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Abstract

Recent studies show that large-scale pre-
trained language models could be efficaciously
adapted to particular tasks in a parameter-
efficient manner. The trained lightweight set
of parameters, such as adapters, can be easily
stored and shared as a capability equipped
with the corresponding models. Owning
many lightweight parameters, we focus on
transferring them between tasks to acquire an
improvement in performance of new tasks, the
key point of which is to obtain the similarity
between tasks. In this paper, we explore 5
parameter-efficient weight ensembling meth-
ods to achieve such transferability and verify
the effectiveness of them. These methods
extract the information of datasets and trained
lightweight parameters from different perspec-
tives to obtain the similarity between tasks,
and weight the existing lightweight parameters
according to the comparability to acquire a suit-
able module for the initialization of new tasks.
We apply them to three parameter-efficient
tuning methods and test them on a wide set
of downstream tasks. Experimental results
show that our methods show an improvement
of 5%~8% over baselines and could largely
facilitate task-level knowledge transfer.

1 Introduction

Increasingly large pre-trained language models
(PTMs) (Bommasani et al., 2021; Han et al.,
2021; Raffel et al., 2020; Brown et al., 2020) have
yielded exceptional performances on a variety of
tasks but also suffer from prohibitive adaptation
costs with full parameter fine-tuning. It is not
a feasible choice to fine-tune all parameters of
a colossal model for each specific downstream
task and produce a corresponding instance at the
same size. To overcome this obstacle, a branch of
research, namely parameter-efficient tuning, has
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been actively developed and explored (Ding et al.,
2023; Houlsby et al., 2019; Li and Liang, 2021;
Lester et al., 2021; Hu et al., 2021).

It demonstrates that only optimizing a tiny por-
tion of parameters and keeping the PTM frozen
could achieve on-par performance with full pa-
rameter fine-tuning on many tasks. After train-
ing, the set of updated parameters is lightweight
and portable for storing and sharing. Although the
specific structures of these parameters may be dif-
ferent, we treat them in a unified perspective and
call them lightweight objects. Once lightweight
objects are trained, they can be adapted to specific
datasets conditioned on a large-scale PTM and be
placed aside for storage in a space-efficient man-
ner. Due to its lightweight nature, it is pragmatic to
build a platform to store and share such lightweight
objects for various scenarios (Beck et al., 2022).

However, the maneuverability of the platform
for storing and sharing lightweight objects is
still not fully exploited. In the current paradigm,
one could directly access and utilize lightweight
objects trained on existing datasets but face hin-
drances in utilizing the knowledge of these objects
for new datasets (Vu et al., 2021). Such existing
lightweight objects can be a valuable resource, as
the knowledge contained in them has the probabil-
ity of transferring to similar tasks. In this paper, we
focus on the transferring of lightweight objects and
aim to leverage them to boost the performance of
new datasets. We assume that more similar tasks
can share more knowledge, so the key point is to
acquire the similarity between existing lightweight
objects and new tasks. Specifically, we first
assess 3 straightforward approaches to facilitate
parameter-efficient tuning on new datasets. Observ-
ing unsatisfactory results on such approaches, we
develop a parameter-efficient weight ensembling
framework that could produce a set of parameters
according to new datasets and existing lightweight
objects. Under the framework, we explore 5
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Figure 1: The framework of parameter-efficient weight ensembling. With the pre-existing lightweight objects
{01,0,...,0,} and the new task, the investigated methods are applied to obtain the indicator vector S , the i-th
element of which assesses the contribution of O; on Tpew. The dot product of Softmax(S) and {01, Oy, ..., O, }
is the lightweight object for the initialization of the new task.

specific methods as a comprehensive study.
Extensive experiments across 8 transferring ap-
proaches, 51 downstream datasets, and 3 parameter-
efficient tuning methods demonstrate that the
parameter-based framework could considerably ad-
vance the performance compared to baseline meth-
ods. We further carry out experimental analysis
to verify the compatibility and internal properties.

