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Abstract

In this paper, we explore the efficacy of model-
ing extractive summarization with an abstrac-
tive summarization system. We propose three
novel inference algorithms for sequence-to-
sequence models, evaluate them on established
summarization benchmarks, and show that re-
cent advancements in abstractive designs have
enabled them to compete directly with extrac-
tive systems with custom extractive architec-
tures. We show for the first time that a single
model can simultaneously produce both state-
of-the-art abstractive and extractive summaries,
introducing a unified paradigm for summariza-
tion systems. Our results question fundamental
concepts of extractive systems and pave the
way for a new paradigm - generative modeling
for extractive summarization.1

1 Introduction

Extractive summarization selects a set of salient
sentences from the original document(s) and com-
poses them into a summary. Compared to abstrac-
tive summaries, made up of words or phrases that
do not appear in the input document, extractive
summaries are less flexible but avoid inconsisten-
cies and hallucinations. The pipeline for build-
ing an extractive summarizer typically consists of
two separate stages: sentence labeling and extrac-
tive modeling. Since few summarization datasets
come with gold labels indicating which document
sentences are summary-worthy, the first step is
to create oracle sentence labels (Nallapati et al.,
2017). The task is commonly modeled with a
sequence labeling architecture (Cheng and Lap-
ata, 2016) where a salience score is estimated for
each document sentence, and top-ranked sentences
are selected for summary inclusion. Recent work
has expanded extractive modeling to higher-order
sentence selection to account for complex label

1We distribute the code to replicate the results presented in
the paper at https://github.com/danielvarab/GenX.

Figure 1: Proposed inference methods for GenX. We
show (a) a two-stage approach with generative rank-
ing/reranking, which creates a set of candidate sum-
maries C from document sentences D, and (b) a single-
stage inference method, generative search, which ex-
tracts summary sentences yt autoregressively.

dependencies, via extracting sentences stepwise
(Narayan et al., 2020), or reranking a small set of
summary candidates (Zhong et al., 2020; An et al.,
2022).

In this work, we revisit these fundamental con-
cepts in extractive summarization. Specifically, we
highlight that heuristically-derived sentence labels
can be highly suboptimal (Narayan et al., 2018b;
Xu and Lapata, 2022b), and that customized neu-
ral architectures for extractive modeling prevent
taking advantage of independent improvements.
We recognize that generative modeling with a neu-
ral encoder-decoder architecture (Bahdanau et al.,
2015; Sutskever et al., 2014), the de facto choice for
abstractive summarization (Nallapati et al., 2017;
Zhang et al., 2020; Lewis et al., 2020), constitutes
a promising direction for extractive summariza-
tion. In particular, such models learn directly from
abstractive references and do, therefore, not re-
quire sentence labeling, while also embodying the
extractive capabilities previously enabled by spe-
cialized neural architectures. Existing literature
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has established varied and many connections be-
tween abstractive and extractive modeling such as
copy mechanism (See et al., 2017), content selec-
tion (Kedzie et al., 2018; Gehrmann et al., 2018),
and generation guidance (Dou et al., 2021). These
connections, however, are mostly abstract-centric
which are identified or constructed to improve ab-
stractive summarization. In contrast, there are few
studies from an extract-centric point of view.

In this work, we propose a new summarization
paradigm that unifies extractive and abstractive
summarization with generative modeling, without
compromising abstractive performance. To this
end, we treat extractive summarization as an in-
ference-time task and explore methods for adapt-
ing a pre-trained abstractive system for extrac-
tive summarization without further optimization.
We hypothesize that an abstractive system can
be used as a summary evaluator for not only ab-
stracts but extracts as well. A model optimized
on abstractve references should be able to pro-
vide an accurate quality estimation for an extrac-
tive candidate summary when conditioned on the
input document. A straightforward approach to
validate this assumption is to search for the best
document extract with an abstractive model for
candidate evaluation. However, performing an
exhaustive search over a combinatorial space of
all eligible summary candidates is computation-
ally intractable. To tackle this challenge, we pro-
pose GenX, Generative eXtractive summarization,
which introduces a set of inference algorithms
(shown in Figure 1) to reduce the search complex-
ity via various approximations of the entire search
space, at either sentence- or summary-level.

