
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1918–1929

July 9-14, 2023 ©2023 Association for Computational Linguistics

Improving Grammar-based Sequence-to-Sequence Modeling with
Decomposition and Constraints

Chao Lou, Kewei Tu∗

School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{louchao,tukw}@shanghaitech.edu.cn

Abstract

Neural QCFG is a grammar-based sequence-to-
sequence (seq2seq) model with strong induc-
tive biases on hierarchical structures. It excels
in interpretability and generalization but suffers
from expensive inference. In this paper, we
study two low-rank variants of Neural QCFG
for faster inference with different trade-offs be-
tween efficiency and expressiveness. Further-
more, utilizing the symbolic interface provided
by the grammar, we introduce two soft con-
straints over tree hierarchy and source cover-
age. We experiment with various datasets and
find that our models outperform vanilla Neural
QCFG in most settings.

1 Introduction

Standard neural seq2seq models are versatile and
broadly applicable due to its approach of factoring
the output distribution into distributions over the
next words based on previously generated words
and the input (Sutskever et al., 2014; Gehring
et al., 2017; Devlin et al., 2019). Despite showing
promise in approximating complex output distri-
butions, these models often fail when it comes to
diagnostic tasks involving compositional general-
ization (Lake and Baroni, 2018; Bahdanau et al.,
2019; Loula et al., 2018), possibly attributed to a
lack of inductive biases for the hierarchical struc-
tures of sequences (e.g., syntactic structures), lead-
ing to models overfitting to surface clues.

In contrast to neural seq2seq models, traditional
grammar-based models incorporate strong induc-
tive biases to hierarchical structures but suffer from
low coverage and the hardness of scaling up (Wong
and Mooney, 2006; Bos, 2008). To benefit from
both of these approaches, blending traditional meth-
ods and neural networks has been studied (Herzig
and Berant, 2021; Shaw et al., 2021; Wang et al.,
2021, 2022). In particular, Kim (2021) proposes

∗Corresponding Author

Neural QCFG for seq2seq learning with a quasi-
synchronous context-free grammar (QCFG) (Smith
and Eisner, 2006) that is parameterized by neural
networks. The symbolic nature of Neural QCFG
makes it interpretable and easy to impose con-
straints for stronger inductive bias, which leads
to improvements in empirical experiments. How-
ever, all these advantages come at the cost of high
time complexity and memory requirement, mean-
ing that the model and data size is restricted, which
leads to a decrease in text generation performance
and limited application scenarios.

In this work, we first study low-rank vari-
ants of Neural QCFG for faster inference and
lower memory footprint based on tensor rank
decomposition (Rabanser et al., 2017), which is
inspired by recent work on low-rank structured
models (Cohen et al., 2013; Chiu et al., 2021;
Yang et al., 2021, 2022). These variants allow us
to use more symbols in Neural QCFG, which has
been shown to be beneficial for structured latent
variable models (Buhai et al., 2020; Chiu and
Rush, 2020; Yang et al., 2021, 2022). Specifically,
we study two low-rank variants with different
trade-off between computation cost and ranges
of allowed constraints: the efficient model (E
model), following the decomposition method in
TN-PCFG (Yang et al., 2021), and the expressive
model (P model), newly introduced in this paper.
Furthermore, we propose two new constraints
for Neural QCFG, including a soft version of
the tree hierarchy constraint used by vanilla
Neural QCFG, and a coverage constraint which
biases models in favour of translating all source
tree nodes1. We conduct experiments on three
datasets and our models outperform vanilla Neural
QCFG in most settings. Our code is available at
https://github.com/LouChao98/seq2seq_with_qcfg.

1Similar topics are discussed in the machine translation
literature (Tu et al., 2016; Li et al., 2018, among others).

1918

https://github.com/LouChao98/seq2seq_with_qcfg

2 Preliminary: Neural QCFG

Let s1, s2 be the source and target sequences,
and t1, t2 be the corresponding constituency parse
trees (i.e., sets of labeled spans). Following
previous work (Smith and Eisner, 2006; Kim,
2021), we consider QCFG in Chomsky nor-
mal form (CNF; Chomsky, 1959) with restricted
alignments, which can be denoted as a tuple
G[t1] = (S,N ,P,Σ,R[t1], θ), where S is the
start symbol, N/P/Σ are the sets of nontermi-
nals/preterminals/terminals respectively, R[t1] is
the set of grammar rules in three forms:

S → A[αi] where A ∈ N , αi ∈ t1,

A[αi] → B[αj]C[αk] where

A ∈ N , B,C ∈ N ∪ P, αi, αj , αk ∈ t1,

D[αi] → w where A ∈ P, αi ∈ t1, w ∈ Σ,

and θ parameterizes rule probablities pθ(r) for each
r ∈ R[t1].

