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Abstract

Recently, various intermediate layer distilla-
tion (ILD) objectives have been shown to im-
prove compression of BERT models via Knowl-
edge Distillation (KD). However, a comprehen-
sive evaluation of the objectives in both task-
specific and task-agnostic settings is lacking.
To the best of our knowledge, this is the first
work comprehensively evaluating distillation
objectives in both settings. We show that atten-
tion transfer gives the best performance overall.
We also study the impact of layer choice when
initializing the student from the teacher layers,
finding a significant impact on the performance
in task-specific distillation. For vanilla KD and
hidden states transfer, initialisation with lower
layers of the teacher gives a considerable im-
provement over higher layers, especially on the
task of QNLI (up to an absolute percentage
change of 17.8 in accuracy). Attention trans-
fer behaves consistently under different initial-
isation settings. We release our code as an
efficient transformer-based model distillation
framework for further studies.'

1 Introduction

Large-scale pre-trained language models (PLMs)
have brought revolutionary advancements to nat-
ural language processing, such as BERT (Devlin
etal., 2019), XLNet (Yang et al., 2019), ELECTRA
(Clark et al., 2020) and GPT-3 (Brown et al., 2020).
However, the enormous size of these models has
led to difficulties in deploying them in resource-
constrained environments. Therefore significant
interest has emerged in developing methods for
reducing their size.

Knowledge Distillation (KD) (Hinton et al.,
2015) transfers the knowledge embedded in one
model to another, which can be used for cross-
lingual transfer, cross-modal transfer, and model
compression. KD heavily depends on the distilla-
tion objective, which determines how knowledge

"https://github.com/mainlp/How-to-distill-your-BERT

weissweiler,

bplank}@cis.lmu.de

is transferred. Many works have tried to design
different distillation objectives for Transformer-
based (Vaswani et al., 2017) model compression
and successfully distilled PLMs into smaller mod-
els, either task-specifically (Sun et al., 2019a; Jiao
et al., 2020) or task-agnostically—which differ in
whether KD is performed at the pre-training stage
or during task finetuning (Sanh et al., 2019; Sun
et al., 2020b; Wang et al., 2020; Wang et al., 2021).

Despite their impressive results, determining the
best distillation objective is difficult due to their
diverse comparison setups, such as data preprocess-
ing, student model initialization, layer mapping
strategies, task-specific/agnostic settings, and oth-
ers. This breadth of choices and lack of code has
led to comparison on unequal grounds and contra-
dictory findings.?> This shows a substantial need
to reproduce and evaluate distillation objectives
within the same setting. Motivated by this gap, we
conduct experiments on the most common distil-
lation objectives and their combinations in task-
specific and task-agnostic settings. From our em-
pirical evaluation, we show: (1) attention trans-
fer performs consistently well in various initialisa-
tion settings, (2) initialisation with lower layers of
the teacher gives a considerable improvement over
higher layers in task-specific distillation.

In summary, our contributions are:

* We perform an evaluation of the effectiveness
of different distillation objectives and the layer
choice for initializing the student from the
teacher layer.

* We make our code available as an efficient
distillation framework.

* We provide practical guidance in terms of
teacher layer choice for initialisation, distilla-
tion objectives and training parameters.

ZFor example, both Jiao et al. (2020) and Wang et al. (2020)

claimed to be the better method in their setting. See section 5
for detail.
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2 Related Work

Task-specific Distillation Sun et al. (2019b) task-
specifically compressed BERT by learning from the
every k-th layer of the teacher. To avoid leaving
out some of the teacher layers, many follow-up
works (Wu et al., 2020, Passban et al., 2021, Wu
et al., 2021) designed new layer mapping strate-
gies to fuse the teacher layers. Jiao et al. (2020)
used data augmentation to further improve the per-
formance. Initialising the student model with pre-
trained weights is crucial for performance since
the student learns from the teacher only shortly
in downstream tasks. Common choices for initial-
ization are: (1) task-agnostically distilling models
first, (2) using publicly available distilled models,
or (3) initializing with teacher layers. As part of
this study, we examine how to maximize the bene-
fits of initializing from teacher layers.

