Randomized Positional Encodings
Boost Length Generalization of Transformers

Anian Ruoss*! Grégoire Delétang*!

Rébert Csordas'? Mehdi Bennani'!

Abstract

Transformers have impressive generalization
capabilities on tasks with a fixed context length.
However, they fail to generalize to sequences
of arbitrary length, even for seemingly sim-
ple tasks such as duplicating a string. More-
over, simply training on longer sequences is
inefficient due to the quadratic computation
complexity of the global attention mechanism.
In this work, we demonstrate that this failure
mode is linked to positional encodings being
out-of-distribution for longer sequences (even
for relative encodings) and introduce a novel
family of positional encodings that can over-
come this problem. Concretely, our random-
ized positional encoding scheme simulates the
positions of longer sequences and randomly
selects an ordered subset to fit the sequence’s
length. Our large-scale empirical evaluation of
6000 models across 15 algorithmic reasoning
tasks shows that our method allows Transform-
ers to generalize to sequences of unseen length
(increasing test accuracy by 12.0% on average).

1 Introduction

Transformers are emerging as the new workhorse
of machine learning as they underpin many recent
breakthroughs, including sequence-to-sequence
modeling (Vaswani et al., 2017), image recog-
nition (Dosovitskiy et al., 2021), and multi-task
learning (Reed et al., 2022). However, recent
work (Delétang et al., 2023) demonstrated that
Transformers fail to generalize to longer sequences
on seemingly simple tasks such as binary addition.
Thus, while certain problems can be solved without
length generalization, algorithmic reasoning gener-
ally requires this ability, similar to many real-world
settings such as online or continual learning.
While the Transformer’s attention mechanism
can recognize complex relationships amongst to-
"Equal contribution. 'DeepMind. >The Swiss Al
Lab, IDSIA, USI & SUPSI TWork performed while the

author was at DeepMind. Correspondence to {anianr,
gdelt} @deepmind.com.

Tim Genewein' Jordi Grau-Moya'

Shane Legg! Joel Veness!

Standard Positional Encoding

Trainingl 1 2 N |

Evaluationl 1 2 N | N+1 | - M |

Out-of-distribution

Randomized Positional Encodings (ours)

Lo lof[wf-Jmf[-]¢]
Training B

RN ey

b for each batch
Evaluation | 1 2 N | N+ - M |

In-distribution

Figure 1: Test-time evaluation with longer inputs.
The standard positional encoding vector has values
larger than those observed during training. Our ap-
proach avoids this problem by assigning a random (or-
dered) positional encoding vector using the full range
of possible test positions to each training example.

kens in the input sequence, it is limited by its lack
of positional awareness. Thus, the input sequence
is generally augmented with positional encodings
to inject position information into the computation.
However, current approaches only consider posi-
tions up to the maximum training sequence length
N, and thus all the positions N +1, ..., M for test
sequences of length up to M will appear out-of-
distribution during evaluation (top of Fig. 1).

This work We introduce a novel family of ran-
domized positional encodings, which significantly
improves Transformers’ length generalization ca-
pabilities on algorithmic reasoning tasks. Our ap-
proach is compatible with any existing positional
encoding scheme and augments the existing meth-
ods by subsampling an ordered set of positions
from a much larger range of positions than those
observed during training or evaluation (i.e., up

1889

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1889-1903
July 9-14, 2023 ©2023 Association for Computational Linguistics

to L > M; bottom of Fig. 1). Thus, over the
course of training, the Transformer will learn to
handle very large positional encodings and, there-
fore no longer encounter out-of-distribution inputs
during evaluation. Importantly, our method leaves
in-domain generalization performance unaffected
and is also significantly more efficient than the
naive approach of simply training the Transformer
on longer sequences. Our main contributions are:

* A novel family of positional encoding
schemes that significantly improves the length
generalization capabilities of Transformers,
while leaving their in-domain generalization
performance unaffected.

* A large-scale empirical evaluation on a wide
range of algorithmic reasoning tasks showing
the superiority of our method over prior work
(an increase of the test accuracy by 12.0% on
average and up to 43.5% on certain tasks).

* An open-source implementation of our

method, available at https://github.

com/deepmind/randomized_
positional_encodings.

2 Related Work

Our work is most closely related to the growing
line of research on Transformers’ positional encod-
ings. The first approaches simply added a trans-
formation of the tokens’ positions, e.g., scaled si-
nusoids (Vaswani et al., 2017) or learned embed-
dings (Gehring et al., 2017), to the embeddings
of the input sequence. Dai et al. (2019) subse-
quently showed that computing the attention (at
every layer) using the relative distances between
the key and query vectors improves the modeling
of long-term (inter-context) dependencies. Simi-
larly, Su et al. (2021) proposed to inject position
information by rotating the key-query products ac-
cording to their relative distances. Finally, Press
et al. (2022) improved the length generalization
on natural language processing tasks by adding
a constant bias to each key-query attention score
(proportional to their distance). However, as our ex-
periments in Section 4 will show, these approaches
fail at length generalization on algorithmic reason-
ing tasks, which is precisely the goal of our work.

A concurrent work developed randomized
learned positional encodings (Li and McClelland,
2022), which are a special case of our family of ran-
domized positional encodings. We also note that

the necessity of feature and position randomization
for length generalization has been discussed in the
context of graph neural networks, which subsume
Transformers (Ibarz et al., 2022; Sato et al., 2021).
Finally, Liu et al. (2020b) proposed to model the
position information as a continuous dynamical
system in an effort to handle sequences longer than
those seen during training time.

Our work is also related to the research area
on improving the systematic (length) generaliza-
tion capabilities of Transformers (Ontafién et al.,
2022), which includes approaches investigating em-
bedding scaling or early stopping (Csordas et al.,
2021), adaptive computation time (Dehghani et al.,
2019), geometric attention with directional posi-
tional encodings and gating (Csordés et al., 2022),
and hierarchical reinforcement learning (Liu et al.,
2020a). Such length generalization studies are of-
ten conducted in the context of formal language
theory, and we evaluate our method on the recent
benchmark by Delétang et al. (2023), which unifies
a large body of work on Transformers’ capability
to recognize formal languages (Ackerman and Cy-
benko, 2020; Bhattamishra et al., 2020; Ebrahimi
et al., 2020; Hahn, 2020; Hao et al., 2022; Merrill,
2019; Merrill and Sabharwal, 2022).

