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Abstract
A number of recent benchmarks seek to as-
sess how well models handle natural language
negation. However, these benchmarks lack the
controlled example paradigms that would allow
us to infer whether a model had learned how
negation morphemes semantically scope. To
fill these analytical gaps, we present the Scoped
Negation NLI (ScoNe-NLI) benchmark, which
contains contrast sets of six examples with up
to two negations where either zero, one, or
both negative morphemes affect the NLI la-
bel. We use ScoNe-NLI to assess fine-tuning
and in-context learning strategies. We find that
RoBERTa and DeBERTa models solve ScoNe-
NLI after many shot fine-tuning. For in-context
learning, we test InstructGPT models and find
that most prompt strategies are not success-
ful, including those using step-by-step reason-
ing. To better understand this result, we extend
ScoNe with ScoNe-NLG, a sentence comple-
tion test set that embeds negation reasoning
in short narratives. Here, InstructGPT is suc-
cessful, which reveals the model can correctly
reason about negation, but struggles to do so
on prompt-adapted NLI examples outside of its
core pretraining regime.

1 Introduction

Negation is a ubiquitous but complex linguistic
phenomenon that poses a significant challenge for
NLP systems. A diverse array of benchmarks fo-
cused on negation have appeared in recent years,
many of which contain families of contrasting ex-
amples that provide a local view of the model deci-
sion boundary (Gardner et al., 2020). For instance,
Cooper et al. (1996), McCoy and Linzen (2018),
Wang et al. (2019), Ettinger (2020), Hartmann et al.
(2021), and Kassner and Schütze (2020) all conduct
evaluations with minimal pairs of examples that are
identical except for a negative morpheme. These
examples reveal whether the presence of negation
has a causal impact on model predictions.

∗ https://github.com/selenashe/ScoNe

However, negation is not simply present or ab-
sent in a sentence. Rather, negation morphemes
are semantic operators that take scope in complex
ways, as we see in clear contrasts like the person
who was at the talk wasn’t happy and the person
who wasn’t at the talk was happy. The recent Con-
daQA benchmark of Ravichander et al. (2022) in-
cludes minimal pairs aimed at determining whether
models are sensitive to these differences in scope.

With the current paper, we seek to provide an
even fuller picture of the complexities of negation
and semantic scope. We introduce the English-
language Scoped Negation Natural Language In-
ference Benchmark (ScoNe-NLI). ScoNe-NLI ex-
tends the negated portion of the Monotonicity NLI
dataset (Geiger et al., 2020) such that each of the
1,202 examples is now a contrast set with six ex-
amples in which zero, one, or two negations are
present and each negation may or may not have
a semantic scope such that the NLI label is im-
pacted by its presence. These six conditions offer a
rich picture of how negation affects NLI reasoning,
and they allow us to determine whether models are
truly able to handle nested negation and scope or
whether they have found simplistic solutions.

We evaluate models on ScoNe-NLI using many-
shot fine-tuning as well as a wide range of in-
context learning strategies. For fine-tuning ap-
proaches, we find that RoBERTa and DeBERTa
models both solve ScoNe-NLI. For in-context
learning, we evaluate the latest InstructGPT model
with a variety of prompt strategies. We find that
these models perform well on sections of ScoNe-
NLI where the negation morphemes can simply be
ignored, but they systematically fail in conditions
where exactly one negative morpheme has seman-
tic scope such that its presence changes the NLI
label. In other words, these models fail to learn in
context how negation actually takes scope.