Recently, Kim (2021) proposes Neural QCFG
for seq2seq learning. He uses a source-side parser
to model p(t1|s1) and a QCFG to model p(t2|t1).
The log marginal likelihood of the target sequence
s2 is defined as follows:

log pθ,ϕ(s2|s1)
= log

∑

t1∈T (s1)

pθ(s2|t1)pϕ(t1|s1)

= log
∑

t1∈T (s1)

∑

t2∈T (s2)

pθ(t2|t1)pϕ(t1|s1),

where T (·) denotes the set of possible parse trees
for a sequence and θ, ϕ are parameters. Due to the
difficulty of marginalizing out t1 and t2 simultane-
ously, Kim (2021) resorts to maximizing the lower
bound on the log marginal likelihood,

log pθ,ϕ(s2|s1) ≥ Et1∼pϕ(t1|s1) [log pθ(s2|t1)] .

3 Low-rank Models

Marginalizing t2 in Neural QCFG has a high time
complexity of O(|N |(|N | + |P|)2S3T 3) where
S/T are the source/target sequence lengths. In par-
ticular, the number of rules in QCFG contributes
to a significant proportion, O(|N |(|N |+ |P|)2S3),
of the complexity. Below, we try to reduce this
complexity by rule decompositions in two ways.

A αi

R

αjB C αk

(a) E model

A αi

R

αjB C αk

(b) P model

Figure 1: Extended factor graph notation of decomposed
binary rules (Frey, 2002). Each square represents a
factor. Arrows indicate conditional probabilities.

3.1 Efficient Model (E Model)

Let R be a new set of symbols. The E model de-
composes binary rules rb into three parts: A[αi] →
R,R → B[αj] and R → C[αk] (Fig. 1a), where
R ∈ R such that

p(A[αi] → B[αj]C[αk]) =
∑

R

p(A[αi] → R)

× p(R → B[αj])× p(R → C[αk]).

In this way, |N |(|N | + |P|)2S3 binary rules are
reduced to only GE := (3|N | + 2|P|)|R|S de-
composed rules, resulting in a time complexity of
O(GET

3)2 for marginalizing t2. Further, the com-
plexity can be improved to O(|R|T 3 + |R|2T 2)
using rank-space dynamic programming in Yang
et al. (2022)3.

However, constraints that simultaneously in-
volve αi, αj , αk (such as the tree hierarchy con-
straint in vanilla Neural QCFG and those to be
discussed in Sec. 4.1) can no longer be imposed
because of two reasons. First, the three nodes are
in separate rules and enforcing such constraints
would break the separation and consequently undo
the reduction of time complexity. Second, the
rank-space dynamic programming algorithm pre-
vents us from getting the posterior distribution
p(αi, αj , αk|t1, s2), which is necessary for many
methods of learning with constraints (e.g., Chang
et al., 2008; Mann and McCallum, 2007; Ganchev
et al., 2010) to work.

2Typically, we set |R| = O(|N |+ |P|).
3They describe the algorithm using TN-PCFG (Yang et al.,

2021), which decomposes binary rules of PCFG, A → BC,
into A → R,R → B and R → C. For our case, one
can define new symbol sets by coupling nonterminals with
source tree nodes: Nt = {(A,αi)|A ∈ N , αi ∈ t1} and
Pt = {(A,αi)|A ∈ P, αi ∈ t1}. Then our decomposition
becomes identical to TN-PCFG and their algorithm can be
applied directly.

1919

3.2 Expressive Model (P Model)
In the P model, we reserve the relation among
αi, αj , αk and avoid their separation,

p(A[αi] → B[αj]C[αk]) =∑

R

p(A[αi] → R)× p(R,αi → αj , αk)×
p(R,αj → B)× p(R,αk → C),

as illustrated in Fig. 1b. The P model is still faster
than vanilla Neural QCFG because there are only
GP := |R|S3 + (3|N |+ 2|P|)|R|S decomposed
rules, which is lower than vanilla Neural QCFG
but higher than the E model. However, unlike the E
model, the P model cannot benefit from rank-space
dynamic programming4 and has a complexity of
O(|R|S2T 3+((2|N |+|P|)|R|S+|R|S3)T 2) for
marginalizing t2

5.
Rule R,αi → αj , αk is an interface for design-

ing constraints involving αi, αj , αk. For example,
by setting p(R,α1 → α2, α3) = 0 for all R ∈ R
and certain αi, αj , αk, we can prohibit the gener-
ation A[α1] → B[α2]C[α3] in the original QCFG.
With this interface, the P model can impose all con-
straints used by vanilla Neural QCFG as well as
more advanced constraints introduced next section.

4 Constraints

4.1 Soft Tree Hierarchy Constraint
Denote the distance between two tree nodes6

as d(αi, αj) and define d(αi, αj) = ∞ if αj

is not a descendant of αi. Then, the dis-
tance of a binary rule is defined as d(r) =
max(d(αi, αj), d(αi, αk)).

