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Abstract
Vision-Language Pre-training (VLP) has ad-
vanced the performance of many vision-
language tasks, such as image-text retrieval,
visual entailment, and visual reasoning. The
pre-training mostly utilizes lexical databases
and image queries in English. Previous work
has demonstrated that the pre-training in En-
glish does not transfer well to other languages
in a zero-shot setting. However, multilingual
pre-trained language models (MPLM) have ex-
celled at a variety of single-modal language
tasks. In this paper, we propose a simple
yet efficient approach to adapt VLP to un-
seen languages using MPLM. We utilize a
cross-lingual contextualized token embeddings
alignment approach to train text encoders for
non-English languages. Our approach does
not require image input and primarily uses
machine translation, eliminating the need for
target language data. Our evaluation across
three distinct tasks (image-text retrieval, vi-
sual entailment, and natural language visual
reasoning) demonstrates that this approach
outperforms the state-of-the-art multilingual
vision-language models without requiring large
parallel corpora. Our code is available at
https://github.com/Yasminekaroui/CliCoTea.

1 Introduction

Inspired by the recent advancements in language
model pre-training, Vision-Language Pre-trained
Models (VLPMs) have demonstrated state-of-the-
art performance across a wide range of vision-
language (VL) tasks such as text-to-image retrieval,
visual reasoning, visual entailment, and visual
QA (Chen et al., 2020; Li et al., 2021, 2022).

However, extending VLPMs to multilingual sce-
narios is still challenging. On one hand, the major-
ity of these models are trained on monolingual (En-
glish) corpora and thus cannot perform well for
other languages. On the other hand, the multilin-
gual pre-trained language models (Devlin et al.,
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(a) Cross-Lingual Text Alignment
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(b) Zero-shot Transfer on VL downstream task

Figure 1: Overview of our approach. We adapt the
text encoder of a monolingual VL model to an unseen
language (a). Then we use the adapted model for a VL
downstream task in a zero-shot setting (b).

2018; Conneau et al., 2019) cannot handle vision
data (e.g., images or videos) directly.

Lately, there have been attempts (M3P,
nUNITER, UC2) to pivot on images or English
texts to align multilingual representations with
vision features (Chen et al., 2020; Ni et al.,
2021; Zhou et al., 2021). However, a re-
cent benchmark on multilingual multimodal pre-
training (IGLUE) (Bugliarello et al., 2022) shows
that although these models achieve promising zero-
shot cross-lingual transfer performance on some
VL tasks, they still fall short in comparison to
the “translate-test” baseline (using an English-only
VLPM on the translations of the text examples).

A more recent work (CCLM) achieves promising
performance on the IGLUE benchmark by exploit-
ing massive parallel text and image-text corpora to
pre-train a VL model (Zeng et al., 2022). This ap-
proach is motivated by a key observation that mul-
tilingual and multimodal pre-training essentially
achieves the same goal of aligning two different
views of the same object into a common semantic
space. Although this framework performs well on
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the IGLUE benchmark, it requires a large amount
of parallel data. Its pre-training phase relies on
19M multilingual parallel sentence pairs extracted
from WikiMatrix (Schwenk et al., 2021), jointly
trained with 4 million image-text pairs in multiple
languages.

In this work, we are proposing a simple yet ef-
ficient way to adapt VLP models to unseen lan-
guages without requiring large parallel corpora.
We propose to align a VLPM monolingual text en-
coder (achieving start-of-the-art performance on
English downstream VL tasks) with a multilin-
gual pre-trained language model (e.g., mBERT),
using only small in-domain parallel text corpus.
The recent progress in Neural Machine Transla-
tion (NMT) has enabled us to create such a paral-
lel corpus from automatically translating the data
from English to any other language, even for low-
resource languages (i.e., Swahili). However, since
our approach relies on token alignment, it is robust
to errors made by NMT. Our zero-shot evaluation
across three of the four IGLUE tasks shows that
the proposed method achieves state-of-the-art re-
sults while using small set of in-domain parallel
sentences. The key steps of our approach are illus-
trated in Figure 1.

2 CLiCoTEA : Cross-Lingual
Contextualised Token Embedding
Alignment

We propose CLiCoTEA , an approach to transfer
a monolingual vision-language (VL) pre-trained
model in one language L1 where there is an abun-
dant number of training pairs of image and text (i.e.,
English) to a second language L2. As we focus in
this paper on the zero-shot setting, we do the trans-
fer after fine-tuning the pre-trained monolingual
VL model on a downstream task t, where training
samples are available in language L1.
CLiCoTEA consists of six steps:

1. Pre-train a monolingual VL model on a mas-
sive collection of image-text pairs, where text
is written in language L1.

2. Fine-tune the VL pre-trained model on the
downstream task t in language L1.

3. Create a parallel text corpus by translating the
training set from step 2 in the target language
L2. Note that this step can be done automati-
cally using neural machine translation.