3 Randomized Positional Encodings

Unlike RNNs (Elman, 1990), which are unrolled
over tokens one step at a time, Transformers pro-
cess large chunks of the input sequence in parallel
via global attention (Vaswani et al., 2017). As a
result, Transformers do not need to “remember”’
previous tokens, but they do have to break the
permutation-invariance of the attention mechanism.
To that end, the embeddings of the input sequence
are generally augmented with positional encodings.
For example, the vanilla Transformer adds the fol-
lowing positional encodings to the embedded input
sequence before passing it to the attention layers:

PE(pos, 2i) = sin (pOSQ> G
10000dn10de1

PE(pos, 2i + 1) = cos (pOS2> e
10000 dmodel

where pos is the token’s position in the sequence,
dmodel € N is the dimension of the input embed-
ding, and i € {1,2,...,dmnodel/2}

While positional encodings generally succeed
at inducing the required positional information

1890

https://github.com/deepmind/randomized_positional_encodings
https://github.com/deepmind/randomized_positional_encodings
https://github.com/deepmind/randomized_positional_encodings

for sequences of fixed length, they are one of the
main failure modes preventing length generaliza-
tion. Concretely, for a Transformer with standard
positional encodings trained on a curriculum of se-
quences of maximum length NV, test sequences of
length M > N will shift the distribution of the re-
sultant positional encodings away from those seen
in training, with the shift getting increasingly large
as M grows. To address this, we propose a random-
ized encoding scheme, which relies only on order
information, and can be expected to generalize up
to sequences of length M, where N < M < L,
with a configurable hyperparameter L.

Randomized positional encodings We assume
that each training step will perform a step of loss
minimization on a batch of data of fixed size. Let
U(S) denote the discrete uniform distribution over
set S, and let P, :={S C{1,...,L} | |S] = k}.
For each training step, we first sample a random
length n ~ U({1,...,N}) (following Delétang
et al., 2023) and then a random set of indices I ~
U(P,). We then sort I in ascending order, such
that [= {i1,...,in} foriy <ig < --- < iy, not-
ing that I is sampled without replacement. Finally,
we compute our randomized positional encoding
for token 1 < j < N as RPE(j,-) := PE(i},-).
At test time, when processing a sequence of length
M > N, we use the same procedure but for all to-
ken positions 1 < j < M. The intuition behind our
method is to preserve the known good properties of
relative encoding but in a way that is independent
of the maximum training length /V and thus allows
generalization to longer sequences at test time.

When applying our randomized positional en-
coding scheme, we subsample the extended posi-
tions only once per batch and not individually for
every sequence. For the sin / cos (Vaswani et al.,
2017), learned (Gehring et al., 2017), and RoPE
encodings (Su et al., 2021), we apply our method
as described above, i.e., we directly replace the
original token positions with their sampled counter-
part. For the relative encoding (Dai et al., 2019), we
compute the relative distances between the sampled
positions instead of the original positions. Finally,
for ALiBi (Press et al., 2022), we sample the bias
values from the set of extended positions.

As a consequence, our tokens’ positional encod-
ings are no longer directly related to their exact
position (the encodings even change during train-
ing as they are resampled at every step). However,
since we maintain the order of the encodings, the

Transformer can still learn to extract the relevant
positional information from the subsampled encod-
ings. Indeed, we validate the necessity of ordering
the sampled positions in our ablation study in Ap-
pendix B.1. Thus, the success of our encoding
scheme offers an interesting insight into the induc-
tive biases of the Transformer architecture.

As we will show in Section 4, our randomized
encodings trained only on lengths up to NV perform
the same on sequences of length M as prior ap-
proaches trained on lengths up to M. Therefore,
our method demonstrates that Transformers can be
efficiently trained on short sequences as long as
(i) the longer sequences share the same structure
and (ii) the longer positions are observed during
training. Moreover, as the running time of global
attention is O(¢2) for sequence length /, our en-
coding scheme is significantly faster than directly
training a model on long sequences. Furthermore,
we also note that our randomized positional en-
coding scheme significantly boosts length general-
ization while leaving the in-domain generalization
performance largely unaffected (see Fig. 4).

The main limitation of our approach is that the
maximum test sequence length M has to be known
in advance to choose L > M. However, our
method is compatible with a wide range of val-
ues for L (see Appendix B.1), and we note that this
is a much weaker assumption than that required
for the naive approach of simply training on longer
sequences. However, note that if L is chosen to
be much larger than N or M, it is theoretically
unlikely for the model to encounter enough unique
indices during training, likely leading to poor per-
formance (both in- and out-of-distribution).

4 Experimental Evaluation

Problem setup We closely follow the experi-
ment setup of Delétang et al. (2023) and eval-
uvate our method on a wide range of algo-
rithmic reasoning tasks such as modular arith-
metic, reversing/duplicating a string, binary ad-
dition/multiplication, and bucket sort. The tasks
are derived from formal language recognition and
thus grouped according to the Chomsky hierar-
chy (Chomsky, 1956), which partitions languages
into regular (R), context-free, context-sensitive
(CS), and recursively enumerable. Regular tasks
can be solved by a finite-state automaton (FSA), de-
terministic context-free (DCF) tasks can be solved
by an FSA with access to a deterministic stack, and

1891

Table 1: Accuracy (in percentage) averaged over all test lengths and maximized over 10 random seeds and 3 learning
rates. The random accuracy is 50%, except for MODULAR ARITHMETIC (SIMPLE), CYCLE NAVIGATION, BUCKET
SORT, and MODULAR ARITHMETIC, where it is 20%. Our randomized method increases the test accuracy by
12.0% on average. The randomized learned encodings (denoted with x) are equivalent to label-based encodings (Li
and McClelland, 2022). 1 denotes permutation-invariant tasks, which can be solved without positional information.