2 Investigated Methods

We consider a scenario where pre-trained language
models M are frozen. And for downstream
tasks {71,732, ..., Tn}, the associated lightweight
modules O* = {01, Os, ..., O, } are produced via
parameter-efficient fine-tuning (e.g., LoRA (Hu
et al.,, 2021), Adapter (Houlsby et al., 2019)).
Given a new task Tnew with a few examples, our
goal is to explore the best approach to utilize
pre-existing lightweight objects to cultivate the
best-performing lightweight object Oy for the
initialization of 7pey. We investigate 9 strategies to
transfer lightweight objects across tasks, including
3 baselines and 5 particular methods under our
parameter-efficient weight ensembling framework.

2.1 Baselines

Straightforward methods are directly averaging
all objects and further, averaging objects of
similar tasks. These 2 methods and the random
initialization way (From Scratch) are simple and
intuitive, and we treat them as baselines.

From Scratch. This approach is the common
parameter-efficient tuning pipeline. We train a ran-
domly initialized lightweight object on the training
set of the new task and evaluate it on the test set.

Avg. of Checkpoints. This approach straightfor-
wardly takes the average of the checkpoints of all
existing lightweight objects as the initialization of
the new lightweight object. And the new object is
trained on the training set and evaluated on the test
set, formally, Opey % >0,

Manual Division. We manually select tasks that
are similar to the new task based on the similarity
of the task data and then average the lightweight
objects corresponding to these tasks and use the
result for initialization. This method is employed
by Friedman et al. 2021.

2.2 Parametric Efficient Weight Ensembling

In accordance with the tenet of digging for more
information about the transfer with less cost, we
develop a parameter-efficient weight ensembling
framework, the core of which is to obtain a
similarity indicator. We explore 4 methods (Loss,
KL-divergence, EL2N, and Cosine of Logits and
Labels) acquiring the indicator mainly from the
data and 1 method (GraNd) acquiring the indicator
mainly from the weights under the framework.

We consider the procedure to exploit existing
lightweight objects as a process of soft selection,
similar to attention networks. Such a selection is
conducted based on an indicator S; that assesses
the contribution of one existing lightweight
object O; on Tpew, the initialization of the new
lightweight object can be obtained by

Onew = Z Softmax(S;/T) - O; (1)

where T is the h}%ﬁér—parameter of the temperature
indicator. Next, we introduce instantiations that
are explored in this paper to construct different S.
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Loss. The output of the zero-shot loss function is a
reasonable measurement under this circumstance.
We directly feed examples of the valid data of Tpew
to O; and compute the CrossEntropy loss £; with-
out any optimization. The indicator is set to the
opposite of the loss output S; = —L;.

KL-divergence. We first train a randomly initial-
ized lightweight object Opey on the training set of
Taew- Then we feed examples of the valid dataset
of Thew separately to O; and @new. For the two
lightweight objects, we take the representation of
the final layer of each output token ?;; through a
softmax function to obtain the corresponding prob-
ability distributions P;; and 75@-. ‘We then calculate
the KL-divergence K;; to assess the similarity of
the two distributions that further contributes to the
final indicator. After iterating the process for all
the tokens, we add up the KL-divergence and take
the opposite as the indicator S; = —> y Kij.

EL2N. Similar to the foregoing method of KL-
divergence, for a lightweight object O;, we obtain
a probability distribution P;; for each output to-
ken ¢; in Tpew. At the same time, we construct a
one-hot vector V;; of the ground truth label. In
this approach, we directly calculate the Euclidean
distance of P;; and V;; as a measurement, denoted
as d;j. The final indicator is the inverse of the
summation of d for all the tokens S; = —> i djj.

Cosine of Logits and Labels. The process of this
method is basically the same as the last approach,
except we use the cosine function to calculate the
measurement between P;; and O;;.

GraNd. Gradients can be viewed as the amount
of change a model needs to adapt to a specific task.
Similar to the approach that involves loss function,
we directly feed examples in Tphew to a lightweight
object O; and calculate the CrossEntropy loss.
Then for each layer of the lightweight object, we
compute the gradient of parameters with respect to
the cross-entropy loss. Then we calculate the sum
of the squares of these gradients G; and take the in-
verse of the rooting of the sum to get S; = —/G;.

The above methods consider the possible
contributions of existing lightweight objects O; to
Ohew from various technical angles for knowledge
transfer. In the empirical study of the next section,
we show that our approaches could substantially
outperform existing baselines and tap the potential
of existing lightweight objects.