Neural QCFG is equipped with two hard hi-
erarchy constraints. For A[αi] → B[αj]C[αk],
αj , αk are forced to be either descendants of αi

(i.e., d(r) < ∞), or more strictly, distinct direct
children of αi (i.e., d(r) = 1). However, we be-
lieve the former constraint is too loose and the
latter one is too tight. Instead, we propose a soft
constraint based on distances: rules with smaller
d(r) are considered more plausible. Specifically,

4Below is an intuitive explanation. Assume there is only
one nonterminal symbol. Then we can remove A,B,C be-
cause they are constants. The decomposition can be sim-
plified to αi → R,Rαi → αjαk, which is equivalent to
αi → αjαk, an undecomposed binary rule. The concept
“rank-space” is undefined in an undecomposed PCFG.

5It is better than O(GPT
3) because we can cache some

intermediate steps, as demonstrated in Cohen et al. (2013);
Yang et al. (2021). Details can be found in Appx. A.

6The distance between two tree nodes is the number of
edges in the shortest path from one node to another.

we encode the constraint into a reward function
of rules, ζ(d(r)), such that ζ(1) > ζ(2) > . . .
and ζ(a)ζ(b) > ζ(c)ζ(d) for a + b = c + d and
max(a, b) < max(c, d). A natural choice of the
reward function is ζ(d(r)) := d(r)e−d(r). We op-
timize the expected rewards with a maximum en-
tropy regularizer (Williams and Peng, 1991; Mnih
et al., 2016), formulated as follows:

log
∑

t2∈T (s2)

pθ(t2|t1)ζ(t2) + τH (pθ(t2|t1, s2)) ,

where ζ(t2) =
∏

r∈t2 ζ(d(r))
7, pθ(t2|t1, s2) =

pθ(t2|t1)/
∑

t∈T (s2)
pθ(t|t1), H represents en-

tropy, and τ is a positive scalar.

4.2 Coverage Constraint

Our experiments on vanilla neural QCFG show that
inferred alignments could be heavily imbalanced:
some source tree nodes are aligned with multiple
target tree nodes, while others are never aligned.
This motivates us to limit the number of alignments
per source tree node with an upper bound8, u. Be-
cause the total number of alignments is fixed to
|t2|, this would distribute alignments from popu-
lar source tree nodes to unpopular ones, leading to
more balanced source coverage of alignments. We
impose this constraint via optimizing the posterior
regularization likelihood (Ganchev et al., 2010),

Et1 (log pθ(s2|t1) + γminq∈QKL(q(t2)||pθ(t2|t1, s2))) ,

where KL is the Kullback-Leibler divergence (KL),
γ is a positive scalar and Q is the constraint set
{q(t2)|Eq(t)ϕ(t) ≤ ξ}, i.e., expectation of feature
vector ϕ over any distribution in Q is bounded by
constant vector ξ. We define the target tree feature
vector ϕ(t2) ∈ N|t1| such that ϕi(t2) represents the
count of source tree node αi being aligned by nodes
in t2 and ξ = u1. Ganchev et al. (2010) provide
an efficient algorithm for finding the optimum q,
which we briefly review in Appx. C. After finding
q, the KL term of two tree distributions, q and pθ,
can be efficiently computed using the Torch-Struct
library (Rush, 2020).

7r ∈ t2 means the rule at each generation step of t2.
8We do not set lower bounds, meaning each source tree

node should be aligned at least n times, because our source-
side parser uses a grammar in CNF, and such trees could
contain semantically meaningless nodes, which are not wor-
thing to be aligned. For example, trees of Harry James Potter
must contain either Harry James or James Potter.

1920

Approach Simple Jump A. Right Length

vNQ1 96.9 96.8 98.7 95.7
EModel 9.01 - 1.2 -
PModel 95.27 97.08 97.63 91.72

Table 1: Accuracy on the SCAN datasets. vNQ1 is
vanilla Neural QCFG from Kim (2021). vNQ1 and
PModel use the hard constraint d(r) < ∞.

71

72

73

74

75

8 10 12 14 16 18 32 64 128

vNQ²

E model
|R| = 50

E model
|R| = 100

E model
|R| = 300

P model
|R| = 50

P model
|R| = 100

P model
|R| = 300

Figure 2: BLEU-4 scores on the ATP task. No constraint
is placed. The horizontal axis represents |N |(= |P|).

5 Experiments

We conduct experiments on the three datasets used
in Kim (2021). Details can be found in Appx. D.1.

5.1 SCAN

We first evaluate our models on four splits of the
SCAN dataset (Lake and Baroni, 2018). We report
accuracy in Tab. 1. The P model equipped with
constraints can achieve almost perfect performance
similar to vanilla Neural QCFG, while the E model
fails due to a lack of constraints.