4. Create a list of aligned tokens for each (poten-
tially noisy) parallel sentence using a token
alignment model.

5. Cross-lingual transfer by aligning contextu-
alised token embeddings. As illustrated in Fig-
ure 1a, it transfers the VL fine-tuned model to
the new language L2 by aligning a pre-trained
multilingual LM (e.g., mBERT or XLM-R)
with the text encoder of the VL pre-trained
model using the list of aligned tokens created
in step 4.

6. Zero-shot transfer to L2 by swapping the
monolingual text encoder from the VL pre-
trained model with the aligned multilingual
text encoder learned in step 5. An example of
visual reasoning in Indonesian is illustrated in
Figure 1b.

In practice, steps 1 and 2 are the most computa-
tionally expensive. Therefore, we propose to adapt
VL fine-tuned models to new languages by only
doing the steps from 3 to 5 which can be computed
in a few hours on a single GPU.

We note that CLiCoTEA could be used with any
multimodal pre-trained model where one of the
modalities is a monolingual text encoder. We focus
in this paper on VL models, but CLiCoTEA could
be applied for instance to a language-knowledge
model such as GreaseLM (Zhang et al., 2021) or
DRAGON (Yasunaga et al., 2022).

3 Experiment

3.1 Pre-trained Models

Vision-Language Model In step 1 of
CLiCoTEA , we use the Align BEfore Fuse
(ALBEF) framework1 (Li et al., 2021) as our
Vision-Language Pre-trained Model (VLPM). AL-
BEF has been fine-tuned on multiple downstream
VL tasks and achieves state-of-the-art performance.
We use the ALBEF fine-tuned models in step 2
for the downstream tasks described in Section 3.3.
Unlike other competitive VL pre-trained models
(such as BLIP (Li et al., 2022)) that inject visual
information by inserting cross-attention for each
transformer block of the text encoder, ALBEF
first encodes the image and text independently
with a detector-free image encoder and a text
encoder. Then it uses a multimodal encoder to fuse

1Code and models are available at https://github.
com/salesforce/ALBEF.
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the image features with the text features through
cross-modal attention. All encoders are based on
transformer networks with the text encoder being
a 6-layer transformer initialised using the first 6
layers of the BERTbase. We thus extract this 6-layer
text encoder for cross-lingual transfer training in
step 5.

Multilingual Language Model As a multilin-
gual pre-trained language model, we use the multi-
lingual BERT (mBERT)2 (Devlin et al., 2018). It
has been trained on the top 104 languages with
the largest Wikipedia using a masked language
modeling (MLM) objective and has demonstrated
remarkable zero-shot cross-lingual transfer capa-
bilities (Wu and Dredze, 2019; Pires et al., 2019;
Hu et al., 2020; Conneau et al., 2018). We extract
the first 6-layer transformer to be aligned with the
text encoder of ALBEF in step 5.

3.2 Implementation Details

Word Alignment Since the parallel sentences
do not contain word-level alignment informa-
tion, in step 4 of CLiCoTEA we utilize
awesome-align3 (Dou and Neubig, 2021)
which is a tool that automatically extracts word
alignments from mBERT. The generated word pairs
are then filtered for keeping only one-to-one, one-
to-many or many-to-one alignments and removing
many-to-many alignments. This is done for all lan-
guages except Chinese because otherwise less than
3% of the training data would remain in the set.
The advantage of this filtering is twofold: a) it re-
moves the noise from the matching word pairs; b)
it reduces the training time and computation. For
words that are split into sub-word tokens, we con-
sider either the left-most token embedding align-
ment (i.e., the first sub-word token of a word) or,
the average embedding across all sub-word tokens.

Contextualised Token Alignment Training
Given a set of aligned contextual word pairs
extracted from parallel sentences, we define
{xi, yi}ni=1, where xi ∈ Rd is the contextualised
embedding of token i in the target language (ob-
tained from mBERT), and yi ∈ Rd is the contex-
tualised embedding of its alignment in the source

2Available on HuggingFace hub
at https://huggingface.co/
bert-base-multilingual-cased.

3https://github.com/neulab/
awesome-align

language (obtained from the fine-tuned ALBEF)4.
In step 5 of CLiCoTEA , we minimise the follow-
ing training objective:

∑n
i=1 ||xi − yi||2.