3 Experiments

In this section, we apply the aforementioned ap-
proaches in different scenarios for experimental
comparisons and analysis.

3.1 Experiment Settings

We use T5pase as the backbone model and choose
32 Question Answering (QA) tasks from CrossFit
Gym (Ye et al., 2021) for evaluation. To further as-
sess the generality of the investigated methods, we
also experiment our methods on 19 more diverse
tasks. All tasks are formulated into the text-to-text
format. We iteratively treat each task as the up-
coming new task and the remaining 31 tasks as
existing tasks in the platform. In this way, we do
32 trials with different new tasks and get 32 re-
sults. After that, we average all 32 results as the
final result. We randomly select a small amount
of data from the original datasets of the new task.
Specifically, the data of the i-th new task T; could
be represented as a tuple of (D! ., Di. ,Di), and
the sizes of D! ;, and DY, are both set to 16n for
the n-classification tasks and 64 for other tasks. We
apply our approaches to three popular parameter-
efficient tuning methods (Adapter (Houlsby et al.,
2019), LoRA (Hu et al., 2021), Prefix (Li and
Liang, 2021)). Given that the PTM we mainly use
is T5pase, and that the prompt tuning (Lester et al.,
2021) method has significant convergence issues
when applied to it, we choose not to experiment
with prompt tuning method. Other experimental
settings are shown in Appendix A.

3.2 Results and Analysis

Results on 32 QA Tasks. As reported in Table 1,
we observe that: (1) the results of our approaches
considerably outperform existing baselines in
general, and the superiority holds for all three
parameter-efficient methods. (2) The results of
approaches that rely on the information from data
(e.g., Cosine of Logits and Labels) are generally
better than those resorting to the information from
the weights (GraNd). (3) EL2N and Cosine of
Logits and Labels, which directly extract informa-
tion from the difference between logits and labels,
perform best in knowledge transfer. We suspect
that it would be easier to extract task features
directly from the data under the framework.

Results on 51 Diverse Tasks. In addition to the
QA tasks, we expand the size of evaluation datasets
to 51 to further evaluate the knowledge transfer
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Approach Adapter LoRA Prefix
Baselines

From Scratch 31.7 31.5 30.1

Avg. of

Checkpoints 329 33.8 31.8

Manual Division ~ 34.9 35.4 323
Parameter-efficient Weight Ensembling

GraNd 345 (-0.4) 354 (+0.0) 35.1(+2.8)

Loss 38.9 (+4.0) 38.7(+3.3) 36.2(+3.9)

KL-divergence 374 (+2.5) 37.1 (+1.7) 35.7(+3.4)

EL2N 38.6 (+3.7) 39.1 (+3.7) 37.3 (+5.0)

Cosine of Logits ) o

and Labels 40.4 (+5.5) 39.5(+4.5) 37.2(+4.9)

Table 1: Test results of existing baselines and our
approaches. Numbers in parentheses are the difference
between the method and the best-performing baseline.

across tasks, including classification, question an-
swering, conditional generation, and others. With-
out losing generality, we use Adapter for the fol-
lowing experiments. As reported in Table 2, we
could observe similar empirical conclusions as the
QA experiments. In a more diverse setting, gradi-
ent information cannot reflect vital knowledge for
cross-task transfer, resulting in unsatisfactory per-
formance of GraNd. At the same time, the setting
of more diverse tasks also makes knowledge trans-
fer more difficult, which makes the gap between
our approach and baseline slightly narrower.

, Parametric Efficient o,
Baselines iff f

Weight Ensembling
+10.9 49.1
50 T5-base
+10.3 +9.7
TS-large -
+10.7 105
+10.5
45
+8.1
40
+3.6
35
30 -
From Avg.of Manual ;iGraNd Loss KL EL2N  Logits &
Scratch  Ckpt Labels

Figure 2: Performance comparisons of different back-
bones of each method.