Task-agnostic Distillation In the field of task-
agnostic distillation, one line of work is to com-
press the teacher model into a student model with
the same depth but narrower blocks (Sun et al.,
2020b, Zhang et al., 2022). Another line of work
is to distill the teacher into a student with fewer
layers (Sanh et al., 2019, Jiao et al., 2020, Wang
et al., 2020, Wang et al., 2021), which is our focus.

Comparative Studies Li et al. (2021) conducted
out-of-domain and adversarial evaluation on three
KD methods, which used hidden state transfer or
data augmentation. Lu et al. (2022) is closely re-
lated to our work, where they also evaluated knowl-
edge types and initialisation schemes. However,
they did not consider layer choice when initialising
from the teacher, and the evaluation was only for
task-specific settings. Hence, our work comple-
ments theirs.

3 Distillation Objectives

Prediction Layer Transfer Prediction layer
transfer minimizes the soft cross-entropy between
the logits from the teacher and the student: Lpreq =
CE (27 /t, 2%/t), with 27 and 2 the logits from
the teacher/student and ¢ is the temperature value.

Following the vanilla KD approach (Hinton et al.,
2015), the final training loss is a combination of
Lopred and supervision loss L. (masked language
modelling loss Lyim in the pertaining stage). We
denote this objective as vanilla KD.

Hidden States Transfer Hidden states transfer
penalizes the distance between the hidden states
of specific layers from the teacher and the stu-
dent. Common choices for the representation are
the embedding of the [CLS] token (Sun et al.,
2019b) and the whole sequence embedding (Jiao
et al., 2020). We use Mean-Squared-Error (MSE)
to measure the distance between the student and
teacher embedding, which can be formulated as
Lhia = MSE (hSWh, hT), where h® € R? and
hT € R? are the [CLS] token embedding of spe-
cific student and teacher layer, d and d’' are the
hidden dimensions. The matrix W), € R g
a learnable transformation. We denote this objec-
tive as Hid-CLS. In the case of transferring the
sequence embedding, one can replace the token em-
beddings with sequence embeddings H® € R!*¢
and HT € R where [ is the sequence length.
The objective that transfers the sequence embed-
ding with MSE loss is denoted as Hid-Seq.

We also evaluated a contrastive representation
learning method which transfers the hidden state
representation from the teacher to the student with
a contrastive objective (Sun et al., 2020a). We
inherited their code for implementation and refer
our readers to the original paper for details. We
denote this objective as Hid-CLS-Contrast.

Attention and Value Transfer The attention
mechanism has been found to capture rich lin-
guistic knowledge (Clark et al., 2019), and atten-
tion map transfer is widely used in transformer
model distillation. To measure the similarity be-
tween the multi-head attention block of the teacher
and the student, MSE and Kullback-Leibler diver-
gence are the two standard loss functions. The
objective using MSE is formulated as L.y =
3 Z?:l MSE(A?, AT), where h is the number of
attention heads, matrices A; € R!*! refers to the
i-th attention head (before the softmax operation)
in the multi-head attention block. We denote this
objective as Att-MSE.

Since the attention after the softmax function is
a distribution over the sequence, we can also use
the KL-divergence to measure the distance: Lt =
T Zle Zthl DKL(ag:hHaf:h), where T is the
sequence length and H is the number of attention
heads. We will denote this objective as Att-KL. In
addition to attention transfer, value-relation transfer
was proposed by Wang et al. (2020), to which we
refer our readers for details. Value-relation transfer
objective will be denoted as Val-KL.
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Objectives QONLI SST2 MNLI MRPC  QQP RTE CoLA  Avg
Acc Acc Acc F1 Acc Acc Mcc
Vanilla KD 66.5+149 8474016 7514005 7124080 8194010 54.04124 69.14000 71.8
Hid-CLS-Contrast  69.3 .60 85.34056 76.24045 71.1+085 83.14+069 53.61023 69.010.12 72.5
Hid-CLS 75.7+057 8581034 77.0x010 7131041 8381163 54.0+217 6844035 732
Hid-Seq 8334013 8744013 7834013 7294050 87.61000 S51.8+110 6924055 75.8
Att-MSE 8434018  89.24040 78.64025 Tl.li041  88.7+005 5444103 6931017 765
+Hid-Seq 84.614020 89.24021 7891010 71.8+051 88.84000 54.040935 69.54+043 77.0
Att-KL 8534014  89.04026 7944008 Tl.4+020 89.04005 5554205 6934013 77.0
+Hid-Seq 84.6+1021  89.11t046 7951017 7241039  89.01006 5721086 6931021 773
+Val-KL 8551024  89.6+031 79.64010 7224030 8914005 5751070 6924015 775