The parameters of the source language encoder
are frozen, while the ones of the target language en-
coder are fine-tuned at training time. The learning
rate is set to 5.10−5. The batch size is set to 128.
These hyperparameters are set through the NLVR2,
Flickr30k, SNLI validation sets, for each task re-
spectively. For each target language, the training is
done on a single GeForce GTX TITAN X in a few
hours.

Data Augmentation As multilingual language
models are generally pre-trained on the source lan-
guage L1, the contextualised token alignment can
be trained not only with sentences from the tar-
get language L2, but also with sentences from the
source language L1. This strategy doubles the train-
ing size, and consequently, the training time but
it could be used with tasks where the number of
available training sentences is limited.

3.3 Downstream Tasks

In step 6, we evaluate CLiCoTEA on three tasks
from the IGLUE benchmark5 in the zero-shot set-
ting:

• xFlickr&CO: The dataset is composed of
1000 images from Flickr30K (Plummer et al.,
2015) and 1000 images from MSCOCO
dataset (Lin et al., 2014). These images come
along with croudsourced image captions in 6
different languages. xFlickr&CO is a retrieval
task dataset. It is composed of two subtasks:
image-to-text retrieval (TR) and text-to-image
retrieval (IR).

• XVNLI: The dataset consists in merging
SNLI hypothesis with Flickr30K (Plummer
et al., 2015) images and translate the test set
in four languages. The task is called visual
entailment (VE) which is a fine-grained rea-
soning task to determine whether a text hy-
pothesis “contradicts”, “entails”, or is “neu-
tral” with respect to an image.

• MaRVL: The dataset is a multilingual expan-
sion of NLVR2 dataset (Suhr et al., 2017),

4Note that the special [CLS] token is always included.
5We do not include the Cross-lingual Grounded Question

Answering task (xGQA (Pfeiffer et al., 2021)) as it requires
aligning the answer decoder too. We leave it as future work.
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with images related to concepts of five lan-
guages and cultures. The task is called visual
reasoning (VR) which consists in determining
whether a statement is correct given a pair of
images.

Step Retrieval VE VR

Fine-tuning Flickr30K SNLI NLVR2

Alignment Flickr30K∗ SNLI∗ NLVR2∗

Zero-shot Test xFlickr&CO XVNLI MaRVL

Table 1: The datasets used in the different steps of
CLiCoTEA . Translated train and validation captions
are denoted with ∗.

Table 1 shows the datasets used for a) fine-tuning
the monolingual VL pre-trained model in step 2,
b) training the alignment of contextualised token
embeddings in step 5, and c) testing the zero-shot
cross-lingual transfer in step 6. For creating the
parallel corpus in step 3, all datasets used for fine-
tuning the monolingual pre-trained VL model are
translated to the corresponding test dataset lan-
guages from the IGLUE benchmark using Google-
Trans Python API6. Statistics about the translation
datasets can be found in Section A.1. MaRVL
being the smallest dataset, the data augmentation
strategy described in Section 3.2 is applied only
for this task. Detailed results on data augmentation
can be found in Section 3.2.

3.4 Experimental Results

Results reported in Table 2 shows that CLiCoTEA
outperforms the state-of-the-art CCLM models for
all downstream tasks except retrieval. The larger
improvement against CCLM models is obtained in
visual entailment with an increase of almost 5%.
The superiority of CLiCoTEA is especially high
for Spanish (+7.68%), as can be seen from Table 10
in Section A.4. The average performance on vi-
sual reasoning is similar to CCLM, but CLiCoTEA
significantly outperforms CCLM by ±4% on the
low-resource languages such as Tamil and Swahili
(results per language can be seen in Table 8 in Sec-
tion A.3). For retrieval, CLiCoTEA outperforms
all models except CCLM4M. It is worth mentioning
that, unlike the other models, CCLM4M has been
pre-trained on COCO which could explain its supe-

6https://pypi.org/project/googletrans/

Model VE VR Retrieval

XVNLI MaRVL xFlickr&CO

IR TR

mUNITER 53.69 53.72 8.06 8.86

xUNITER 58.48 54.59 14.04 13.51

UC2 62.05 57.28 20.31 17.89

M3P 58.25 56.00 12.91 11.90

CCLM3M 74.64 65.91 67.35 65.37

CCLM4M 73.32 67.17 76.56 73.46

CLiCoTEA 78.15 68.09 67.45 65.07

Table 2: Zero-shot performance on IGLUE bench-
mark. Recall@1 and Accuracy are reported for retrieval
tasks (xFlickr&CO) and understanding tasks (XVNLI,
MaRVL) respectively. Results of compared models are
directly copied from Zeng et al. (2022).

riority on Flickr&CO dataset. More details about
the results on retrieval can be found in Section A.2.