Results with TS;0e. We also investigate the im-
pact of the backbone model. As illustrated in Fig-
ure 2, by directly replacing the backbone model
from TSpase t0 TSjarge, We could observe that all the
methods gain considerable improvements. Meth-
ods of parameter-efficient weight ensembling gen-
erally gain about 10% of improvement, indicating

Approach All Task
Baselines

From Scratch 41.7

Avg. of Checkpoints 41.8

Manual Division 44.6

Parameter-efficient Weight Ensembling

GraNd 439 (-0.7)
Loss 45.8 (+1.2)
KL-divergence 44.7 (+0.1)
EL2N 47.2 (+2.6)
Cosine of Logits

and Labels 478 (+3.2)

Table 2: The results on 51 downstream tasks with the
adapter as the lightweight object.

that our approaches allow for knowledge transfer
under different backbone models and may achieve
more significant results for large models.

Impact of the Number of Shots. In order to
test whether our methods are effective under
the data-rich scenario, we increase the amount
of training data for the new task and conduct
experiments similar to those described in Results
on 32 QA Tasks. Specifically, we set the sizes of
Dfrain and Déev to N x k for the N-classification
tasks and 4k for other tasks. In this experiment,
we set k to 32, 64, 128 and 512, respectively.

Without loss of generality, we apply our ap-
proaches only to adapter-tuning, and experiment
with the From Scratch, Manual Division and Co-
sine of Logits and Labels approaches when k is 128
and 512. It is worth mentioning that we use differ-
ent hyper-parameters in experiments with different
amounts of data. We use the hyper-parameters in
the few-shot line in Table 5 in Appendix A when
kis 32 and 64 and use the hyper-parameters in the
full data line in Table 5 in Appendix A when k is
128 and 512.

The specific results are listed in Table 3, from
which we conclude that (1) the results of our ap-
proaches outperform existing baselines in general;
(2) the setting of more data makes the gain directly
from original datasets more abundant, resulting in
less gain from existing lightweight objects, which
makes the gap of results between our approach and
baseline narrower.

Analysis of Module Importance. To analyze the
importance of different modules of the lightweight
object in knowledge transfer, we experiment based
on the modified GraNd approach, which can
extract the information of a certain module more in-
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K 32 64 128 512
Baselines

From Scratch 33,5 363 388 454

Avg. of

Checkpoints 35.1 377 } )

Manual Division 373 392 415 476

Parameter-efficient Weight Ensembling

Loss 40.5 42.6 - -
KL-divergence 39.2 415 - -
EL2N 41.1 43.0 - -
Cosine of Logits

and Labels 411 43.7 439 479

Table 3: The (test) results of the parallel experiment
where we increase the amount of data for the new task.

dependently. Specifically, we compute the gradient
of parameters with respect to the cross-entropy loss
for one particular part P of the lightweight object.
The base model we choose, TSpase, consists of 12
encoder blocks and 12 decoder blocks, and every
decoder block has 3 sub-layers (i.e., self-attention

layer, cross-attention-layer, and feedforward layer).

Taking P as the Adapter layers in these 12 4 12
blocks in turn, we apply the modified GraNd
approach and acquire 24 results. The respective
averages of 12 results corresponding to the encoder
and 12 results corresponding to the decoder are
listed in Table 4. Similarly, we take P as the
Adapter layers in the 3 x 12 sub-layers in the
decoder blocks, considering the results related to
decoder are better than those related to encoder,
in turn, and obtain 36 results. We respectively
average the 12 results of self-attention layers,
cross-attention layers, and feedforward layers and
acquire 3 results that are listed in Table 4. All
layer-wise results are shown in Appendix B.

These results could reflect the importance of
different modules in parameter-efficient knowledge
transfer. We observe (1) the results of the decoder
blocks are higher than those of the encoder
blocks, indicating more importance of the decoder;
(2) in decoder blocks, cross-attention layers
produce lower results than self-attention layers
and feed-forward layers, and it demonstrates that
information that is propagated in the decoder is
crucial for knowledge transfer.

4 Conclusion

This paper investigates task-level knowledge
transfer under the scenario of parameter-efficient

Encoder Decoder Self'- Cros§- FF
Attention Attention
Block Block Layer
Layer Layer
32.7 36.2 ‘ 36.95 33.88 37.01

Table 4: The (test) results of the parallel experiment
where we apply the modified GraNd approach on differ-
ent blocks and layers of the PLM.

tuning. We empirically explore 8 strategies
to use existing lightweight objects to perform
knowledge transfer for the adaptation of new
tasks. Experimental results and analysis show that
our methods could effectively utilize knowledge
distributed in lightweight objects. We expect our
exploration could facilitate the development and
application of parameter-efficient tuning of large
language models.