Randomized (Ours)

Level Task None sin/cos Relative ALiBi RoPE Learned sin/cos Relative ALiBi RoPE Learned*
EVEN PAIRS 50.4 50.9 96.4 67.3 51.0 50.7 100.0 100.0 81.5 100.0 97.5
R MODULAR ARITHMETIC (SIMPLE) 20.1 20.5 21.8 242 21.6 20.2 25.7 28.1 212 25.5 21.1
PARITY CHECK 51.9 50.5 51.8 51.7 51.3 50.3 52.6 52.2 50.3 523 52.6
CYCLE NAVIGATIONT 61.9 26.3 23.0 37.6 23.6 24.2 59.0 58.8 29.8 73.6 49.7
STACK MANIPULATION 50.3 50.1 53.6 57.5 51.2 49.2 72.8 719 70.6 68.2 69.1
DCE REVERSE STRING 52.8 50.6 583 62.3 51.9 50.7 75.6 95.1 77.1 69.9 529
MODULAR ARITHMETIC 31.0 28.3 30.3 325 25.1 25.1 33.8 34.9 31.3 32.7 319
SOLVE EQUATION 20.1 21.0 23.0 25.7 23.1 20.4 24.5 28.1 22.0 24.5 22.1
DUPLICATE STRING 52.8 50.7 51.7 513 50.9 50.8 72.4 75.1 68.9 68.9 53.0
MISSING DUPLICATE 52.5 51.3 54.0 54.3 56.5 51.0 52.5 100.0 79.7 88.7 52.7
ODDS FIRST 52.8 51.6 52.7 514 51.3 50.6 65.9 69.3 64.7 65.6 52.7
CS BINARY ADDITION 50.1 49.8 54.3 514 50.4 49.8 64.4 64.5 56.2 60.2 61.7
BINARY MULTIPLICATION 49.9 50.1 522 51.0 50.2 49.6 52.1 50.1 50.5 51.7 51.9
COMPUTE SQRT 50.2 50.1 524 50.9 50.5 50.2 52.5 53.3 51.2 52.3 52.0
BUCKET Sortf 23.7 30.1 91.9 38.8 30.6 25.9 100.0 100.0 99.6 99.6 99.5

CS tasks can be solved by an FSA with access to a
bounded tape. Note that the relation to the Chom-
sky hierarchy is largely irrelevant for our work and
only included for completeness. We evaluate our
method on Delétang et al. (2023)’s benchmark as
it is currently out of reach for Transformers and
clearly demonstrates their failure to generalize on
algorithmic reasoning tasks. We refer interested
readers to the original paper for more details.

We consider the encoder-only model of the orig-
inal seq-to-seq Transformer (Vaswani et al., 2017),
as used in popular pre-trained language models
such as BERT (Devlin et al., 2019) or Gopher (Rae
et al., 2021). Thus, for tasks that require a multi-
token output sequence y (e.g., duplicating a string),
we pad the input sequence with |y| empty tokens
and compute the entire Transformer output from
the padded sequence (i.e., we do not use autoregres-
sive sampling). We train the model on sequences
of length sampled uniformly from ¢/(1, N), with
N = 40, and evaluate it on sequences of length
{N +1,..., M}, with M = 500. We set the max-
imum position L = 2048 (and visualize the im-
pact of other values on the performance in Ap-
pendix B.1). We report the accuracy averaged over
all unseen sequence lengths, i.e., N +1,..., M,
for the best-performing model out of 10 differ-
ent parameter initialization seeds and three learn-
ing rates 1 X 1074, 3 x 1074, 5 x 107% We
use the same hyperparameters as Delétang et al.
(2023) and provide the full experiment setup in

Appendix A. We make our code publicly avail-
able at https://github.com/deepmind/
randomized_positional_encodings.

Comparison to prior work We compare our
method to a wide range of positional encodings:
none, sin / cos (Vaswani et al., 2017), relative (Dai
et al., 2019), ALiBi (Press et al., 2022), RoPE (Su
et al., 2021), learned (Gehring et al., 2017), and
label-based (Li and McClelland, 2022). Note that
the label encodings proposed by Li and McClelland
(2022) are equivalent to randomized learned posi-
tional encodings and thus subsumed by our method.
We instantiate our randomized positional encoding
scheme with all the above encodings and show the
average test accuracy in Table 1 (with performance
curves over test lengths in Appendix B.2). We ob-
serve that our randomized versions significantly
increase the test accuracy across most tasks (by
12.0% on average and up to 43.5%). In particular,
the randomized relative encoding solves tasks that
were previously out of reach for prior work (e.g.,
REVERSE STRING or MISSING DUPLICATE).

Efficiency comparison We now show that our
method allows us to train a model on short se-
quences and obtain a test accuracy above 90%,
roughly 35.4 times faster than the naive approach
of training a model on longer sequences. To that
end, we train the randomized relative encodings on
sequences up to length 40 and the classical relative
positional encoding (Dai et al., 2019) on sequences

1892

https://github.com/deepmind/randomized_positional_encodings
https://github.com/deepmind/randomized_positional_encodings

=
=)

>
()
809 FWW
>
o
Q
© 0.8
-
n
g
o 0.7
g 0.6 —— Random relative (ours) on U(1, 40)
z Relative on U(1, 500)

0.5+ T u v v

0 1000 2000 3000 4000

Training time (s)

Figure 2: Average accuracy over unseen test lengths
on the MISSING DUPLICATE task over training time
(seconds) for two models: (i) our randomized relative
positional encoding with a maximum training sequence
length of 40, and (ii) the classical relative positional
encoding but with a maximum training length of 500.

up to length 500 and show the test accuracy (aver-
aged over lengths 41 to 500) in Fig. 2 over training
time (in seconds). Our model obtains a strong test
accuracy significantly faster due to the quadratic
cost (in terms of sequence length) of global atten-
tion, which means that our model trains at 168.4
steps per second compared to 22.1 steps per second
for the naive approach (on a NVIDIA V100 GPU).