Experiments show that GenX achieves competi-
tive or superior performance compared to custom
systems developed for extractive summarization
on the CNN/DM benchmark without compromis-
ing its ability to generate abstracts. Particularly,
for one-stage summarization the proposed method
shows superior results to custom extractive state-
of-the-art systems. GenX also exhibits high robust-
ness in zero-shot transfer: on XSum, its zero-shot
performance surprisingly surpasses its fully super-
vised counterpart. We further conduct an extensive
analysis of GenX’s properties, providing potential
directions for future research on generative model-
ing for extractive summarization.

2 Generative Modeling for Extracts

Given a generative model θ trained on summariza-
tion data comprising documents and abstractive
references, at inference time, for an input docu-
ment D and a summary sequence Y , we estimate
the length-normalized log probability of Y , follow-
ing the standard practice in neural text generation
(Cho et al., 2014):

pθ(Y |D) =
1

|Y |

|Y |∑

t=1

log pθ(Yt|D,Y<t) (1)

As θ is optimized at the token level, we eval-
uate both complete and partial summaries with
pθ(Y |D).

The candidate summary space for a document
D = {si}ni=1 of n sentences is combinatorial, con-
sisting of |C(D)| = C

(
m
n

)
candidate summaries of

length m. To sidestep the computational intractabil-
ity, we introduce three inference algorithms that
reduce the search complexity via approximations.
The first two (ranking and reranking) construct a
candidate summary set, using either a discrimina-
tive or generative model (see Figure 1(a)), while
the last approach searches directly over the partial
summary candidate space (see Figure 1(b)).

Generative Ranking We employ a pre-trained
generative model at both sentence- and summary-
level for hierarchical ranking. Specifically, we in-
put each document sentence s into a generator and
evaluate its summary-worthiness independently via
its likelihood. We then rank all document sen-
tences, and any subset of size m of the top-k sen-
tences is considered as a candidate summary c. The
sequence-to-sequence generator then evaluates and
ranks all candidate summaries, and the highest-
ranked one is selected as the extractive hypothesis:

y = argmax
c⊆top-k pθ(s|D)

pθ (⊕(c)|D) (2)

where ⊕ concatenates the selected document sen-
tences in c, ordered by their rank.

Generative Reranking Instead of using the same
generative model for both sentence and summary
evaluation, we assume access to an existing dis-
criminative model pϕ(s|D) for sentence evaluation
and ranking. Following Zhong et al. (2020), we
adopt BERTSUMEXT (Liu and Lapata, 2019) to
score each document sentence and then build candi-
date summaries as the combinations of top-scoring
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Model R-1 R-2 R-L

Lead-3 40.42 17.62 36.67
Oracle 52.59 31.23 48.87

One-Stage Systems

BERTSumExt 42.73 20.13 39.20
RoBERTaSumExt 42.99 20.60 39.21
Stepwise ETCSum 43.84 20.80 39.77
GenX (Search) 43.57 20.55 40.01

Two-Stage Systems

BertSumExt+TRB 43.18 20.16 39.56
RoBERTaSumExt+TRB 43.30 20.58 39.48
MatchSum 44.41 20.86 40.55
Posthoc Rank 39.77 18.51 36.00
GenX (Rank) 42.90 19.99 39.09
GenX (Rerank) 43.76 20.82 40.02

Table 1: Results on CNN/DM test set. We bold highest
scores, and italicize scores of one-stage and two-stage
systems that are outside the 95% confidence interval of
GenX (Search) and GenX (Rerank), respectively (with
95% confidence interval via bootstrap resampling (Davi-
son and Hinkley, 1997)).

sentences. In this case, the role of generative mod-
eling is a summary-level reranker pθ(⊕(c)|D).