Table 1: Task-specific distillation results on GLUE dev sets. Student models are initialised with every 4th layer of
the teacher model. We report the average and standard deviation over 4 runs. Attention based objectives consistently

outperform hidden states transfer and vanilla KD.

Objectives QNLI SST-2 MNLI MRPC QQP RTE CoLA Avg
Acc Acc Acc F1 Acc  Acc Mcc

DistilBERT*  89.2 91.3 82.2 87.5 885 599 513 785
TinyBERTT 90.5 91.6 83.5 88.4 90.6 722 428 799
MiniLM} 91.0 92.0 84.0 88.4 91.0 715 492 81.0
Vanilla KD* 88.6 914 82.4 86.5 906 61.0 544 793
Hid-CLS 86.5 90.6 79.3 73.0 89.7 61.0 339 734
Hid-Seq 89.2 91.5 82.3 89.2 90.3 672 482 79.7
Att-MSE 89.8 91.6 83.2 90.6 90.7 69.7 535 813
+Hid-Seq?  89.7 92.4 82.8 90.4 90.8 686 528 8l1.1
Att-KL 88.0 89.7 81.1 90.1 90.3 66.1 436 784
+Hid-Seq 88.9 91.6 82.4 90.0 90.5 668 479 79.7
+Val-KL$ 89.8 91.6 82.4 91.0 90.6 667 477 80.0

Table 2: Task-agnostic distillation: Performance on GLUE dev sets of three existing distilled 6-layer Transformer
models and our 6-layer students distilled. All the students are randomly initialised and distilled from BERTpAsE.
We report the best fine-tuning result with grid search over learning rate and batch size. Att-MSE performs the best

among all the objectives.

4 Experimental Setup

We evaluate our model on the General Language
Understanding Evaluation (GLUE) benchmark
(Wang et al., 2018) tasks, including linguistic ac-
ceptability (CoLA), sentiment analysis (SST-2), se-
mantic equivalence (MRPC, QQP), and natural lan-
guage inference (MNLI, QNLI, RTE).

For task-specific distillation, we distill a fine-
tuned RoBERTagasg (Liu et al., 2019) into a 3-
layer transformer model on each GLUE task, us-
ing the Fairseq (Ott et al., 2019) implementation
and the recommended hyperparameters presented
in Liu et al. (2019). We follow the training pro-
cedure from TinyBERT to perform intermediate
layer and prediction layer distillation sequentially
for 10 epochs each, freeing us from tuning the loss
weights. For intermediate layer distillation, the

student learns from the same teacher’s layers that
were used for initialising the student. In addition,
we always initialise the embedding layer with the
teacher’s embedding layer.