5 Conclusion

We introduced a novel family of positional encod-
ings that significantly improves the length gener-
alization capabilities of Transformers. Our po-
sitional encodings are based on the insight that
conventional positional encodings will be out-of-
distribution when increasing the sequence length.
Thus, to overcome this issue, we randomly sample
our encodings from a wider range than the lengths
seen at test time while keeping the order. Our large-
scale empirical evaluation demonstrates that our
method significantly outperforms prior work in
terms of length generalization while offering supe-
rior computational performance over the naive ap-
proach of training the model on longer sequences.

Limitations

While our work shows promising results in improv-
ing the generalization capabilities of Transform-
ers to sequences of arbitrary length, some limita-
tions must be considered. First, our evaluation is
confined to synthetic algorithmic reasoning tasks,
which may not fully capture the complexity and
diversity of natural language. We focused on syn-
thetic datasets since they showed clear and some-
what surprising limitations of Transformer architec-

tures (Delétang et al., 2023). However, the general-
izability of our approach to other tasks and domains
remains an open question, and additional research,
such as evaluation on SCAN (Lake and Baroni,
2018), CFQ (Keysers et al., 2020), COGS (Kim
and Linzen, 2020), or the Long Range Arena (Tay
etal., 2021), is necessary to understand its potential
in real-world applications. Second, our approach
introduces a new hyperparameter — the maximum
sequence position L. Although our experiments
in Appendix B.1 show that our method’s perfor-
mance is largely unaffected by the precise value of
L, practitioners may still have to tune the param-
eter depending on their specific problem domains.
Third, we only isolate and ameliorate one failure
mode of Transformer length generalization on syn-
thetic datasets. However, there are other factors
contributing to poor length generalization, such
as attention becoming less peaked for longer se-
quences (Chiang and Cholak, 2022). Overall, we
believe that our study’s limitations offer several
interesting directions for future research.

Acknowledgements

We thank Chris Cundy, Elliot Catt, Kevin Li, Lau-
rent Orseau, Marcus Hutter, Petar Velickovi¢, Vin-
cent Dutordoir, and the anonymous reviewers for
their helpful feedback.

References

Joshua Ackerman and George Cybenko. 2020. A
survey of neural networks and formal languages.
arXiv:2006.01338.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the ability and limitations of transformers
to recognize formal languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing.

David Chiang and Peter Cholak. 2022. Overcoming a
theoretical limitation of self-attention. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics.

Noam Chomsky. 1956. Three models for the description
of language. IRE Trans. Inf. Theory.

Rébert Csordds, Kazuki Irie, and Jiirgen Schmidhuber.
2021. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing.

Rébert Csordds, Kazuki Irie, and Jiirgen Schmidhuber.
2022. The neural data router: Adaptive control flow

1893

https://arxiv.org/abs/2006.01338
https://arxiv.org/abs/2006.01338
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://openreview.net/forum?id=KBQP4A_J1K

in transformers improves systematic generalization.
In The Tenth International Conference on Learning
Representations.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In Proceedings of
the 57th Conference of the Association for Computa-
tional Linguistics.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim
Genewein, Li Kevin Wenliang, Elliot Catt, Chris
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
Pedro A. Ortega. 2023. Neural networks and the
chomsky hierarchy. In The Eleventh International
Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies,.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In 9th International Conference
on Learning Representations.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. 2020.
How can self-attention networks recognize dyck-n
languages? In Findings of the Association for Com-
putational Linguistics.

Jeffrey L. Elman. 1990. Finding structure in time. Cogn.
Sci.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of the
34th International Conference on Machine Learning.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Trans. Assoc.
Comput. Linguistics.

Yiding Hao, Dana Angluin, and Robert Frank. 2022.
Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Trans.
Assoc. Comput. Linguistics.

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyria-
cos Nikiforou, Mehdi Bennani, Rébert Csordas, An-
drew Joseph Dudzik, Matko Bosnjak, Alex Vitvitskyi,
Yulia Rubanova, Andreea Deac, Beatrice Bevilacqua,

Yaroslav Ganin, Charles Blundell, and Petar Velick-
ovic. 2022. A generalist neural algorithmic learner.
In Learning on Graphs Conference, LoG 2022, 9-12
December 2022, Virtual Event.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In 8th International Confer-
ence on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of the 35th International Conference
on Machine Learning.

Yuxuan Li and James L. McClelland. 2022. Systematic
generalization and emergent structures in transform-
ers trained on structured tasks. arXiv:2210.00400.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen,
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and
Dongmei Zhang. 2020a. Compositional generaliza-
tion by learning analytical expressions. In Advances
in Neural Information Processing Systems 33.

Xuanging Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, and
Cho-Jui Hsieh. 2020b. Learning to encode position
for transformer with continuous dynamical model. In
Proceedings of the 37th International Conference on
Machine Learning.

William Merrill. 2019. Sequential neural networks as
automata. arXiv:1906.01615.

William Merrill and Ashish Sabharwal. 2022. Log-
precision transformers are constant-depth uniform
threshold circuits. arXiv:2207.00729.

Santiago Ontafién, Joshua Ainslie, Zachary Fisher, and
Vaclav Cvicek. 2022. Making transformers solve
compositional tasks. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In The Tenth International
Conference on Learning Representations.

1894

https://openreview.net/forum?id=KBQP4A_J1K
https://doi.org/10.18653/v1/p19-1285
https://doi.org/10.18653/v1/p19-1285
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://doi.org/10.1207/s15516709cog1402_1
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://transacl.org/ojs/index.php/tacl/article/view/3765
https://transacl.org/ojs/index.php/tacl/article/view/3765
https://proceedings.mlr.press/v198/ibarz22a.html
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://doi.org/10.48550/arXiv.2210.00400
https://proceedings.neurips.cc/paper/2020/hash/83adc9225e4deb67d7ce42d58fe5157c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/83adc9225e4deb67d7ce42d58fe5157c-Abstract.html
http://proceedings.mlr.press/v119/liu20n.html
http://proceedings.mlr.press/v119/liu20n.html
http://arxiv.org/abs/1906.01615
http://arxiv.org/abs/1906.01615
https://doi.org/10.48550/arXiv.2207.00729
https://doi.org/10.48550/arXiv.2207.00729
https://doi.org/10.48550/arXiv.2207.00729
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, H. Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Antonia
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Sid-
dhant M. Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’ Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake A. Hechtman, Laura Weidinger, Iason Gabriel,
William S. Isaac, Edward Lockhart, Simon Osindero,
Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem
Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hass-
abis, Koray Kavukcuoglu, and Geoffrey Irving. 2021.
Scaling language models: Methods, analysis & in-
sights from training gopher. arXiv:2112.11446.