Limitations

Our approaches that are developed in the parameter-
efficient weight ensembling framework, and exper-
iments have the following limitations. First of all,
our framework cannot efficiently extract informa-
tion from the parameters of the trained lightweight
objects, resulting in relatively unsatisfactory
performance of the approach resorting to the infor-
mation from the weights, i.e., GraNd. Furthermore,
the modules that we focus on in our analysis of
module importance are only blocks and sub-layers
of the blocks. We have not probed finer modules,
in which we speculate more precise information
about transferring lightweight objects across tasks
is concealed. Last, all tasks in our experiments are
formulated into the text-to-text format, and we have
not conducted analysis on tasks in other formats.
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A Experiments Details

In this section, we describe the experimental set-
tings in detail. The 32 Question Answering tasks
and 19 diverse tasks are listed in Table 6. All
datasets are publicly-available and downloaded
from huggingface datasets'. The lightweight ob-
jects which we use to produce the lightweight mod-
ule for initialization are trained with full data, and
the hyper-parameters of this experiment are listed
in the line of full data in Table 5. For the ap-
proaches which require tuning the lightweight ob-
jects for a small number of steps first, we train 200
steps first and evaluate every 50 steps. For the other
approaches, we choose 30 examples for the classi-
fication tasks or 50 examples (for other tasks) to
generate indicators that will be used to synthesize
the initialization for the upcoming task. The partic-
ular hyper-parameters are reported in Table 5. We
also do all parameter fine-tuning experiment with
full data, the test result of which is 54.2

We use Huggingface Transformers (Wolf et al.,
2020) and PyTorch (Paszke et al., 2019) for
all the experiments. Our experiments are done
with NVIDIA A100 (maximum GPU mem-
ory=39.58GB). Producing the lightweight object
Ohew Of Thew through our investigated methods
takes approximately 15 minutes and occupies 10
GB GPU memory on average, while testing on 32
QA tasks takes approximately 11 hours and occu-
pies 18 GB GPU memory on average. TSp,se model
(checkpoints released by Lester et al. (2021)) con-
tains 248 million parameters.

hyper-parameter few-shot full data
learning rate Se-4 Se-4
batch size 8 16
earlystop steps 10 20
evaluation interval 100 1000
adapter size 12 12
lora size 10 10
prefix r 24 24
prefix num 120 120

Table 5: Hyper-parameter setting. The line of few-shot
shows hyper-parameter of the experiments in which we
test our approaches, while the line of full data shows
hyper-parameter of the experiments in which we get the
lightweight objects.

'https://huggingface.co/datasets

Question Answering / Machine Reading Comprehension

adversarialga (Bartolo et al., 2020)
hotpot_qa (Yang et al., 2018)
superglue-record (Zhang et al., 2020)

Question Answering / Multiple-choice Question Answering

ai2_arc (Clark et al., 2018)

codah (Chen et al., 2019a)
commonsense_ga (Talmor et al., 2018)
cosmos_qa (Huang et al., 2019)

dream (Sun et al., 2019)

hellaswag (Zellers et al., 2019)

openbookqa (Mihaylov et al., 2018)

qasc (Khot et al., 2020)

quail (Rogers et al., 2020)

quarel (Tafjord et al., 2019a)
quartz-no_knowledge (Tafjord et al., 2019b)
quartz-with_knowledge (Tafjord et al., 2019b)
race-high (Lai et al., 2017)

race-middle (Lai et al., 2017)

sciq (Welbl et al., 2017)

superglue-copa (Gordon et al., 2012)

swag (Zellers et al., 2018)

wino_grande (Sakaguchi et al., 2021)

wiqa (Tandon et al., 2019)

Question Answering / Binary

boolq (Clark et al., 2019)
mc_taco (Zhou et al., 2019)

Question Answering / Long-form Question Answering
eli5-askh (Fan et al., 2019)
eliS-asks (Fan et al., 2019)
eli5-eli5 (Fan et al., 2019)