5.2 Style Transfer and En-Fr Translation

Next, we evaluate the models on the three hard
transfer tasks from the StylePTB dataset (Lyu et al.,
2021) and a small-scale En-Fr machine translation
dataset (Lake and Baroni, 2018). Tab. 2 shows
results of the models with different constraints9.
Low-rank models generally achieve comparable or
better performance and consume much less mem-

9Following Kim (2021), we calculate the metrics for
tasks from the StylePTB dataset using the nlg-eval li-
brary (Sharma et al. (2017); https://github.com/
Maluuba/nlg-eval) and calculate BLEU for En-Fr MT
using the multi-bleu script (Koehn et al. (2007); https:
//github.com/moses-smt/mosesdecoder).

Approach nil +H1 +H2 +S +C

Active to passive (ATP)
vNQ1 − 66.2 − − −
vNQ2 71.42 71.56 − 71.62 73.86
EModel 73.48 × × × 74.25
PModel 75.06 69.88 − 73.11 75.44

Adjective Emphasise (AEM)
vNQ1 − 31.6 − − −
vNQ2 28.82 31.52 − 36.77 30.81
EModel 28.33 × × × 28.67
PModel 31.81 29.14 − 35.91 30.12

Verb Emphasise (VEM)
vNQ1 − 31.9 − − −
vNQ2 26.09 29.64 − 30.50 28.50
EModel 25.21 × × × 24.67
PModel 27.43 24.77 − 26.81 30.66

En-Fr machine translation
vNQ1 − − 26.8 − −
vNQ2 28.63 − 29.10 30.45 31.87
EModel 28.93 × × × 29.33
PModel 29.27 − 29.76 30.51 29.69

Table 2: BLEU-4 for tasks from the StylePTB dataset
(the top three series) and BLEU for Fr-En machine trans-
lation against different models and constraints. vNQ2 is
our reimplementation of Kim (2021). nil means that no
constraint is placed. H1 and H2 is the hard constraint
d(r) < ∞ and d(r) = 1, respectively. S is the soft tree
hierarchy constraint. C is the coverage constraint. ×
means that the constraint is inapplicable and − means
we do not run the experiment or Kim (2021) does not
report the score.

ory10. We can also find that the soft tree hierarchy
constraint outperforms hard constraints and is very
helpful when it comes to extremely small data (i.e.,
AEM and VEM). The coverage constraint also im-
proves performance in most cases.

5.3 Analysis
We study how the number of nonterminals affects
performance. On our computer11, we can use
at most 18/64/128 nonterminals in vanilla Neural
QCFG/the P model/the E model, showing that our
low-rank models are more memory-friendly than
vanilla Neural QCFG. We report results in Fig. 2.
There is an overall trend of improved performance
with more nonterminals (with some notable ex-
ceptions). When the numbers of nonterminals are

10We report speed and memory usage briefly in Sec 5.4 and
in detail in Appx. D.3.

11One NVIDIA TITIAN RTX with 24 GB memory.

1921

https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval
https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder

15 20 25 30 35 40
Length (x)

0

2000

4000

6000

8000
T

im
e

(s
)

3.09× 10−6x6

1.99× 10−5x5

8.18× 10−4x3

vNQ2

EModel

PModel

Figure 3: The duration required to train one epoch on
synthetic datasets with different length (x = S = T).
Thick and shallow lines are fitted curves based on
time complexities of vNQ2, EModel and PModel, i.e.,
O(x6), O(x3) and O(x5).

15 20 25 30 35 40
Length (x)

0.0

2.5

5.0

7.5

10.0

M
em

or
y

(G
B

) vNQ2

EModel

PModel

Figure 4: Memory usage for training with batch size 1
on synthetic datasets with different length (x = S = T).

the same, the P model outperforms vanilla Neural
QCFG consistently, showing its superior parameter
efficiency. In contrast, the E model is defeated by
vanilla QCFG and the P model in many cases, show-
ing the potential harm of separating αi, αj , αk.

5.4 Speed Comparison

We benchmark speed and memory usage using
synthetic datasets with different sequence lengths.
Fig. 3 and 4 illustrate the results. Compared to the
standard Neural QCFG, the E model and P model
are significantly faster and have a lower memory
footprint. This enables them to model longer se-
quences effectively. For data construction and more
results, please refer to Appx. D.3.

6 Conclusion

We have presented two low-rank variants of Neural
QCFG based on decomposition for efficiency and
two new constraints over tree hierarchy and source
coverage. Experiments on three datasets validate
the effectiveness and efficiency of our proposed
models and constraints.

7 Limitations

First, unlike decoders in neural seq2seq models,
which can attend to any previously generated to-
kens, QCFGs have a strong context-free indepen-
dence assumption during generation. With this as-
sumption, Neural QCFG cannot model some com-
plex distributions. A potential solution is to use
stronger grammars, such as RNNG (Dyer et al.,
2016) and Transformer Grammars (TG; Sartran
et al., 2022).