Scott E. Reed, Konrad Zolna, Emilio Parisotto,
Sergio Gémez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, Tom Eccles,
Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas
Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. 2022. A
generalist agent. Trans. Mach. Learn. Res.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima.
2021. Random features strengthen graph neural net-
works. In Proceedings of the 2021 SIAM Interna-
tional Conference on Data Mining.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. arXiv:2104.09864.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transform-
ers. In 9th International Conference on Learning
Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30.

1895

https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=1ikK0kHjvj
https://doi.org/10.1137/1.9781611976700.38
https://doi.org/10.1137/1.9781611976700.38
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

A Experimental Details

We use the experiment suite proposed by Delétang
et al. (2023), which consists of 15 algorith-
mic reasoning tasks and is publicly available
at https://github.com/deepmind/
neural_networks_chomsky_hierarchy
under the Apache 2.0 License. The tasks do not
consist of fixed-size datasets but define training
and testing distributions from which one can
sample continuously. We train the models for
2000 000 steps with a batch size of 128, which cor-
responds to 256 000 000 (potentially non-unique)
training examples. At test time, we evaluate
a single batch of size 500 for every sequence
length in {41,...,500}, which corresponds to
230000 testing examples. We use the Adam
optimizer (Kingma and Ba, 2015) with gradient
clipping and sweep over three learning rates:
1x107% 3 x 1074, and 5 x 10~*. Furthermore,
for each task and positional encoding, we use 10
different parameter initialization random seeds.

We consider the encoder-only Transformer ar-
chitecture (Vaswani et al., 2017), with 5 blocks
of 8 heads each and d,,oqe1 = 64, which cor-
responds to 249026 parameters (270146 in the
case of relative and randomized relative posi-
tional encodings). We run every task-encoding-
hyperparameter triplet on a single NVIDIA V100
GPU from our internal cluster. As a result,
we used 15 (tasks) - 13 (positional encodings) -
3 (learning rates) - 10 (seeds) = 5850 GPU-units
for the results in Tables 1, 4 and 5 and Fig. 4.
For the results in Fig. 2, we used an additional
2 (positional encodings) - 3 (learning rates) -
10 (seeds) = 60 GPU-units. Finally, for Fig. 3, we
used 4 (maximum positions)-3 (learning rates)-
10 (seeds) = 120 GPU-units, yielding a grand to-
tal of 6030 GPU-units. We report all running times
in Table 2 and observe that our method induces a
negligible computational overhead.

B Additional Results

B.1 Ablation Study

In this section, we conduct an ablation study over
the two main components of our method: (i) the
maximum sampling position L, and (ii) the sorting
of the subsampled positions.

We train the randomized relative positional en-
coding for a wide range of different maximum po-
sitions L: 1024, 2048, 4096, and 8192. Figure 3

Accuracy

0.5

0 100 200 300 400 500
Sequence length

(a) REVERSE STRING (DCF)

=
o

0.9{ !
> i
gosi |
3 !
8o7| | 1024
! 2048
0.61 —— 4096
| —— 8192
0.5 +— , , , , ,
0 100 200 300 400 500

Sequence length

(b) MISSING DUPLICATE (CS)

Figure 3: Sweep over the maximum position L for our
randomized relative positional encodings. The test accu-
racy (averaged over unseen sequence lengths) is largely
unaffected by the concrete value of L (for reasonably
small values of L), showing the stability of our method.
However, if L is much larger than the maximum train-
ing (N) or testing (M) sequence length, we expect the
performance to degrade since it the model is unlikely to
encounter enough unique indices during training time.

shows that the test accuracy (averaged over all un-
seen sequence lengths) is largely unaffected by the
value of L on the REVERSE STRING and MISSING
DUPLICATE tasks. As a consequence, a practi-
tioner wanting to apply our method will not have
to carry out extensive tuning of this parameter (as
long as it is larger than the maximum evaluation
sequence length M, but not unreasonably large).

Next, we investigate the performance of our ran-
domized sin / cos positional encoding with and
without sorting of the subsampled positions. Note
that this experiment is meant as a “sanity-check”
since we do not expect the Transformer to perform
well without order information. Table 3 shows the
test accuracy (averaged over all unseen sequence
lengths) for the two versions of our method. We
observe that sorting the positions is crucial, as it
increases the test accuracy by 15.7% on average

1896

https://github.com/deepmind/neural_networks_chomsky_hierarchy
https://github.com/deepmind/neural_networks_chomsky_hierarchy

Table 2: Mean and standard deviation of the running times (in hours) for all the positional encodings and tasks.