4 Conclusion

In this paper, we present CLiCoTEA an approach
for adapting Vision-Language pre-trained models
to unseen languages. Unlike other approaches
that rely on an expensive pre-training phase (both
in terms of data and computation), our approach
adapts the contextualised token embeddings of a
multilingual pre-trained language model by align-
ing them with the contextualised token embed-
dings of the VLPM text encoder. By align-
ing ALBEF text encoder with mBERT, we show
that CLiCoTEA outperforms CCLM, which ex-
ploits massive parallel text and image-text corpora.
CLiCoTEA achieves start-of-the-art performance
on visual entailment and visual reasoning, with
an increase of almost 5% on visual entailment. It
also demonstrates its effectiveness, especially for
low-resource languages, as it does not require large
corpora to do the adaptation.

5 Limitations

The general performance of CLiCoTEA could be
improved with a better MPLM than mBERT, such
as XLM-R which has a larger token vocabulary and
has been pre-trained on a much larger dataset. Our
approach is currently not applicable to generation
tasks where a multilingual text decoder is needed
to generate text in unseen languages. We leave this
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adaptation for future work. Unlike the statement
made in Zeng et al. (2022), current multilingual
VL models still do not surpass the Translate-Test
baseline of the tasks from IGLUE benchmark. The
performance of CLiCoTEA is promising but the
best scores are still obtained when translating every-
thing to English and using the (English-only) AL-
BEF model. The smallest difference in accuracy on
MaRVL dataset between CLiCoTEA and ALBEF
with Translate-Test is obtained in Swahili (-2%),
while the gap is much larger (around -6%) for the
other languages. Outperforming the Translate-Test
achieved by ALBEF still remains an open chal-
lenge, especially for high-resource languages.
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A Appendix

A.1 Details of Alignment Datasets
Tables 3, 4, and 5 show the average number of
aligned tokens extracted from the translated sen-
tences of Flickr30k, SNLI, and NLVR2, respec-
tively.

Language Total number Avg. number of
of sentences aligned tokens

German 144935 8.74
Spanish 144990 10.04
Indonesian 144858 7.46
Russian 144526 6.44
Turkish 143664 4.83

Table 3: Statistics about Flickr30k translation set.

Language Total number Avg. number of
of sentences aligned tokens

Arabic 513683 2.95
Spanish 549785 6.31
French 549260 5.78
Russian 524308 3.60

Table 4: Statistics about SNLI translation set.

A.2 Results on Retrieval
Zero-shot performance on the Flickr&CO dataset,
the image-text and text-image retrieval tasks from
the IGLUE benchmark, for four available lan-
guages (DE: German, ES: Spanish, ID: Indone-
sian, RU: Russian, TR: Turkish) are reported in
Table 6 and Table 7, respectively. CLiCoTEA out-
performs all models except CCLM4M. Compared

Language Total number Avg. number of
of sentences aligned tokens

Indonesian 86325 8.27
Swahili 85415 5.46
Tamil 85241 4.53
Turkish 85050 5.42
Chinese 86373 10.76

Table 5: Statistics about NLVR2 translation set.

with CCLM3M, CCLM4M has been trained with 1M
additional image-text pairs from Visual Genome
and COCO datasets. The gap in performance be-
tween the two models on retrieval tasks suggests
that pre-training with COCO text-image pairs gives
a clear advantage to CCLM4M as Flickr&CO con-
tains 1000 images from COCO, while all other
models have been fine-tuned only on Flickr30K.

Model Language

DE ES ID RU TR

mUNITER 12.05 13.15 5.95 5.85 1.75

xUNITER 14.55 16.10 16.50 15.90 9.05

UC2 28.60 15.95 14.60 20.00 7.15

M3P 13.35 13.40 13.20 15.95 7.75

CCLM3M 67.67 71.23 62.38 72.83 55.15

CCLM4M 73.65 79.62 69.50 80.65 65.08

CLiCoTEA 61.48 74.50 64.98 73.50 62.80

Table 6: Zero-shot performance on multi-lingual image-
text retrieval with Flickr&CO dataset. Recall@1 is
reported.

A.3 Results on Natural Language Visual
Reasoning

Table 8 shows the zero-shot performance on the
MaRVL dataset, and the natural language visual
reasoning task from the IGLUE benchmark, for all
available languages (ID: Indonesian, SW: Swahili,
TA: Tamil, TR: Turkish, ZH: Chinese).