Second, we assume that both the grammars used
by the source-side parser and QCFG are in CNF.
Although it is convenient for discussion and im-
plementation, CNF does not suit for modeling the
structure of practical sequences. In semantic rep-
resentations (e.g., Abstract Meaning Representa-
tion (Banarescu et al., 2013)), a predicate could
have more than two arguments. Ideally, we should
represent n-ary predicates with n-ary rules. How-
ever, for grammars in CNF, n− 1 unnatural binary
rules are required to represent n-ary predicates. In
natural language, we will face semantically mean-
ingless spans due to CNF, which is discussed in
Sec 4.2.

Third, although using decomposition improves
the speed and the memory requirement, our low-
rank models still cost much more computation re-
sources than neural seq2seq models for two main
reasons. (1) A large amount of nonterminal sym-
bols increase the memory cost significantly. (2)
Because finding the most probable string t2 from
pθ(t2|t1) is NP-hard (Sima’an, 1996; Lyngsø and
Pedersen, 2002), we follow Kim (2021) to use a de-
coding strategy with heavy sampling. For real data,
we may need to sample hundreds or thousands of
sequences and then rank them, which can be much
slower than the decoding of neural seq2seq models.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments. This work was supported by
the National Natural Science Foundation of China
(61976139).

References
Dzmitry Bahdanau, Shikhar Murty, Michael

Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron Courville. 2019. Systematic generaliza-
tion: What is required and can it be learned? In
International Conference on Learning Representa-
tions.

1922

https://openreview.net/forum?id=HkezXnA9YX
https://openreview.net/forum?id=HkezXnA9YX

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Johan Bos. 2008. Wide-coverage semantic analysis with
Boxer. In Semantics in Text Processing. STEP 2008
Conference Proceedings, pages 277–286. College
Publications.

Rares-Darius Buhai, Yoni Halpern, Yoon Kim, Andrej
Risteski, and David Sontag. 2020. Empirical study of
the benefits of overparameterization in learning latent
variable models. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research,
pages 1211–1219. PMLR.

Ming-Wei Chang, Lev Ratinov, Nicholas Rizzolo, and
Dan Roth. 2008. Learning and inference with con-
straints. In Proceedings of the 23rd National Confer-
ence on Artificial Intelligence - Volume 3, AAAI’08,
page 1513–1518. AAAI Press.

Justin Chiu, Yuntian Deng, and Alexander Rush. 2021.
Low-rank constraints for fast inference in structured
models. Advances in Neural Information Processing
Systems, 34:2887–2898.

Justin Chiu and Alexander Rush. 2020. Scaling hidden
Markov language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1341–1349,
Online. Association for Computational Linguistics.

Noam Chomsky. 1959. On certain formal properties of
grammars. Information and Control, 2(2):137–167.

Shay B. Cohen, Giorgio Satta, and Michael Collins.
2013. Approximate PCFG parsing using tensor de-
composition. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 487–496, Atlanta, Georgia. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018.
Bohb: Robust and efficient hyperparameter optimiza-
tion at scale. In International Conference on Machine
Learning.

Brendan J. Frey. 2002. Extending factor graphs so
as to unify directed and undirected graphical mod-
els. In Proceedings of the Nineteenth Conference on
Uncertainty in Artificial Intelligence, UAI’03, page
257–264, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Kuzman Ganchev, João Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior regularization for
structured latent variable models. J. Mach. Learn.
Res., 11:2001–2049.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional se-
quence to sequence learning. In International confer-
ence on machine learning, pages 1243–1252. PMLR.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Yoon Kim. 2021. Sequence-to-sequence learning with
latent neural grammars. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 26302–
26317. Curran Associates, Inc.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873–2882. PMLR.

Yanyang Li, Tong Xiao, Yinqiao Li, Qiang Wang,
Changming Xu, and Jingbo Zhu. 2018. A simple
and effective approach to coverage-aware neural ma-
chine translation. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 292–297,
Melbourne, Australia. Association for Computational
Linguistics.

1923

https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/W08-2222
https://aclanthology.org/W08-2222
https://proceedings.mlr.press/v119/buhai20a.html
https://proceedings.mlr.press/v119/buhai20a.html
https://proceedings.mlr.press/v119/buhai20a.html
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://doi.org/10.18653/v1/2020.emnlp-main.103
https://doi.org/https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/https://doi.org/10.1016/S0019-9958(59)90362-6
https://aclanthology.org/N13-1052
https://aclanthology.org/N13-1052
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/dd17e652cd2a08fdb8bf7f68e2ad3814-Paper.pdf
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/P18-2047
https://doi.org/10.18653/v1/P18-2047
https://doi.org/10.18653/v1/P18-2047

João Loula, Marco Baroni, and Brenden Lake. 2018.
Rearranging the familiar: Testing compositional gen-
eralization in recurrent networks. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 108–114, Brussels, Belgium. Association for
Computational Linguistics.