Randomized (Ours)

Level Task None sin / cos Relative ALIiBi RoPE Learned sin / cos Relative ALiBi RoPE Learned*
PARITY CHECK' 0.86+0.17 0.87£0.17 1.63+0.28 0.87+£0.17 1.41+£0.24 0.9040.18 0.92+0.18 1.75+£0.29 0944019 1664031 1.12+0.23
R REVERSE STRING 1174021 1.18+0.22 261+0.39 1.17£0.22 201+0.35 1.23+£0.23 1244023 2754041 1.27£0.24 242+043 1.62+0.32
CYCLE NAVIGATION' 0.86+0.17 0.87+0.17 1.62+0.27 0.86£0.17 1.41+£0.25 0.9140.18 0.9240.18 1754029 0.94+0.19 1.66 £0.31 1.12£0.22
EVEN PAIRS 0.86+0.17 0.87£0.17 1.63+0.27 0.86+0.17 1.41+£0.24 0.9140.18 0924018 1.754£0.29 0954019 1654031 1.12+£0.22
STACK MANIPULATION 8.09+0.97 8.00+0.82 9.50£0.89 8.07+0.94 887+0.84 8.46+0.84 8.474+0.88 10.044+0.96 855+£0.90 10.61+1.58 9.58+1.12
DCF MODULAR ARITHMETIC 5484063 5.55+0.67 6.32+0.81 5.50+0.65 6.07+0.69 5.69+0.65 5.66£0.64 6.56+£0.70 5.6940.65 6.4140.84 5.92+0.80
BINARY MULTIPLICATION 1.8340.33 1.83+£0.30 286+043 1.84+031 2324039 224+0.35 2234035 3134043 2244035 3214051 2.88+0.46
BINARY ADDITION 1.834+0.32 1.82+0.31 289+042 1.81+£0.32 234+0.39 222+0.35 2224035 3174044 2244035 3.2940.62 2.90£0.49
BINARY ADDITION 1.83+£0.32 1.82+£0.31 289+£042 1.814+0.32 234+0.39 2.22+0.35 2224035 3174044 2244035 3.294+0.62 2.90 £ 0.49
COMPUTE SQRT 1394024 1.40+£025 220+0.34 1.40+£025 1.86+0.30 1.73+£0.29 1724029 2434037 1.74£030 2.53+£041 2.23+0.38
SOLVE EQUATION 5.60+£0.65 5.60+0.67 6.41+0.68 5.63+0.66 6.14+0.68 5.7440.65 578+£0.66 6.69+£0.76 5834+0.69 6.5040.80 6.01+£0.84
(& DUPLICATE STRING 1.58+0.28 1.59+0.28 4.10+£0.54 1.58+0.27 2.71+0.40 1.64+0.28 1.65+0.29 4244054 1.67+£0.29 3.18+0.49 2.05+0.38
MODULAR ARITHMETIC (SIMPLE) 0.99+0.19 1.00£0.19 1.74+£0.29 0.99+£0.19 1.51£0.26 1.0340.20 1.05 £ 0.20 1.87+£0.31 1.06 £0.21 1.74+£0.31 1.23£0.23
MISSING DUPLICATE 0.88+0.17 0.90£0.18 1.64+0.27 0.88+0.17 1.43+£0.26 0.9340.19 0.94+0.19 1.78+030 0974019 1.6640.30 1.15+0.23
ODDS FIRST 1174022 1.19+£0.22 261+0.38 1.17£0.22 2.00+0.31 1.23+£0.23 1244023 2744+040 1.26£0.23 240£0.39 1.59+0.29
BUCKET SORT! 1.17+£0.23 1.18+0.22 2.61+043 1.16+£0.22 2.01+0.34 1.22+0.23 1.2440.23 2.74+£040 1.2540.23 240+0.41 1.60+0.30

Table 3: Accuracy (in percentage) averaged over all test
lengths and maximized over 10 seeds and 3 learning
rates for our randomized sin / cos positional encoding
with and without sorting of the subsampled positions.

Randomized sin / cos

Level Task w/o Sorting w/ Sorting
EVEN PAIRS 50.4 100.0
R MODULAR ARITHMETIC (SIMPLE) 20.0 25.7
PARITY CHECK' 522 52.6
CYCLE NAVIGATIONT 59.3 59.0
STACK MANIPULATION 50.4 72.8
DCF REVERSE STRING 52.8 75.6
MODULAR ARITHMETIC 31.0 338
SOLVE EQUATION 20.2 24.5
DUPLICATE STRING 52.8 72.4
MISSING DUPLICATE 53.1 52.5
ODDS FIRST 52.8 65.9
CS BINARY ADDITION 50.0 64.4
BINARY MULTIPLICATION 49.9 52.1
COMPUTE SQRT 50.2 52.5
BUCKET SORT' 237 100.0

and up to 76.3% on certain tasks. In fact, without
sorting, our approach fails to beat the (baseline) ran-
dom accuracy on all but the CYCLE NAVIGATION
task, which is permutation-invariant (i.e., it can
be solved without positional information). This
confirms our intuition that the Transformer only
needs to know the relative order of the positional
encodings (and not their exact values), but that it
fails to solve tasks when presented with positional
encodings whose order does not correspond to the
tokens’ positions.

B.2 Comparison to Prior Work

In Section 4, we compared our method to
a wide range of positional encodings: none,
sin / cos (Vaswani et al., 2017), relative (Dai et al.,
2019), ALiBi (Press et al., 2022), RoPE (Su et al.,
2021), learned (Gehring et al., 2017), and label-

based (Li and McClelland, 2022). Here, we pro-
vide additional results for these experiments, as
well as a comparison to the geometric attention and
directional encodings of Csordds et al. (2022).

We recall that Table 1 showed the test accuracy
maximized over the 10 parameter initialization
seeds and the three different learning rates. We
reported the maximum following the experiment
setup in Delétang et al. (2023), which investigates
whether an architecture is capable of solving a task
at all (and not on average). However, we also re-
port the means and standard deviations (over the
random seeds) in Table 4 for the best-performing
learning rate. We observe that our randomized posi-
tional encoding also significantly outperform their
original counterparts on average. We visualize the
test accuracy per sequence length in Fig. 4.

We highlight the case of learned positional en-
codings, which fail to beat the random accuracy
baseline (cf. Tables 1 and 4). This is because the
columns of the embedding matrix corresponding
to the positions that are larger than the maximum
training length N are not learned during training
and are thus entirely random. In contrast, our ran-
domized version of the learned encodings consid-
ers all possible embedding columns during training
and thus achieves non-trivial to strong length gen-
eralization on most tasks.