Generative Search Instead of ranking, we con-
sider constructing a summary by searching directly
over the sentence space, i.e., without first compos-
ing candidate summaries from the input document.
We propose a novel search algorithm that autore-
gressively selects a sentence until a stopping crite-
rion is satisfied. Specifically, at each search step t,
we evaluate and select a sentence as:

yt = argmax
s∈D

pθ(y<t ⊕ s|D) (3)

where ⊕ concatenates the selected sentences y<t

and a candidate sentence s. The selected sen-
tence yt is then concatenated with y<t to form
the selection history for the next step, as shown
in Figure 1(c). We follow common practice in
non-autoregressive extractive summarization (Liu
and Lapata, 2019; Zhong et al., 2020) and as-
sume a fixed number of sentences in the summary
hypothesis, leading to a fixed number of search
steps. Narayan et al. (2020) introduced a step-
wise model which employs a special stop-token
where the search stops when the token is generated.
To explore this we additionally experiment with
a dynamic stopping criterion where search over
sentences continues until the end of the sequence
token, EOS , provides a higher summary likelihood

Model R-1 R-2 R-L

BertSumExt (ZS) 20.54 2.93 15.55
BertSumExt+TRB (ZS) 20.62 2.95 15.62
MatchSum (ZS) 20.90 3.07 15.75
GenX (Search; Supervised) 17.90 2.79 13.36
GenX (Search; ZS) 20.94 2.96 15.92

Table 2: Results on XSum test set. We highlight highest
scores. ZS denotes zero-shot performance for models
trained on CNN/DM while Supervised uses XSum for
training.

than adding an additional sentence:

s.t. max
s∈D

pθ(y<t⊕ s|D) > pθ(y<t⊕ EOS|D). (4)

3 Experimental Setup

We perform supervised experiments on CNN/DM
(Hermann et al., 2015) and zero-shot experiments
on XSum (Narayan et al., 2018a). We evaluate
summaries with ROUGE (Lin and Hovy, 2003).
Details for our experimental settings and datasets
can be found in Appendix A.

As there is no established baseline for extractive
summarization with generative modeling, we con-
struct Posthoc Rank, a posthoc method for direct
comparison with GenX. The baseline first generates
an abstract using the abstractive model. Then, the
generated abstract is used to query document sen-
tences and m sentences are retrieved with BM25
as the summary while applying tri-gram blocking.

4 Results

Supervised Summarization Table 1 shows the
results of various systems trained and evaluated on
CNN/DM. The first block presents the performance
of the Lead-3 baseline which considers the first 3
sentences in a document as the summary and an
Oracle baseline which serves as an upper bound.

The second block reports the performance of
one-stage summarization systems. Stepwise ECT-
Sum (Narayan et al., 2020) is a state-of-the-art
autoregressive system that learns to score partial
summaries by selecting which sentence is a sum-
mary sentence iteratively. Different from GenX, it
is a highly-customized extractive architecture opti-
mized with extractive oracle summaries. As can be
seen, GenX performs on par with Stepwise ETC-
Sum, and outperforms BERTSumExt (Liu and La-
pata, 2019) and RoBERTaSumExt (Narayan et al.,
2020). Two popular extractive systems based on
sequence labeling.
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Model R-1 R-2 R-L

GenX (Search) 43.57 20.54 40.01
BART ↓5.11 ↓4.12 ↓5.08
Dynamic Stopping ↓0.11 ↓0.08 ↓0.10
Trigram Blocking ↓0.16 ↓0.26 ↓0.18

Table 3: Ablation study in CNN/DM test set.