Rune B. Lyngsø and Christian N.S. Pedersen. 2002. The
consensus string problem and the complexity of com-
paring hidden markov models. Journal of Computer
and System Sciences, 65(3):545–569. Special Issue
on Computational Biology 2002.

Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard Hovy,
Barnabás Póczos, Ruslan Salakhutdinov, and Louis-
Philippe Morency. 2021. StylePTB: A compositional
benchmark for fine-grained controllable text style
transfer. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2116–2138, Online. Association
for Computational Linguistics.

Gideon S. Mann and Andrew McCallum. 2007. Simple,
robust, scalable semi-supervised learning via expec-
tation regularization. In Proceedings of the 24th In-
ternational Conference on Machine Learning, ICML
’07, page 593–600, New York, NY, USA. Association
for Computing Machinery.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Tim Harley, Timothy P. Lillicrap,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In Proceedings of the 33rd International Conference
on International Conference on Machine Learning -
Volume 48, ICML’16, page 1928–1937. JMLR.org.

Stephan Rabanser, Oleksandr Shchur, and Stephan Gün-
nemann. 2017. Introduction to tensor decomposi-
tions and their applications in machine learning.

Alexander Rush. 2020. Torch-struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–342,
Online. Association for Computational Linguistics.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Miloš Stanojević, Phil Blunsom, and Chris Dyer.
2022. Transformer Grammars: Augmenting Trans-
former Language Models with Syntactic Inductive
Biases at Scale. Transactions of the Association for
Computational Linguistics, 10:1423–1439.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating natu-
ral language generation. CoRR, abs/1706.09799.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional generaliza-
tion and natural language variation: Can a semantic
parsing approach handle both? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 922–938, Online. Asso-
ciation for Computational Linguistics.

Khalil Sima’an. 1996. Computational complexity
of probabilistic disambiguation by means of tree-
grammars. In COLING 1996 Volume 2: The 16th
International Conference on Computational Linguis-
tics.

David Smith and Jason Eisner. 2006. Quasi-
synchronous grammars: Alignment by soft projec-
tion of syntactic dependencies. In Proceedings on the
Workshop on Statistical Machine Translation, pages
23–30, New York City. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556–
1566, Beijing, China. Association for Computational
Linguistics.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 76–85,
Berlin, Germany. Association for Computational Lin-
guistics.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2021.
Structured reordering for modeling latent alignments
in sequence transduction. In Thirty-Fifth Conference
on Neural Information Processing Systems.

Bailin Wang, Ivan Titov, Jacob Andreas, and Yoon
Kim. 2022. Hierarchical phrase-based sequence-to-
sequence learning. arXiv preprint arXiv:2211.07906.

Ronald J. Williams and Jing Peng. 1991. Function opti-
mization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268.

Yuk Wah Wong and Raymond Mooney. 2006. Learning
for semantic parsing with statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the NAACL, Main Conference,
pages 439–446, New York City, USA. Association
for Computational Linguistics.

1924

https://doi.org/10.18653/v1/W18-5413
https://doi.org/10.18653/v1/W18-5413
https://doi.org/https://doi.org/10.1016/S0022-0000(02)00009-0
https://doi.org/https://doi.org/10.1016/S0022-0000(02)00009-0
https://doi.org/https://doi.org/10.1016/S0022-0000(02)00009-0
https://doi.org/10.18653/v1/2021.naacl-main.171
https://doi.org/10.18653/v1/2021.naacl-main.171
https://doi.org/10.18653/v1/2021.naacl-main.171
https://doi.org/10.1145/1273496.1273571
https://doi.org/10.1145/1273496.1273571
https://doi.org/10.1145/1273496.1273571
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.48550/ARXIV.1711.10781
https://doi.org/10.48550/ARXIV.1711.10781
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://aclanthology.org/C96-2215
https://aclanthology.org/C96-2215
https://aclanthology.org/C96-2215
https://aclanthology.org/W06-3104
https://aclanthology.org/W06-3104
https://aclanthology.org/W06-3104
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.18653/v1/P16-1008
https://doi.org/10.18653/v1/P16-1008
https://openreview.net/forum?id=X2Cxixkcpx
https://openreview.net/forum?id=X2Cxixkcpx
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
https://doi.org/10.1080/09540099108946587
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056
https://aclanthology.org/N06-1056

Songlin Yang, Wei Liu, and Kewei Tu. 2022. Dynamic
programming in rank space: Scaling structured in-
ference with low-rank HMMs and PCFGs. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4797–4809, Seattle, United States. Association for
Computational Linguistics.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021.
PCFGs can do better: Inducing probabilistic context-
free grammars with many symbols. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1487–1498,
Online. Association for Computational Linguistics.

Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015.
Long short-term memory over recursive structures.
In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 1604–1612, Lille,
France. PMLR.

A Time Complexity of P Model

Let βij , βjk ∈ R|N |×|t1| be two cells in the
chart of the dynamic programming. βij(x, y) de-
notes indexing into the matrix. Denote A[α1] →
B[α2]C[α3] as rb. The state transition equation is

βik(A,α1) =
∑

j,B,C
α2,α3

p(rb)βij(B,α2)βjk(C,α3).

Let’s define following terms:

β̃ij(R,α2) =
∑

B

p(R,α2 → B)βij(B,α2)

β̃jk(R,α3) =
∑

C

p(R,α3 → C)βij(C,α3)

p̂ = p(A[α1] → R)p(R,α1 → α2, α3)

Then the state transition equation can be reformu-
lated as:

βik(A,α1) =
∑

R,α2,α3

p̂
∑

j

β̃ij(R,α2)β̃jk(R,α3)

︸ ︷︷ ︸
β̂ik

,

where β̂ij ∈ R|R|×|t1|×|t1|. We can compute β̃ij in
O((|N | + |P|)|R|S) and cache it for composing
β̂ij . Then β̂ik can be computed in O(|R|S2T). Fi-
nally, we can compute βik in O(|R|S3+ |N ||R|S)
by sum out α2, α3 first:

βik(A,α1) =∑

R

p(A[α1] → R)
∑

α2,α3

p(R,α1 → α2, α3)β̂ik

So, summing terms of all the above steps
and counting the iteration over i, k, we will get
O(|R|S2T 3 + ((2|N |+ |P|)|R|S + |R|S3)T 2).

B Neural Parameterization

We mainly follow (Kim, 2021) to parameterize the
new decomposed rules. First, we add embeddings
of terms on the same side together. For example,
we do two additions elhs = eR + eαi and erhs =
eαj+eαk

for R,αi → αj , αk, where ex denotes the
embedding of x. Note that we use the same feed-
forward layer f as (Kim, 2021) to obtain ex from
some feature hx. i.e. ex = f(hx). Then, we com-
pute the inner products of embeddings obtained
in the previous step as unnormalized scores. For
example, p(R,αi → αj , αk) ∝ exp(e⊤lhserhs).

C Posterior Regularization

The problem minq∈QKL(q(t2)||p(t2|t1, s2)) has
the optimal solution

q∗ =
1

Z(λ∗)
p(t2|t1, s2) exp{−λ∗ϕ(t2)},

where

Z(λ∗) =
∑

t2

p(t2|s1, t1) exp{−λ∗ϕ(t2)}

and λ∗ is the solution of the dual problem:

max
λ≥0

−b · λ− logZ(λ)

We can reuse the inside algorithm to compute
Z(λ∗) efficiently because our ϕ(t) can be factored
as p(t2|t1, s2):

p(t2|t1, s2) =
∏

r∈t2
pθ(r)

ϕ(t) =
∑

r∈t2
ϕ(r, t1),

where ϕ(r, t1) = 1 if t1 is in the left-hand side of r
and ϕ(r, t1) = 0 otherwise. Then, the solution q∗

can be written as

q∗(t2) ∝
∏

r∈t2
pθ(r) exp{−λϕ(r, t1)}.

Recall that we define ϕ(t) to be the counts of
source nodes being aligned by nodes in t. We can
factor ϕ(t) in terms of r because each target tree
non-leaf node invokes exactly one rule and only
occurs on the left-hand side of that rule. So, the
sum over r is equivalent to the sum over target tree
nodes.

1925

https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2022.naacl-main.353
https://doi.org/10.18653/v1/2021.naacl-main.117
https://doi.org/10.18653/v1/2021.naacl-main.117
https://proceedings.mlr.press/v37/zhub15.html