Finally, we also compare our method to a variant
of the Neural Data Router (NDR) (Csordas et al.,
2022), which was developed to improve the sys-
tematic generalization capabilities of Transformers.
We only consider the most related aspects of the
NDR architecture, i.e., the geometric attention and
the directional encoding (we do not use gating or
shared layers). Table 5 compares the test accuracy
of geometric attention and directional encodings

1897

Table 4: Means and standard deviations (computed over random seeds) of the score (accuracy averaged over all
test lengths) for the results of the main experiment (see Table 1). The random accuracy is 50%, except for CYCLE
NAVIGATION, BUCKET SORT, and the modular arithmetic tasks, where it is 20%. We denote permutation-invariant
tasks, which can be solved without positional information, with t. Numbers in bold are the best performers, per task.
These results underline the superiority of our method, and especially when applied to relative positional encodings.

Randomized (Ours)

Level Task None sin / cos Relative ALiBi RoPE Learned sin / cos Relative ALiBi RoPE Learned*
EVEN PAIRS 50.1+£0.1 504402 67.6+153 59.8+3.2 504+03 504402 99.7+£0.3 99.6+0.6 T71.4£56 1000+£0.0 96.2+0.7
R MODULAR ARITHMETIC (SIMPLE) 20.0+0.0 202+0.2 20.7+0.5 232+09 208+0.5 20.1+0.1 24.2+14 249+1.7 208403 235+1.6 202+04
PARITY CHECK' 50.4+0.8 50.3+£0.2 50.440.6 50.5+0.6 50.4+0.4 50.0+0.1 51.1+1.3 514+0.5 50.0+£02 504+1.0 50.6+0.9
CYCLE NAVIGATION' 33.9+105 238+14 21.74+0.8 31.1+£38 223409 21.0+1.2 30.3+10.7 459+99 26.3+24 529+153 31.9+8.2
STACK MANIPULATION 502+0.1 473+1.9 50.1£33 51.0£80 49.6+3.0 449+3.7 69.2+£32 7L7+£47 695+1.1 66.0+20 66.1+2.5
DCF REVERSE STRING 52.7+0.1 50.4£0.1 542+1.5 56.3£2.6 51.2+0.3 50.4+£0.2 729+1.6 771+6.6 T751+13 67711 52.7+0.2
MODULAR ARITHMETIC 31.0+£0.1 243+£22 261420 281+34 24.0+24 223+15 29.6+4.6 288+55 29.3+1.6 28.6+39 303+2.6
SOLVE EQUATION 20.1£0.0 209+02 21.9+0.7 236+19 21.9+06 202+0.2 23.6+£05 254+18 21.1+£07 223+16 21.1£0.7
DUPLICATE STRING 52.7+0.1 504+£02 51.0£04 51.0+£02 504+0.2 504402 69.0+29 731+15 679+14 67.1+20 52.8+0.1
MISSING DUPLICATE 51.4+1.0 50.1+£0.6 51.1+11 535+04 53.9+1.6 50.1+0.4 504+15 91.4+98 752+34 732+12 512414
ODDS FIRST 527+£0.1 513402 51.5+£05 51.1+£0.2 508+0.2 50.5+0.1 625+£20 659+1.6 622+1.4 629+13 52.740.1
Ccs BINARY ADDITION 494+03 473+38 51.7+£13 485+3.6 478+54 489+08 61.2+1.7 620+1.1 543+1.5 574+12 59.9+1.3
BINARY MULTIPLICATION 498 £0.0 48.8+1.0 502+35 499+23 496+06 48.7+1.7 51.8+0.2 39171 492412 45.7+6.6 51.6+0.2
COMPUTE SQRT 50.2+0.0 50.1+£0.0 51.54+04 50.5+02 50.3+0.1 50.1+0.1 51.9+0.5 524+0.6 51.1+0.1 51.8+0.3 51.0+0.8
BUCKET Sort! 23.7+£0.0 256426 834+66 293+6.7 23.6+38 20.7+29 99.3+04 994+03 988407 99.3+03 989404

Table 5: Accuracy (in %) averaged over all test lengths
for geometric attention with directional encoding.

Max Avg + SD
Level Task Table 1 Geometric Table4 Geometric
EVEN PAIRS 100.0 1000 100.0£0.0 94.5+8.8
R MODULAR ARITHMETIC (SIMPLE) 28.1 43.6 249+1.7 27.2+82
PARITY CHECK! 52.6 524 51.4+£0.5 51.6+0.6
CYCLE NAVIGATIONT 73.6 413 52.9+153 329+47
STACK MANIPULATION 77.9 58.3 TL.7T+£47 556+23
DCE REVERSE STRING 95.1 652 77.1%+6.6 59.3+£32
MODULAR ARITHMETIC 349 36.5 30.3+26 32.84+28
SOLVE EQUATION 28.1 317 254418 28.5+2.0
DUPLICATE STRING 75.1 586 73.14+15 549+1.6
MISSING DUPLICATE 100.0 644 914498 603+£23
ODDS FIRST 69.3 642 65916 581+26
Ccs BINARY ADDITION 64.5 549 62.04+1.1 535+15
BINARY MULTIPLICATION 50.1 53.6 51.84+0.2 521425
COMPUTE SQRT 533 54.1 52.4+0.6 523+09
BUCKET SORT' 100.0 783 99.5+03 57.7+114

with the best results from Table 1 (for the maxi-
mum) and Table 4 (for the mean). We observe that
our randomized positional encodings outperform
the geometric attention overall (with a 9.7% higher
maximum test accuracy on average) but not on all
tasks. In particular, geometric attention performs
substantially better on MODULAR ARITHMETIC
(SIMPLE), which has an inherent locality bias, i.e.,
numbers closer to the operation symbols are gen-
erally more relevant, which can be captured by
“radiating outwards” as geometric attention does.

B.3 Analysis

Analyzing the activations As illustrated in
Fig. 1, the main intuition behind our random-
ized encodings is that they do not lead to out-
of-distribution activations when evaluating on se-
quences longer than the maximal training length.
We confirm this intuition in our analysis in Fig. 5,

which shows a 2D projection of activations onto the
first two principal components when evaluating on
sequences of length 40 (i.e., the maximum training
length IV, shown in blue) and length 150 (i.e., the
generalization regime, shown in orange), using the
same transformation. While the activations of our
randomized relative encoding strongly overlap for
the training and the generalization regimes in all
layers, the standard relative encoding leads to out-
of-distribution activations for sequence length 150
in layers 3 and 4. We obtained qualitatively similar
results for the sin / cos and learned encodings.