The third block presents the results of two-stage
systems. TRB denotes an additional stage for sen-
tence selection with Trigram Blocking, an effec-
tive method for reducing redundancy. MatchSum
(Zhong et al., 2020) is a state-of-the-art extrac-
tive system that takes top-ranked sentences from
BERTSumExt and then re-ranks the summary can-
didates composed by them with a model based on a
Siamese-BERT architecture. As can be seen, GenX
models improve over the one-stage BERTSumExt
and RoBERTaSumExt, i.e., with or without BERT-
SumExt as a sentence-level ranker. Its reranking
variant also outperforms BERTSumExt+TRB and
RoBERTaSumExt+TRB, showing that generative
summary-level evaluation is more effective than
heuristically-derived selection criteria. Note, the
performance of GenX still falls short of state-of-
the-art MatchSum. This is all achieved while the
design allows the base generative model to retain
its ability to produce abstractive summaries. This
is not applicable to any existing extractive systems
except Posthoc Rank, which shows significantly
inferior performance.

Zero-Shot Summarization We also examine the
generalization capability of extractive systems in
a zero-shot setting.2 As shown in Table 2, GenX
generalizes to a different dataset robustly, outper-
forming strong one- and two-stage systems. It is
generally perceived that a model’s zero-shot per-
formance is inferior to the supervised performance.
Surprisingly, GenX performs substantially better
in the zero-shot setting than its supervised counter-
part. One potential reason for this is that despite
the discrepancy between training and inference,
CNN/DM is a more extractive dataset than XSum
(Liu and Lapata, 2019), and therefore contains
more extract-specific knowledge. Compared to
existing systems, GenX is more capable of transfer-
ring the extractive ability learned from CNN/DM
to XSum. This shows that treating extractive sum-
marization as an inference task can significantly

2We do not include zero-shot results of Stepwise ETCSum
as there are no publicly available code or models.

reduce the risk of overfitting to one specific dataset,
shedding light on a new direction for knowledge
transferring in zero-shot summarization.

5 Ablation Study

We further assessed GenX with an ablation study.
Replacing BRIO (trained with MLE and Con-
trastive Loss) with Bart (trained with MLE) leads to
the largest performance drop. With the augmenta-
tion of contrastive learning, the abstractive system
is competent in the dual role of both a generation
and evaluation model, emphasizing the importance
of calibrating a generative model on its summary-
level probability, even for its extractive inference.

The dynamic stopping mechanism introduced in
Equation (4) performs on par with fixed-step search,
showing that learning directly from abstracts is
a promising way to teach models when to stop
for summary extraction. GenX is also shown to
be able to search for extractive summaries of less
redundancy as its performance can not be further
improved by incorporating Trigram Blocking.

6 Efficiency

We have shown that abstractive systems are capa-
ble extractive summarizers, however, it is impor-
tant to highlight that the proposed method exhibits
different computational requirements than that of
contemporary extractive designs. Unlike extrac-
tive designs that compute a single score for a can-
didate sentence or summary (via a classification
token), abstractive systems produce scores for all
individual tokens in a candidate summary3. Com-
puting these extra tokens causes approaches such
as ranking and reranking with GenX more compu-
tationally demanding. However, when combined
with search GenX stands as an efficient solution
to searching through an otherwise intractable can-
didate summary space. This is enabled by an ab-
stractive system’s ability to sequentially score text
(see Equation 1) and boils down to the complexity
of beam search. This is a clear improvement in
computational efficiency over systems like Match-
Sum which only supports scoring complete sum-
maries and must exhaustively recompute different
permutations in the candidate summary spaces. To
make this strategy computationally tractable these
models resort to heavy pruning which limits the

3For the sake of generality we ignore computational costs
related to encoding as this varies across models but emphasize
that it can have sizable practical implications.
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expressiveness that high-order modeling otherwise
enables.

7 Related Work

There is a plethora of work on controlling differ-
ent aspects of summarization, from content (Xu
and Lapata, 2022a; Ahuja et al., 2022) to formats
(Zhong et al., 2022). In this work, we offer effi-
cient and effective control over the summary type
(extract versus abstract) during inference. Recent
work also investigates how to treat discriminative
tasks such as information extraction and retrieval
with generative modeling and its effectiveness for
entities (De Cao et al., 2020) and string identifiers
(Bevilacqua et al., 2022). Others have suggested
delegating extractive inference to the encoder of
a generative model (An et al., 2022). Despite the
resemblances, extractive summarization with gener-
ative modeling remains under-explored and stands
as a promising research direction with the surge of
innovations in large language models.