Question Answering / Closed-book Question Answering

lama-conceptnet (Petroni et al., 2019)
lama-google_re (Petroni et al., 2019)
numer_sense (Lin et al., 2020)
search_qga (Dunn et al., 2017)
web_questions (Berant et al., 2013)

Classification / Sentiment Analysis

amazon_polarity (McAuley and Leskovec, 2013)
financial_phrasebank (Malo et al., 2014)

Classification / Nli

anli (Nie et al., 2019)
scitail (Khot et al., 2018)

Classification / Fact Checking

climate_fever (Diggelmann et al., 2020)
health_fact (Kotonya and Toni, 2020)
liar (Wang, 2017)

tab_fact (Chen et al., 2019b)

Classification / Emotion

tweet_eval-offensive (Barbieri et al., 2020)
tweet_eval-sentiment (Barbieri et al., 2020)
tweet_eval-irony (Barbieri et al., 2020)

Classification / Paraphrase

glue-mrpc (Dolan and Brockett, 2005)

glue-qqp
medical_questions_pairs (McCreery et al., 2020)

Conditoinal Generation / Summarization

samsum (Gliwa et al., 2019)
xsum (Narayan et al., 2018)

Others / Linguistic Phenomenon

blimp-ellipsis_n_bar_1 (Warstadt et al., 2020)
blimp-irregular_past_participle_adjectives
(Warstadt et al., 2020)
blimp-sentential_negation_npi_scope
(Warstadt et al., 2020)

Table 6: All the tasks which we use in the experiments.
The first 32 tasks are Question Answering tasks, and the
the last 19 tasks are other diverse tasks.
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B Details and Extension of the Analysis of
Module Importance

All the 60 experimental results described in Anal-
ysis of Module Importance. in Experiments 3.2
are listed in Table 7 (24 results corresponding to
blocks) and Table 8 (36 results corresponding to
layers). There exist some results that are satisfac-
tory compared to the results listed in Table 1, which
indicates the potential of the GraNd approach.

Block Encoder Decoder

Number Block Block
0 31.9 37.5
1 32.6 359
2 31.7 37.1
3 324 35.9
4 33.9 35.1
5 32.3 374
6 33.8 36.0
7 33.0 34.5
8 32.6 36.9
9 32.1 36.9
10 32.5 34.6
11 33.7 36.6

average 32.7 36.2

Table 7: The (test) results of parallel experiment where
we apply the modified GraNd approach on different
blocks of the PLM.

Block SelfAttention CrossAttention FF
Num- Layer Layer Layer
ber
0 37.9 37.2 35.7
1 37.1 36.8 37.2
2 35.6 34.1 37.6
3 354 35.1 38.3
4 37.5 32.0 37.0
5 333 37.0 38.3
6 38.1 354 38.3
7 38.0 31.6 37.6
8 37.5 30.9 38.3
9 36.8 322 36.5
10 37.9 32.7 354
11 38.3 31.5 339
average 36.95 33.88 37.01

Table 8: The (test) results of parallel experiment where
we apply the modified GraNd approach on different
layers in the decoder blocks of the PLM.

Beyond the experiments based on the GraNd
approach, we also apply the modified Cosine of

Block Encoder Decoder

Number Block Block

0 319 33.9

1 32.6 34.2

2 33.0 34.1

3 33.5 349

4 33.5 33.7

5 33.5 34.0

6 334 34.7

7 33.7 34.8

8 344 35.2

9 34.0 342

10 342 33.7

b1l 32.0 34.0
average 33.31 34.28

Table 9: The (test) results of the parallel experiment
where we apply the modified Cosine of Logits and La-
bels approach on different blocks of the PLM.

Logits and Labels approach to analyze the mod-
ule importance from the perspective of the model
output. Specifically, we first train a randomly ini-
tialized lightweight object on Tnew to obtain the
fine-tuned lightweight object O. Then we feed ex-
amples of valid dataset of Tpew separately to O;
and O. For the two lightweight objects, we take
the output hidden states ; and H of one particular
module P through a cosine function to acquire the
indicator S;. Then under our framework of testing
tasks, we obtain a result corresponding to P. Tak-
ing P as the adapters in the 12 + 12 blocks of the
base model we choose, i.e., T'5pqs¢, We acquire 24
results, which are shown in Table 9. These results
could reflect the importance of different modules,
from which we observe the results of the decoder
blocks are higher than those of the encoder blocks,
indicating more importance of the decoder.