To better understand this result, we introduce a
sentence completion test set (ScoNe-NLG) contain-
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Split Premise Rel. Hypothesis Examples

No negation The cowboy fell off a horse at
the competition

⊐ The cowboy fell off a
racehorse at the competition

1,202

One Not
Scoped

The cowboy did not fear
anything, until he fell off a
horse at the competition

⊐ The cowboy did not fear
anything, until he fell off a
racehorse at the competition

1,202

Two Not
Scoped

The cowboy, who was not very
old, was not proud that he fell
off a horse at the competition

⊐ The cowboy, who was not
very old, was not proud that
he fell off a racehorse at the
competition

1,202

Two Scoped There is no way that the
cowboy did not fall off a horse
at the competition

⊐ There is no way that the
cowboy did not fall off a
racehorse at the competition

1,202

One Scoped The cowboy did not fall off a
horse at the competition

⊏ The cowboy did not fall off a
racehorse at the competition

1,202

One Scoped,
One not
Scoped

The cowboy did not fall off a
horse, but the competition was
not too important

⊏ The cowboy did not fall off a
racehorse, but the
competition was not too
important

1,202

(a) A six-example contrast set from ScoNe-NLI.

No Negation

Glen is a fan of learning
math. When he sees that
his new high school
requires that he take a
calculus course, he

Negation

Glen is not a fan of
learning math. When he
sees that his new high
school requires that he take
a calculus course, he

Non-Scoping Negation

Glen isn’t just a fan of
learning math, he’s
obsessive. When he sees
that his new high school
requires that he take a
calculus course, he

(b) A three-example contrast
set from ScoNe-NLG.

Table 1: Two contrast sets from the ScoNe Benchmark

ing examples that seem better aligned with what
we can infer about the training data used for In-
structGPT models. In each ScoNe-NLG example,
negation reasoning is needed to provide a coherent
ending to an incomplete narrative (see Figure 1b).
ScoNe-NLG contains minimal triplets of exam-
ples where negation is absent, present with relevant
scope, or present without relevant scope. Instruct-
GPT is successful on ScoNe-NLG. When consid-
ered alongside our negative result for ScoNe-NLI,
this finding seems to show that these models can
learn in-context about how negation takes scope,
but only when the examples are hand-tailored to
be aligned with the training data and aligned with
known strengths of these models. Thus, when used
together, ScoNe-NLI and ScoNe-NLG serve as a
clear diagnostic for exploring useful prompting
strategies and assessing the capacity of language
models to reason about negation and scope.

2 A Brief Review of Negation in NLI
Benchmarks

A diverse array of benchmarks and diagnostic ex-
periments have included negation reasoning in re-
cent years (Nairn et al., 2006; McCoy and Linzen,
2018; Wang et al., 2019; Ettinger, 2020; Hartmann
et al., 2021; Kassner and Schütze, 2020; Ravichan-
der et al., 2022).

Hossain et al. (2022) analyze a variety of natu-
ral language understanding benchmarks and find
that negation is underrepresented, and that when
negation is present it often has no impact on the
example label. Hossain et al. (2020) address this
issue by manually adding negation to the premise-
hypothesis pairs in MNLI (Williams et al., 2018),
SNLI (Bowman et al., 2015), and RTE (Dagan
et al., 2007; Cooper et al., 1996).

Yanaka et al. (2019a) introduce the crowd-
sourced MED dataset, which has many NLI exam-
ples where negation generates inferences. Mono-
tonicity NLI (MoNLI; Geiger et al. 2020) consists
of modified SNLI sentences that have gold labels
impacted by lexical entailments in affirmative con-
texts (PMoNLI) and lexical entailments reversed
by a negation (NMoNLI). BERT fine-tuned on
SNLI and MNLI fails to generalize to both of these
datasets, but succeeds with further fine-tuning on
MED/MoNLI. Some automatically generated NLI
datasets also include negation reasoning (Geiger
et al., 2019; Richardson et al., 2020; Yanaka et al.,
2019b, 2021).