8 Conclusion

In this paper, we explored the possibility of mod-
eling extractive summarization with an abstractive
system. We proposed three novel inference algo-
rithms which allow an abstractive model to perform
the extractive task. Our results showed that not only
is extractive summarization feasible, but recent sys-
tems are directly competitive with contemporary
extractive systems. This work shows that extractive
and abstractive paradigms can be unified through a
sequence-to-sequence design, removing the need
for oracle summary labels and custom extractive
model architectures.

9 Limitations

One potential way to improve the extractive per-
formance of a generative system is to explicitly
model the likelihood of extracts during training.
Driven by this intuition, we investigate creating
a mixture of extractive and abstractive candidates
for contrastive learning in BRIO. Specifically, we
obtain extractive candidates with beam labeling
proposed in Xu and Lapata (2022b), while the ab-
stractive ones are from the original BRIO training
data. Nevertheless, as we can see, this mixing
method hurts both BRIO’s extractive and abstrac-
tive performance. However, it is noteworthy that
extractive summary is important in a wider con-
text, as shown in Section 4: reference summaries

in CNN/DM are highly extractive and optimizing
a model on these summaries therefore may have
provided it with the task instruction needed for ex-
tractive summarization, albeit implicitly. We leave
the study of a more effective extract-aware learning
strategy for future study.

Furthermore, we emphasize that the conclusions
drawn in this paper are based on results produced
on English datasets from the news domain. Even
though these datasets are established benchmark
datasets for summarization it is imaginable that
other domains and languages may have produced
different evidence. Despite this, the results remain
insightful as the results show that extractive summa-
rization is in fact feasible with modern abstractive
systems. In future research, we look forward to
shedding light on the possibilities and limitations
of the proposed methods in a broader context.
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A Implementation Details

We show detailed data statistics in Table 4. For
our GenX experiments, we use the BRIO sys-
tem (Liu et al., 2022) as our underlying abstrac-
tive model. To replicate the BRIO system we
run the published code repository associated with
the paper. Specifically, we initialize a BART
model with the Huggingface Models Hub check-
point facebook/bart-large-cnn and fine-tune it
with the provided configuration using the train-
ing scheme presented in the paper on both the
CNN/Dailymail, and XSum dataset using the data
distributed in said repository. We train the model
with full precision on a single machine with four
Tesla V100 GPUs for 30 hours and choose the
checkpoint with the lowest cross-entropy (genera-
tive) loss term on a held-out validation set. Inter-
estingly choosing the checkpoint with the lowest
contrastive term produces poor results. Also, using
mixed precision training doesn’t appear to work.

To run the inference algorithms we initialize a
BART system with different weights, either ob-
tained through the above training procedure (BRIO)
or the baseline facebook/bart-large-cnn check-
point. The hyperparameter m is identical to the
desired length of the generated summary. m was
tuned on the validation set and set to 3 for the
CNN/DM dataset, and 2 for the XSum. k was set
to 5, following MatchSum system. We studied the
effects of various length penalties in Equation 1 and
did not find our approach sensitive to its choice and
omitted it from the equation. For this computation
we run the model under fp16 mixed precision to
save memory, however, casting the model entirely
to half-precision for inference does not appear to
work.

Datasets CNN/DM XSum

Language En En
Domain Newswire Newswire
#Train 287,084 203,02
#Validation 13,367 11,273
#Test 11,489 11,332
#Sentences in Extract 3 2

Table 4: Data statistics for extractive summarization.

We used standard parameter settings for all ex-
periments: ROUGE-1.5.5.pl -c 95 -m -r 1000 -n 2
-a.