D Experiments

D.1 Experimental Details
We implement vNQ2, the E model, and the P model
using our own codebase. We inherit almost all hy-
perparameters of Kim (2021) and a basic constraint:
the target tree leaves/non-leaf nodes can only be
aligned to source tree leaves/non-leaf nodes, and
especially, the target tree root can only be aligned
to the source tree root. One major difference is that,
in our experiments, we do not use early-stopping
and run fixed optimization steps, which are much
more than the value set in Kim (2021) (i.e., 15). It
is because in preliminary experiments12, we found
that the task metric (e.g., BLEU) almost always get
improved consistently with the process of training,
while the lowest perplexity occurs typically at an
early stage (which is the criteria of early-stopping
in Kim (2021)), and computing task metric is very
expensive for Neural QCFGs. We report metrics on
test sets averaged over three runs on all datasets ex-
cept for SCAN. As mentioned in the code of Kim
(2021), we need to run several times to achieve
good performance on SCAN. Therefore, we report
the maximum accuracy in twenty runs.
SCAN (Lake and Baroni, 2018) is a diagnostic
dataset containing translations from English com-
mands to machine actions. We conduct experi-
ments on four splits: We evaluate our models on
four splits of the SCAN (Lake and Baroni, 2018)
dataset: simple, add primitive (jump), add tem-
plate (around right) and length. The latter three
splits are designed for evaluating compositional
generalization. Following (Kim, 2021), we set
|N | = 10, |P| = 1.
StylePTB (Lyu et al., 2021) is a text style tran-
fer dataset built based on Penn Treebank (PTB;
Marcus et al., 1993). Following Kim (2021), we
conduct experiments on three hard transfer tasks:
textitactive to passive (2808 examples), adjective
emphasis (696 examples) and verb emphasis (1201
examples). According to Tab. 2, we set |N | =
|P| = 32, |R| = 100 for the E model and set
|N | = |P| = 64, |R| = 100 for the P model.
En-Fr MT (Lake and Baroni, 2018) is a small-
scale machine translation dataset. We use the
same split as Kim (2021). The size of train-
ing/validate/test set is 6073/631/583. We set
|N | = |P| = 32, |R| = 100 for the E model
and |N | = |P| = 32, |R| = 196 for the P model.

12We run 100 epochs and evaluate task metrics on validation
sets every 5 epochs.

D.2 Tune Hyperparameter
We tune hyperparameters according to metrics
on validation sets, either manually or with the
Bayesian Optimization and Hyperband (BOHB)
search algorithm (Falkner et al., 2018) built in the
wandb library. First, we tune |N |, |P|, |R| and
the learning rate of parameters for parameteriz-
ing QCFG. We freeze hyperparameters related to
the source-side parser, the contextual encoder (i.e.,
LSTM), and the TreeLSTM (Tai et al., 2015; Zhu
et al., 2015). For the ATP task from StylePTB,
we run the grid search to plot Fig. 2 and choose
the best hyperparameters. For other tasks, we run
about 20 trials according to BOHB for each man-
ually set search range. Typically, the size of a
search range is 256 (four choices for each tunable
hyperparameter). Next, we tune the strength of the
coverage constraint for all models by running with
γ = 0.5, 1, 2.

D.3 Speed and Memory Usage Comparison
Tab. 3 shows the time and memory usage on
synthetic datasets. Each synthetic dataset con-
tains 1000 pairs of random sequences with the
same length sampled from a vocabulary with size
5000, i.e., {(s1, s2)1, . . . (s1, s2)1000}, s1, s2 ∈
Σv, |Σ| = 5000 where v is the length. We set
|N | = |P| = 8 for vanilla Neural QCFG and
|N | = |N | = 50, |R| = 200 for others. We train
models on a computer with an NVIDIA GeForce
RTX3090. Note that we disable the copy mech-
anism in Kim (2021) because of its complicated
effects on memory usage, such that the results dif-
fer from Fig. 2 (in which models enable the copy
mechanism).

1926

v Approach Constraint Batch size Time (s) GPU Memory (GB)

10

vNQ2

nil 8 25.6 1.42
+H1 8 25.5 1.43
+H2 8 113.8 7.67
+S 8 60.5 2.46
+C 8 132.7 3.08

EModel
nil 8 20.1 1.59
+C 8 40.4 1.59

PModel

nil 8 30.7 3.78
+H1 8 31.3 3.79
+H2 8 64.0 6.41
+S 8 45.8 4.08
+C 8 73.9 4.02

20

vNQ2

nil 8 341.2 14.49
+H1 8 342.4 14.60
+H2 1 ≈16539.4 14.13
+S 2 ≈1734.4 8.93
+C 2 ≈4657.1 12.24

EModel
nil 8 40.0 4.58
+C 4 173.4 14.48

PModel

nil 8 111.3 8.25
+H1 8 110.8 8.29
+H2 4 452.3 9.83
+S 8 269.8 18.76
+C 4 643.5 18.20

40

vNQ2 1 × ×
EModel

nil 8 82.5 14.95
+C 8 177.0 14.95

PModel

nil 4 ≈2102.7 16.78
+H1 4 ≈2097.6 16.96
+H2 1 × ×
+S 2 ≈2729.3 10.63
+C 1 × ×

Table 3: Time and memory usage on synthetic datasets. We report statistics with as large as possbile batch size (in
1, 2, 4, 8). × represents that we get an out-of-memory error even if we set batch size to 1. ≈ represents that the
value is estimated using a small portion of the dataset.

1927

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�7 A2. Did you discuss any potential risks of your work?
We cannot see any potential risk.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract; 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5

�3 B1. Did you cite the creators of artifacts you used?
5

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
All of them have been well-known and publicly available for a long time.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
5

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
They have been well-studied. We follow previous work to conduct experiments on them.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Appx. D.1

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appx. D.1

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5; D

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1928

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
D

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
D.1

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
5

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1929