3 ScoNe-NLI

ScoNe-NLI is an extension of MoNLI (Geiger
et al., 2020). MoNLI was generated by randomly
selecting a sentence from SNLI and replacing a
noun with a hypernym (more general term) or
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No One Two Two One One Scoped,
Fine-tuning Datasets Negation Not Scoped Not Scoped Scoped Scoped One not Scoped

MAF-NLI 82.0 86.0 81.5 91.0 5.0 5.0
MAF-NLI+ MoNLI (Geiger et al., 2020) 96.2 87.5 99.5 8.9 100.0 100.0
MAF-NLI+ MED (Yanaka et al., 2020) 84.8 83.5 82.0 58.9 99.5 97.0

MAF-NLI+ Neg-NLI (Hossain et al., 2020) 91.3 88.5 83.0 70.4 37.0 29.0
MAF-NLI+ MoNLI + ScoNe-NLI 100.0 100.0 100.0 100.0 100.0 100.0

Table 2: DeBERTa fine-tuning results on ScoNe-NLI. MAF-NLI stands for on MNLI, ANLI, and Fever-NLI.

Conditional Q Is it true that if Premise, then
Hypothesis?

Hypothesis Q Assume that Premise. Is it then definitely
true that Hypothesis? Answer yes or no.

Conditional
Truth

If Premise, then Hypothesis. Is this true?

Brown et al. P: Premise\n Q: Hypothesis\n Yes, No, or
Maybe?

Structured P: Premise\n H: Hypothesis\nL:

Reasoning

Logical and commonsense reasoning exam.\n\n
Explain your reasoning in detail, then answer with Yes or
No. Your answers should follow this 4-line format:\n\n
Premise: <a tricky logical statement about the world>.\n
Question: <question requiring logical deduction>.\n
Reasoning: <an explanation of what you understand about
the possible scenarios>\n
Answer: <Yes or No>.\n\n
Premise: Premise\n
Question: Hypothesis\n
Reasoning: Let’s think logically step by step. The premise
basically tells us that

Table 3: Prompts used to adapt a 2-way NLI example
(Premise, Hypothesis). Newlines are indicated with \n.
Full prompts with few-shot variants are in Appendix E.

hyponym (less general term). The original and
edited sentences are then used to form two premise–
hypothesis pairs, one with the label entailment and
the other with the label neutral. In about half of
the examples, this replacement is in an affirma-
tive context with no negation (PMoNLI). In the
other half, it is under the scope of a single negation
(NMoNLI).

The authors generated ScoNe-NLI by using each
example of NMoNLI to create a contrast set of six
examples where gold labels are impacted by the
scope of zero, one, or two negations, as in Table 1.

To succeed across all sections of ScoNe, models
need to attend to the presence of negation as well as
the way it scopes semantically. Table 1a shows an
actual example of how ScoNe extends MoNLI. We
use the train–test split of MoNLI where substituted

lexical items are disjoint across training and testing
data. Appendix C provides further details.

Fine-Tuning on ScoNe-NLI We used pub-
licly available weights on HuggingFace for the
DeBERTa-v3-base models already fine-tuned on
MNLI, Fever-NLI, and Adversarial-NLI (Laurer
et al., 2022; He et al., 2021). Appendix B contains
comparable results for the RoBERTa model (Liu
et al., 2019). Fine-tuning results are in Table 2.

Fine-tuning on existing NLI datasets is in-
sufficient for good performance on ScoNe-NLI:
DeBERTa-v3-base fine-tuned on existing NLI
datasets, even those that focus on negation, sys-
tematically fails. Thus, it seems that ScoNe-NLI
captures novel aspects of negation reasoning.

In contrast, fine-tuning on MoNLI and ScoNe-
NLI training data results in near perfect perfor-
mance on ScoNe-NLI test data. This shows that
DeBERTa can learn negation reasoning and gener-
alize to new lexical items.

In-context Learning on ScoNe-NLI We evalu-
ated InstructGPT using OpenAI’s API with text-
davinci-002 and text-davinci-003 engines and a
temperature of 0.0 (Brown et al., 2020). We ask
InstructGPT to infer NLI labels given the premise
and hypothesis using prompts. All prompts are
constructed such that if the response contain “yes”
(case-insensitive), then the label entailment is pre-
dicted, else the label neutral is predicted. We use
six prompts (Table 3). For each prompt, we imple-
mented both zero-shot and few-shot inference ex-
periments. Appendix E provides the full prompts.