For task-agnostic distillation, we distill the un-
cased version of BERT},. into a 6-layer student
model, based on the implementation by Izsak et al.
(2021). Here we perform last-layer knowledge
transfer since we see no improvement when trans-
ferring multiple layers in our experiments. We train
the student model for 100k steps with batch size
1024, a peaking learning rate of 5e-4 and a maxi-
mum sequence length of 128. The distilled student
model is then fine-tuned on the GLUE datasets with
grid search over batch size {16, 32} and learning
rate {1e-5, 3e-5, Se-5, 8e-5}. We follow the orig-
inal training corpus of BERT: English Wikipedia
and BookCorpus (Zhu et al., 2015).
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Objectives Init. QNLI SST-2 MNLI MRPC QQpP RTE CoLA Avg
Acc Acc Acc F1 Acc Acc Mcc
48,12 6651140 8471016 7511005 T1.210s80 8191010 54.04124 69.11000 71.8
Vanilla KD 1,8,12 8294031 8854051 76.64008 T1.24088 87.84006 55.5+107 70.8+020 76.2
1,2,3 86.21035 90441023 7874018 78.6+015 8984005 S57d1146 T49+0s4 794
48,12 6931060 8531056 76.21045 Tl.1ioss 83.1i060 53.64023 69.01012 725
Hid-CLS-Contrast  1,8,12  82.91036 88.61020 77.01058 72.84061 88.0+013 55441075 7041030 764
1 ,2,3 86.1j:0,22 89.6:5:()‘33 79.0j:0,12 73.9;[; 1.43 90.1:t0.]0 55.1:(:0,(,7 71.1i 1.09 77.8
48,12 7574057 85.84034 77.0x010 7134041 83.8+163 54.04217 6841035 73.2
Hid-CLS 1,8,12 8341015 88.1103s 77. 71010 7191010 88.64006 56.110ss 71.51040 76.7
1,23 85.7100s 9031020 78.61014 7431100 9011000 571137 73.61024 785
48,12 8331013 8741013 7831013 7291050 87.61000 S51.8+110 6924055 75.8
Hid-Seq 1,8,12 8434010 88.61028 7824008 72.0+070 88.64010 5524140 T1.64037 T77.6
1,23 8591024 9071008 7891010 7554114 90.041005 56.61074 7421045 78.8
48,12 8534014 89.04026 7941008 7141029 89.04005 5554205 6931013 77.0
Att-KL 1,8,12 8471026 89.6+1013 7824010 7251024 88.61008 56.5+044 7041026 T7.2
123 8621006 88.6x019 7794017 7131024 89.01005 6124072 6951080 77.7
48,12 84341018 8924040 78.61025 T1.11041 8871005 5441105 6931017 76.5
Att-MSE 1,8,12 84.3 105 89.8.039 77.540.14 72.54136 88.44005 57.2+0.96 70.610.45 77.2
1,2,3 86.21013 8821043 77.8+013 72.4+040 8881000 6031149 69.61000 77.6

Table 3: Task-specific distillation: Performance of the student initialised with different teacher layers over 4 runs.
For vanilla KD and Hid-CLS transfer, the performance on QNLI is significantly improved when initialising with
lower teacher layers. Attention transfer benefits less from initialising from lower teacher layers.

5 Results

Distillation Objectives Distillation objective per-
formances are compared in Table 1 and Table 2
for task-specific and task-agnostic settings, respec-
tively. In the task-specific setting, attention transfer
is the best choice with initialisation from every k-th
teacher layer. However, the performance of hidden
states transfer and vanilla KD can be drastically
improved under other initialisation settings, which
we discuss in the next section.

In the task-agnostic setting, the Att-MSE objec-
tive outperforms A##-KL, which performs similarly
to vanilla KD and hidden states transfer. This con-
tradicts the observation in MiniLM (Wang et al.,
2020), where their Att-KL based objective outper-
forms TinyBERT (Jiao et al., 2020) with As-MSE.
However, MiniLM has more training iterations and
a larger batch size, which makes comparison diffi-
cult. The performance drop of Att-KL compared to
Att-MSE is mainly due to its poor performance on
CoLA (linguistic acceptability of a sentence), on
which MinilLM also performs poorly. We hypothe-
sise that MSE can transfer the linguistic knowledge
embedded in the attention matrix more effectively
because the MSE loss function gives more direct
matching than KL-divergence, which was also con-
cluded by Kim et al. (2021).

For reference, we report the result of 3 existing

works that use the same objectives in our experi-
ments. The result of DistilBERT and MiniLM are
taken from the respective papers. The result of
TinyBERT is taken from Wang et al. (2020) for fair
comparison since TinyBERT only reported task-
specific distillation result with data augmentation.
We denote the prior works and the corresponding
objective we evaluate with the same superscript
symbol.

Initialisation We also studied the impact of the
choice of teacher layers for initialising the student.
Evaluation score on GLUE task development sets
under different teacher layer choices for initialisa-
tion are reported in Table 3 and Table 4 for task-
specific and task-agnostic distillation, respectively.