C Approaches Extracting Information
from the Weights

Beyond the GraNd approach, we also explore 3
specific methods resorting to the information from
the weight, Cosine, Euclidean, and Performance.

Cosine. We train a randomly initialized lightweight
object @new on the training set of 7pew. Then
for existing lightweight object O; € O*, we cal-
culate the cosine similarity between @new and
©; as the indicator. The final initialization of
the new lightweight object is the weighted aver-
age according to the cosine similarity after soft-
max Opew < 2 iy softmax[cos(Opew, O5)]-O;.

279



Approach Adapter LoRA Prefix Approach Adapter LoRA Prefix
Cosine 33.3(-1.6) 32.8(-2.6) 32.1(-0.2) GraNd 343 (-0.6) 32.6(-2.8) 34.8(+2.5)
Euclidean 348 (-0.1) 34.4(-1.0) 32.7(+0.4) Loss 39.8 (+4.9) 379 (+2.5) 37.2(+4.9)
Performance 35.1(+0.2) 344 (-1.0) 34.8(+2.5) KL-divergence 374 (+2.5) 36.5(+1.1) 35.6(+3.3)
EL2N 39.9 (+5.0) 38.2(+2.8) 37.3(+5.0)
Table 10: Test results of Cosine, Euclidean and Per- aCnO;iEzbZI;SLOgitS 40.0 (+5.1) 38.1 (+2.7) 377 (+5.4)

formance. Numbers in parentheses are the difference
between the method and the best-performing baseline
listed in Table 1.

This approach is also adopted in the transfer of soft
prompts by Vu et al. 2021.
Euclidean. We develop this approach by follow-
ing a basic intuition that the more a lightweight
object’s parameters change after training on the
new dataset Tpew, then the less relevant it is to Tpew-
We first train O; on the new task Tpew for m steps
and select the best-performing lightweight object
O; in this process. Then, we directly calculate the
Euclidean distance between each layer of O; and
@i to get the distance after summation d;. In this
method, the indicator is the inverse of the distance
S; = —d;. The final lightweight object Opew is
obtained by Eq. 1.
Performance. This approach follows the forego-
ing insight and uses the change in performance
to measure the correlation between a lightweight
object O; and Tpew. In the beginning, we directly
produce the zero-shot performance of O; on Trew
without any training, which is denoted as z;. Then
we train O; on Tnew for m steps and select the
best performance b;. The indicator is computed by
the difference between two numbers S; = b; — z;.
Although the indicator S; of the Performance ap-
proach is the difference between two performances,
the original cause of this difference is the change
of parameters of the lightweight object, because
of which we treat the Performance method as the
approach extracting information from the weights.
We apply these 3 approaches to three parameter-
efficient tuning methods and experiment on 32 QA
tasks, the results of which are shown in Table 10.
The performance of these approaches is slightly
poor. We suspect the reason may be that the in-
formation about transferring lightweight objects
across tasks contained in weights is more covert,
and our framework cannot efficiently extract it.

D Analysis of Utilizing Best Single
Lightweight Object

In this section, we probe the performance of trans-
ferring knowledge with best single lightweight ob-

Table 11: The (test) results of the parallel experiment
where we utilize Oy.s; for the initialization of Toey.
Numbers in parentheses are the difference between
the method and the best-performing baseline listed in
Table 1.

ject Opest. For a new task Tpew, Opest refers to
the existing lightweight object O; with the highest
similarity indicator S;, and we utilize Oy for the
initialization of Tpew (i.€., Opew = Opest)-

We modify the original framework in accordance
with the above description, and experiment with our
parameter-efficient weight ensembling approaches,
the results of which are shown in Table 11. Gener-
ally, the performance of obtaining Opey by Opegt 1S
similar to that of the primal framework, which is
consistent with the experimental phenomenon that
Ohest Occupies basically 95% weight when cultivat-
ing Ohpew in our original framework.
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