As MaRVL is the smallest dataset among the
three tasks from IGLUE, we apply the data aug-
mentation for training the alignment as described
in Section 3.2. Results reported in Table 9 show
that there is drop of 3.35% for Turkish, and 9.99%
for Chinese when training only using the target lan-
guage L2, while there is no significant difference
for the three other languages (Indonesian, Swahili,
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Model Language

DE ES ID RU TR

mUNITER 11.85 13.05 7.55 6.80 3.25

xUNITER 13.25 15.10 16.75 14.80 10.05

UC2 23.90 15.30 13.60 16.75 6.95

M3P 11.85 12.15 12.10 14.45 8.35

CCLM3M 66.88 68.58 60.33 69.90 54.22

CCLM4M 73.60 78.38 67.67 80.35 63.22

CLiCoTEA 70.34 71.42 57.77 69.80 56.00

Table 7: Zero-shot performance on multi-lingual text-
image retrieval with Flickr&CO dataset. Recall@1 is
reported.

Model Language

ID SW TA TR ZH

mUNITER 54.79 51.17 52.66 54.66 55.34

xUNITER 55.14 55.51 53.06 56.19 53.06

UC2 56.74 52.62 60.47 56.70 59.88

M3P 56.47 55.69 56.04 56.78 55.04

CCLM3M 67.81 61.55 60.28 69.60 70.52
CCLM4M 71.66 67.21 60.36 66.75 69.86

CLiCoTEA 69.55 71.30 63.93 70.72 64.93

Table 8: Zero-shot performance on visual reasoning
with MaRVL dataset. Accuracy is reported.

and Tamil). As explained in Section 3.2, our noise
filtering technique does not work well with Chi-
nese. Aligning the English sentences with half
of the original training set helped the model infer
knowledge from English and reduced the number
of wrong matching words. For Turkish, the in-
crease in performance could be explained by the
similarity between the two alphabets.

Training Set Language

ID SW TA TR ZH

L1 69.55 71.30 63.45 67.37 54.94

L1 + L2 68.53 70.31 63.93 70.72 64.93

Table 9: Zero-shot performance of CLiCoTEA on vi-
sual reasoning with MaRVL dataset using monolingual
(L1) or bilingual (L1 + L2) alignment training. Accu-
racy is reported.

A.4 Results on Visual Entailment

Zero-shot performance on the XVNLI dataset, the
visual entailment task from the IGLUE benchmark,
for all available languages (AR: Arabic, ES: Span-
ish, FR: French, RU: Russian) are reported in Ta-
ble 10. CLiCoTEA outperforms other models by
a significant margin for all languages, except Rus-
sian where CCLM3M achieves comparable perfor-
mance.

Model Language

AR ES FR RU

mUNITER 46.73 56.96 59.36 51.72

xUNITER 51.98 58.94 63.32 59.71

UC2 56.19 57.47 69.67 64.86

M3P 55.24 58.85 56.36 62.54

CCLM3M 71.04 75.80 78.14 73.56
CCLM4M 69.68 73.65 77.54 72.40

CLiCoTEA 75.83 83.48 80.17 73.13

Table 10: Zero-shot performance on visual entailment
with XVNLI dataset. Accuracy is reported.

A.5 In-domain vs Open-domain Data

Language Total number Accuracy
of sentences in %

Swahili 50400 63.27
Turkish 50418 66.61
Chinese 51159 59.09

Table 11: Zero-shot performance on visual reasoning
with MaRVL dataset. Alignment is done with a subset
from XNLI dataset.

In order to eliminate the need for machine trans-
lations from CLiCoTEA in step 3, we created a
parallel text corpus with sentences obtained from
XNLI (Conneau et al., 2018) which is publicly
available and covers 15 languages. A subset of
XNLI has been used for training the alignment
by considering only the sentences that were se-
mantically close to the captions in NLVR2. To
do so, we used the Sentence-Transformers
framework7 to compute sentence embeddings sim-

7Available at https://www.sbert.net.

372

 https://www.sbert.net


ilarities between NLVR2 captions and XNLI En-
glish sentences and kept only the sentences with a
cosine similarity higher than 0.5. About 50k En-
glish sentences from XNLI are semantically close
to NLVR2 captions, we thus selected their par-
allel sentences in Swahili, Turkish and Chinese
to perform an evaluation on MaRVL dataset. Af-
ter the contextualised token alignment training on
XNLI-based datasets, our results in Table 11 sug-
gest that a multilingual open-domain dataset gives
better results than mUNITER and xUNITER but
underperforms the results obtained by translating
in-domain training sets. This could be explained
by the fact that although these datasets are multi-
lingual, the sentences are not semantically close
enough to NLVR2 captions.
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