InstructGPT makes systematic errors similar
to a baseline that ignores negation entirely. The
best results are for the few-shot reasoning prompt
with davinci-003. While its overall accuracy of
82% may initially appear to be a success, further
analysis reveals otherwise. InstructGPT succeeds
only on the sections of ScoNe-NLI where zero
or two negations take scope, namely, no nega-
tion (99%), one not scoped (97%), two not scoped
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No One Two Two One One Scoped,
Negation Not Scoped Not scoped Scoped Scoped One not Scoped Overall

Zero-shot

Structured 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Brown et al. 0.74 0.70 0.74 0.55 0.44 0.45 0.60
Conditional Q 0.79 0.84 0.80 0.50 0.52 0.44 0.65
Conditional Truth 0.98 0.86 0.80 0.43 0.66 0.47 0.70
Hypothesis Q 0.69 0.90 0.70 0.51 0.62 0.42 0.64
Reasoning 0.90 0.88 0.94 0.72 0.52 0.46 0.73

Few-shot

Structured 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Brown et al. 0.86 0.66 0.80 0.83 0.36 0.28 0.63
Conditional Q 0.92 0.85 0.90 0.62 0.34 0.34 0.66
Conditional Truth 0.94 0.90 0.94 0.64 0.36 0.37 0.69
Hypothesis Q 0.98 0.96 0.94 0.83 0.51 0.40 0.77
Reasoning 0.99 0.97 0.98 0.89 0.69 0.43 0.82

Ignore-Negation 1.00 1.00 1.00 1.00 0.00 0.00 0.66

Table 4: In-context learning results on ScoNe-NLI for InstructGPT (davinci-003 engine; see Appendix F for
corresponding results for davinci-002, which are uniformly lower). Zero-shot results are given in the first group of
rows, with the best results in that condition underlined. Few-shot results are given in the second group, with the
best results for this condition (and overall) in bold. The bottom row specifies a simple, idealized Ignore-Negation
baseline that makes predictions as if negations were absent. The baseline shows that the seemingly solid Overall
results of these models are driven largely by conditions for which negation can be ignored. Conversely, models are
often at or below chance where negation is critical in some way.

No One One Not
Negation Scoped Scoped Overall

Zero-shot 0.99 0.90 0.88 0.92
Few-shot 0.93 1.00 0.93 0.95

Table 5: Results for ScoNe-NLG using davinci-003.
The three conditions correspond to those of ScoNe and
test the essential scope-taking properties of negation.

(98%), and two scoped (89%). InstructGPT per-
forms much worse on sections where exactly one
negation takes scope, namely one scoped (69%),
one scoped/one not (48%). An idealized baseline
entirely ignoring the presence of negation (last row
of Table 4) succeeds and fails on the same sections,
indicating a systematic flaw in InstructGPT.

4 ScoNe-NLG

InstructGPT fails to reason about negation when
given NLI examples that must be adapted to natural
language generation (NLG) with prompts. We hy-
pothesized that InstructGPT may correctly reason
about negation when evaluated on examples hand
tailored to its pretraining objective, because there
is no need for prompt engineering (Liu et al., 2021;
Wei et al., 2022; Kojima et al., 2022).

Dataset ScoNe-NLG is a natural language gener-
ation dataset that contains 74 contrasting triplets
of examples of half-completed naturalistic narra-
tives that have different coherent completions de-

pending on the presence and scope of a negation.
InstructGPT fails on the sections of ScoNe-NLI
examples containing only one negation, so we opt
for contrast sets with three examples that require
knowledge of a lexical entailment in an affirmative
context without negation, an affirmative context
with non-scoping negation, and an negative context
with scoping negation, respectively. See Table 1b.