We observe that initiatlization of layers has a
huge impact in the task-specific setting. The per-
formance of vanilla KD and Hidden states transfer
was significantly improved when initialising from
lower layers of the teacher (e.g. from 68.1% to
85.9% on QNLI for Vanilla KD). This explains
the impressive result of PKD (Sun et al., 2019b),
which initialised the student with first k teacher
layers. We believe this is an important observation
that will motivate further research into investigat-
ing the effectiveness of the different layers of the
pre-trained transformer model.

In the task-agnostic setting, we only observe
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Objectives  Init. QNLI SST-2 MNLI MRPC QQP RTE CoLA Avg
Acc Acc Acc F1 Acc Acc Mcc

Vanilla KD random 88.6 914 82.4 86.5 90.6 61.0 54.4 79.3
first 6 88.3 91.2 82.2 87.0 90.6 62.8 554 79.6

Hid-CLS random 86.5 90.6 79.3 73.0 89.7 61.0 33.9 734
first 6 87.0 91.2 80.7 88.0 90.2 66.0 42.5 77.9

Hid-Se random 89.2 91.5 82.3 89.2 90.3 67.2 48.2 79.7
q first 6 87.5 91.5 82.3 90.0 90.5 66.4 50.6 79.9
At-MSE random 89.8 91.6 83.2 90.6 90.7 69.7 53.5 81.3
first 6 89.5 91.7 82.8 91.0 90.8 66.1 534 80.8

Table 4: Task-agnostic distillation: Performance of the student initialised with random weights vs first 6 teacher
layers. Attention transfer performs the best in both initialisation settings.

considerable improvement with the objective Hid-
CLS, which performs poorly when randomly ini-
tialized, compared to other objectives. This contra-
dicts Sanh et al. (2019) with a vanilla KD objective,
where they instead showed improvement of 3 aver-
age score when initialising from the teacher over
random initialisation. However, our vanilla-KD
approach initialised with random weights outper-
forms their best result (79.3 vs 78.5). Therefore,
we hypothesise that the advantage of pre-loading
teacher layers over random initialisation diminishes
as the student is fully distilled during pre-training.

Significance Test We conducted paired t-testing
for all the distillation objectives in Table 1 and the
three initialisation choices within each objective in
Table 3. For Table 1, all the pairs of objectives are
statistically significant (p < 0.05) except four: (Att-
KL, Att-MSE), (Att-KL, Att-KL + Hid-Seq), (Att-
KL, Att-MSE + Hid-Seq), (Att-MSE, Att-MSE +
Hid-Seq). This further supports our conclusion that
when initialised from every K teacher layer, it is
important to do attention transfer, and the specific
objective matters less. For Table 3, all three initial-
isation choices are statistically significantly differ-
ent from each other for all the objectives, except
the pair (1,8,12, 1,2,3) for Att-KL and Att-MSE,
which indicates the robustness of attention transfer
under different initialisation choices.

Training Time Since task-agnostic distillation is
computationally expensive, we also focus on opti-
mizing our distillation framework for faster train-
ing. Our training time is about 58 GPU hours on
40GB A100, compared to TinyBERT (576 GPU
hours on 16GB V100) and DistilBERT (720 GPU
hours on 16GB V100). This is achieved by us-
ing a shorter sequence length and an optimized
transformer pre-training framework by Izsak et al.

(2021). We see no improvement when using a
longer sequence length of 512.

Guidance To sum up, our observations, trade-
offs and recommendations are:

* For task-specific KD, we recommend atten-
tion transfer in general, due to its consis-
tently high performance in various initiali-
sation settings (Table 3). The exact atten-
tion distillation objective matter less (Table
1). Considering the excellent performance of
the vanilla KD approach (Table 3) when ini-
tialising with lower teacher layers, we also
recommend lower teacher layer initialisation
with the vanilla KD approach for its shorter
training time and simple implementation.

* For task-agnostic KD, attention transfer with
Mean-Squared-Error is the best choice based
on our result (Table 2, 4).