B License Information

The datasets used in this work, CNN/DM (Her-
mann et al., 2015) and XSum (Narayan et al.,
2018a), are both released under the MIT License.

C System Output
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Document: We spend a third of our lives asleep, but most of us don’t pay attention to what our mind
and body actually need during these resting hours in order to feel refreshed every day. The Sleep
Health Foundation have released a study reporting that 30 percent of Australians complain about their
lack of sleep on a daily basis. According to Chair Professor David Hillman, those misplaced hours of
sleep must be paid back in order to be functional for the entire week. A study has outlined that 30
percent of Australians complain about their lack of sleep on a daily basis. The average adult needs
around eight hours of sleep per night with a range of seven to nine. The average amount of sleep for an
adult is around eight hours, with a range of seven to nine, the ABC have reported. Any less than six
hours or any more than 10 hours is unusual for the standard person. Professor Hillman added that our
sleep pattern is influenced by how much we are willing to compromise from the work week. ’A lot
of us pay back a bit of that debt on the weekend but I think it’s possible to exist in a sort of tolerable,
sleep-restricted state,’ he said. ’In other words you’re not optimal, but you’re still functional.’ Pushing
these sleep-debt boundaries can lead to micro sleeps in certain people. Therefore, the hours must be
paid back to avoid an error rate in alertness tasks. Any less than six or any more than ten hours is
unusual for the standard person. If power napping, it is important to get no more than 20 minutes or
inertia will set in. In relation to a sleep schedule, Professor Hillman said the eight hours per night does
not necessarily need to be consecutive. ’Interestingly enough, your slow wave sleep, is in the first four
hours,’ he said. ’Most adults, the most convenient way our particular society is organised is to have
your eight hours in a continuous block overnight but that’s not a necessary thing.’ If choosing to break
up your eight hours of sleep, napping throughout the day is the answer. Professor Hillman advises 20
minute power naps to avoid falling into deep sleep and suffering from inertia which makes you feel
temporarily worse off. ’The longer naps, you get the sleep inertia but ultimately once you’ve got up,
they sustain you better,’ he said. Professor Hillman has also advised that if you are waking up tired
and fatigued it could be due to sleep apnoea which is often associated with snoring.

Reference Summary: The Sleep Foundation study has shown that adults need 8 hours of sleep.
According to the study, 30 percent of Australians say they lack sleep daily. Professor David Hillman
said it’s important to pay back our sleep debts. He also says sleep can be broken up as long as you get
the first 4 hours. Power naps should not be longer than 20 minutes or inertia will set in.

BertSumExt: The Sleep Health Foundation have released a study reporting that 30 percent of
Australians complain about their lack of sleep on a daily basis. The average adult needs around eight
hours of sleep per night with a range of seven to nine. Any less than six hours or any more than 10
hours is unusual for the standard person.

MatchSum: The Sleep Health Foundation have released a study reporting that 30 percent of Australians
complain about their lack of sleep on a daily basis. The average adult needs around eight hours of
sleep per night with a range of seven to nine.

GenX (Search): A study has outlined that 30 percent of Australians complain about their lack of sleep
on a daily basis. The average adult needs around eight hours of sleep per night with a range of seven to
nine. According to Chair Professor David Hillman, those misplaced hours of sleep must be paid back
in order to be functional for the entire week.

Table 5: Examples of system output on the CNN/DM test set. BertSumExt adds an unnecessary sentence highlighted
in red. MatchSum removes this sentence, while GenX adds an additional sentence, highlighted in blue, which is
reflected in the reference summary but missing from the other two system outputs.

337



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 9.

�7 A2. Did you discuss any potential risks of your work?
Section 9.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3 and 4.

�3 B1. Did you cite the creators of artifacts you used?
Section 3-4 and Appendix A-B.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix B.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Appendix A.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We used existing benchmarks as they are for fair comparisons.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Appendix A.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix A.

C �3 Did you run computational experiments?
Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix A.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

338

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix A.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

339


