bias-discovery test set to
minimize computation time and resources.

Subgroup names For fine-grained analysis that
compares a model’s different behavior towards two
name groups that only vary by one confounding
factor, we compile subgroups of names that share
the same race/ethnicity, gender, and tokenization
length. For example, White female names with
tokenization length 2 is one subgroup of names.
In total, we sample 686 names for BERT and 608
names for RoOBERTa and GPT-2. Table. 1 shows the
specific number of names in each subgroup. Given
the data source available to us, we are unable to
collect an enough number of names for certain sub-
groups (e.g., Asian male names with tokenization
length 3). Nonetheless, these limitations do not af-
fect our findings of the different treatment towards
other subgroups with a sufficiently large number of
names.

C Additional Experiment Results

We illustrate the tSNE projections of SR vectors
for RoOBERTa and GPT-2 in Fig. 8 and Fig. 9 re-
spectively. The dimension of the SR vectors is 660
for these two models. The plots show that, as we
control each of the factors in our analysis, both
RoBERTa and GPT-2 treat names differently in the
downstream task of social commonsense reason-
ing.

We also report the membership prediction accu-
racy for ROBERTa and GPT-2 in Fig. 10. We ob-
serve that gender, race/ethnicity, and tokenization
length are all strongly correlated with the model’s
disparate treatment of names in these models as
well. GPT-2 behaves similarly as BERT, where to-
kenization length, race/ethnicity, and gender are all
factors that indicate the model’s different behavior
towards names.

D Responsible NLP

Licenses We have used BERT, RoBERTa, and
GPT-2 for our empirical studies. BERT uses
Apache License Version 2.0,* and both RoBERTa
and GPT-2 use MIT License.” We are granted per-
mission to use and modify these models for our
experiments per these licenses.

We also use Stanford NER in our experiments,
which is under GNU General Public License (V2
or later).®

The pipeline SODAPOP is under Attribution-
NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0).” We have the permission to
copy and redistribute the material in any medium
or format.

The dataset Social IQa is under Creative Com-
mons Attribution 4.0 International License?® as it
was published by Association for Computational
Linguistics. Per the license, we may “copy and
redistribute the material in any medium or format”
and “remix, transform, and build upon the material
for any purpose, even commercially.”

The first name dataset (Rosenman et al., 2022) is
under CCO 1.0 Universal (CCO 1.0) Public Domain
Dedication.’ Everyone can copy, modify, distribute
and perform the work, even for commercial pur-
poses, all without asking permission.

Consistency with the intended use of all artifacts
We declare that the use of all models, datasets, or
scientific artifacts in this paper aligns with their
intended use.

4https://www.apache.org/licenses/LICENSE—z.@

5https://opensource.org/licenses/MIT

Shttps://www.gnu.org/licenses/old-licenses/
gpl-2.0.html

"https://creativecommons.org/licenses/
by-nc-nd/4.0/

8https://creativecommons.org/licenses/by/4.0/

9https://creativecommons.org/publicdomain/
zero/1.0/
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