To compute the results in Fig. 5, we generated
30 sequences of length 40 and 150 respectively,
on the REVERSE STRING task and passed them
through a well-trained model with either relative
or randomized relative encodings. For each layer
shown, we fitted a (non-whitened) 2D PCA on the
activations obtained from sequence length 40 and
projected all activations from sequence length 150
into two dimensions using the same transforma-
tions (yielding 30 x 40 and 30 x 150 activation-
datapoints per layer). The random relative encod-
ing (our method) attains an average accuracy of 1.0
and 0.994 on the 30 sequences of length 40 and
150, respectively. The standard relative encoding
(the baseline) attains an average accuracy of 1.0 on
sequence-length 40 and 0.596 on length 150, indi-
cating the model’s failure to generalize well under
the standard relative encoding.

Analyzing the attention matrices We also ana-
lyze the attention matrices learned with the relative
positional encoding and our corresponding random-

1898

Accuracy

il M d
o 100 200 300
Sequence length

(a) EVEN PAIRS (R)

N /,‘wwﬁ'\
f 1’

\WV gy
R,
v

Accuracy
o o
- o
zVEA

300
Sequence length

400

(d) CYCLE NAVIGATION (R)

Accuracy

200
Sequence length

300 400

(g) MODULAR ARITHMETIC (DCF)

Accuracy

0 100 200 300 500

400
Sequence length
(]) MISSING DUPLICATE (CS)

1.0 pprs

0.9
Zos
5
o7

0.6

0.5 iR

0 100 200 300 400 500

Sequence length

(M) BINARY MULTIPLICATION (CS)

Accuracy

200 300
Sequence length

400 500

(b) MODULAR ARITHMETIC (SIMPLE) (R)

Accuracy

o 100

200 300
Sequence length

400 500

(€) STACK MANIPULATION (DCF)

| —e— NONE
| -@- SIN_COS

| ~db- RELATIVE

\\ ¥ AuBI
M - ROTARY

I —9- LEARNT
| -@- NOISY_SIN_COS
\ \' ~dp- NOISY_RELATIVE
| \‘" ~¥- NOISY_ALIBI
\R! ‘I NOISY_ROTARY
NOISY_LEARNT

Accuracy
o
o

0 100 200 300
Sequence length

400 500

(h) SOLVE EQUATION (DCF)

Accuracy

Sequence length

(k) opps FrsT (CS)

Accuracy

200 300
Sequence length

400 500

(n) CoMPUTE SQRT (CS)

Accuracy

o 100 200 ‘ 300 500

Sequence length

400

(C) PARITY CHECK (R)

Accuracy

Sequence length

(f) REVERSE STRING (DCF)

Accuracy

Sequence length

(1) DUPLICATE STRING (CS)

Accuracy

o 100 200 300
Sequence length

(l) BINARY ADDITION (CS)

Accuracy

100 200 300
Sequence length

(0) BUCKET SORT (CS)

Figure 4: Performance curves on all tasks for all the positional encodings. The dashed vertical red line is the
training range, meaning that sequences to the right have not been seen during training and thus measure length
generalization. The sequences to the left of the dashed line visualize the in-domain generalization performance.

1899

Initial embedding Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

° A)
°
® Length 40
® Length 150 ° ‘
Initial embedding Layer 1
° L]

(b) Randomized relative positional encoding (ours).

Figure 5: 2D PCA projections of the activations of the initial embeddings and the encoder layers for 30 sequences on
the REVERSE STRING task. For sequence-lengths beyond the training length (shown in orange), the standard relative
encoding clearly leads to out-of-distribution activations for layers 3 and 4 compared to those obtained with the
maximum training length (shown in blue). In contrast, our randomized version does not lead to out-of-distribution
activations for sequences longer than the maximum training length, confirming the intuition in Fig. 1.

ized version on the REVERSE STRING task. To that
end, we follow Csordas et al. (2022) and visualize
the maximum over the 8 attention matrices (one
per head) for each of the 5 layers in Fig. 6. We
compare the attention matrices for sequences of
length 40 (i.e., the maximum training length) and
150 (i.e., significantly longer than the maximum
training length). For length 40, both encodings pro-
duce a noticeable X pattern, which corresponds to
the reversal of the string. However, for length 150,
the pattern only remains visible for our randomized
encodings while it breaks down for the original
version, indicating the failure to generalize.

1900

Layer 1 Layer 2 Layer 3 Layer 4

(a) Relative (baseline) with a sequence of length 40 (in-distribution).

Layer 1 Layer 2 Layer 3 Layer 4

(b) Relative (baseline) with a sequence of length 150 (out-of-distribution).

Layer 1 Layer 2 Layer 3 Layer 4

(c) Randomized relative (our method) with a sequence of length 40 (in-distribution).

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

(d) Randomized relative (our method) with sequence of length 150 (out-of-distribution).

Figure 6: Analysis of the attention matrices for the relative and randomized relative positional encodings on the
REVERSE STRING task using sequences of length 40 (i.e., maximum training length) and 150 (i.e., beyond training
lengths). We visualize the maximum over the 8 heads per layer (following Csordds et al., 2022) and observe a clear
X pattern, which corresponds to the reversal of the sequence. Our randomized relative encodings maintain that
pattern on longer sequences, while it breaks down for the standard relative encoding.

1901

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitations section

[l A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Section 4 and Appendix A

¥/ B1. Did you cite the creators of artifacts you used?
Section 4 and Appendix A

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix A

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

Section 4 and Appendix A

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4 and Appendix A

C ¥ Did you run computational experiments?
Section 4 and Appendix B
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Section 4 and Appendix A

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

1902

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4 and Appendices A and B

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Appendix B

O C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Not applicable. Left blank.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1903