* We recommend readers to use our task-
agnostic distillation framework and short se-
quence length for fast training.

6 Conclusion

We extensively evaluated distillation objectives for
the transformer model and studied the impact of
weight initialisation. We found that attention trans-
fer performs consistently well in both task-specific
and task-agnostic settings, regardless of the teacher
layers chosen for student initialization. We also
observed that initialising with lower teacher layers
significantly improved task-specific distillation per-
formance compared to higher layers. We release
our code and hope this work motivates further re-
search into developing better distillation objectives
and compressing in-house models.
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7 Limitations

We evaluated the most widely used distillation ob-
jectives including prediction layer transfer, hid-
den states transfer and attention transfer. How-
ever, some objectives are not included in our eval-
uation due to missing implementation details in
their paper. For example, we only implemented
the contrastive intermediate layer distillation objec-
tive proposed by Sun et al. (2020a) in task-specific
setting, since code and implementation details are
missing for task-agnostic setting. New objectives
are increasingly appearing for model compression
in the field of computer vision, such as Wasser-
stein contrastive representation distillation (Chen
et al., 2021) and distillation with Pearson correla-
tion (Huang et al., 2022), which can be included
to have a broader scope of distillation objectives
evaluation.

This work empirically studied the impact of the
teacher layer choice for initialization and training
objectives, however, further analysis is needed to
understand why lower teacher layers are essential
for initialisation, and why attention transfer be-
haves consistently well under various teacher layer
choices in the task-specific setting, while hidden
state transfer does not.
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A Hyperparameters

Table 5 shows the hyperparameters we use for task-
agnostic distillation.

Hyperparameter Our Model
Number of Layers 6
Hidden Size 768
FFN inner hidden size 3072
Attention heads 12
Attention head size 64
Learning Rate Decay Linear
Weight Decay 0.01
Optimizer AdamW
Adam € le-6
Adam [ 0.9
Adam (5 0.99
Gradient Clipping 0.0
Warmup Proportion 6%
Peak Learning Rate Se-4
Batch size 1024
Max Steps 100k

Table 5: Hyperparameter used for distilling our student
model in the pre-training stage.

Hyperparameter Search Space

{1e-5, 3e-5, 5e-5, 8e-5}
{16, 32}

Learning Rate
Batch Size

Table 6: The hyperparameter space used for fine-tuning
our distilled student model on GLUE benchmark tasks.

As the distillation in the pre-training stage is
computationally expensive and unstable, we sug-
gest readers to follow our settings to avoid addi-
tional costs. For example, we observed training
loss divergence when using a higher learning rate
(le-3).

Table 6 shows the search space of learning rate
and batch size for fine-tuning the general-distilled
student. We finetune for 10 epochs on each GLUE
task.

For task-specific distillation, we follow the sug-
gested hyperparameters shown in the repository of

RoBERTa (Liu et al., 2019).

B Comparison to prior works

Table 7 compares the settings and computational
costs of three prior works: DistilBERT (Sanh et al.,
2019), TinyBERT (Jiao et al., 2020) and MiniLM
(Wang et al., 2020), with our best-performing ob-
jective. There are some differences between our
settings and theirs, such as layer matching strate-
gies (which teacher layers to transfer), initialisation
choices, training steps and batch size. Compara-
tively, our framework requires less training time
and can achieve comparable or better results. Our
training takes 58 GPU hours on A100 compared to
720 GPU hours on V100 for training DistilBERT
(taking into consideration that an A100 GPU is
about twice as fast as a V100).

Iteration Steps  Batch Size Layer Matching Initialisation Max Sequence Length GPU hours Avg-score
DistilBERT - 4k prediction layer every second teacher layer 512 720h on 16GB V100 78.5
TinyBERT - 256 every second hidden layer random 128 576h on 16GB V100* 79.9
MiniLM 400k 1024 last hidden layer random 512 - 81.0
Ours 100k 1024 last hidden layer random 128 58h on 40GB A100 81.3

Table 7: Comparison of hyperparameter choices and training time between ours and prior works. Empty entries
indicate that the papers do not report those numbers. x: Number according to their GitHub issue answer.
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