In-context Learning on ScoNe-NLG We used In-
structGPT to complete the partial sentence inputs
with the text-davinci-003 engine (temperature of
0.0). In the zero-shot setting, the prompt consists
of the ScoNe-NLG example. In the few-shot set-
ting, four demonstrations from ScoNe-NLG are
given one with no negation, two with scoping nega-
tion, and one with non-scoping negation. See Ap-
pendix E.13 for the complete prompts.

To evaluate, the authors went through the re-
sponses by hand and determined whether the gen-
erated text is coherent and compatible with the
initial narrative. The authors agreed on these anno-
tations for 216/222 of the zero-shot responses with
a Fleiss kappa of 0.84 and 220/222 of the few-shot
responses with a Fleiss kappa of 0.91. These agree-
ment rates are so high that we evaluate InstructGPT
only for the cases where the annotators agree. Here,
InstructGPT is successful but not perfect, achieving
95% and 92% accuracy in the few and zero-shot
settings, respectively. We do not observe the sys-
tematic failures seen on ScoNe-NLI.
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SCONE-BOOL(p, h)
1 lexrel← GET-LEXREL(p, h)
2 neg1← FIRST-SCOPE(p, h)
3 neg2← SECOND-SCOPE(p, h)
4 if (neg1 ⊕ neg2)):
5 return REVERSE(lexrel)
6 return lexrel

(a) An interpretable program
that solves ScoNe-NLI by
computing two Boolean vari-
ables that encode whether
the first and second negation
scope and reversing entail-
ment if exactly one is true.

SCONE-COUNT(p, h)
1 lexrel← GET-LEXREL(p, h)
2 count← COUNT-SCOPED(p, h)
3 if count == 1:
4 return REVERSE(lexrel)
5 return lexrel

(b) An interpretable program
that solves ScoNe-NLI by
counting the scoped nega-
tions and reversing entail-
ment if there is exactly one.

IGNORE-SCOPE(p, h)
1 lexrel← GET-LEXREL(p, h)
2 count← COUNT-NEG(p, h)
3 if count == 1:
4 return REVERSE(lexrel)
5 return lexrel

(c) A flawed heuristic pro-
gram: we count the nega-
tions and reverse entailment
if there is a single negation,
which is equivalent to ignor-
ing the scope of negation.

IGNORE-NEGATION(p, h)
1 lexrel← GET-LEXREL(p, h)
2 return lexrel

(d) A flawed heuristic pro-
gram for ScoNe-NLI that out-
puts the lexical relation and
ignores negation entirely.

Figure 1: Four human-interpretable algorithms for ScoNe-NLI. The first two solve the task perfectly, and the other
two implement flawed heuristics that a model might learn to implement. The function GET-LEXREL retrieves
the relation between the aligned words in the premise and hypothesis, COUNT-SCOPED counts scoped negations,
COUNT-NEG counts negations regardless of scope, and GET-FIRST returns true if the first negation scopes, while
GET-SECOND returns true if there is a second negation and it scopes.

5 Future Work on Interpretability

ScoNe is based in naturalistic examples, but it also
has a controlled structure that offers valuable op-
portunities to move beyond simple behavioral test-
ing and more deeply understand how models solve
tasks related to lexical entailment and negation.

The theory of causal abstraction provides a
framework for interpretability (Geiger et al.,
2023a), where a neural model can be understood
to implement the intermediate variables and inter-
nal structure of a program or algorithm (Geiger
et al., 2021, 2022; Wu et al., 2022b,a; Huang et al.,
2022; Geiger et al., 2023b). In fact, the MoNLI
dataset and the technique of interchange interven-
tions (which is the primary technique in causal
abstraction analysis) were jointly introduced in
Geiger et al. 2020, where interchange interventions
were used to investigate whether a BERT model im-
plements a simple, human-interpretable algorithm
that can perfectly label MoNLI using a variable
representing lexical entailment and a variable rep-
resenting the presence of negation.

With ScoNe, we can ask even deeper inter-
pretability questions of this form. To encourage
future work in this direction, we present a range
of algorithmic solutions in Figure 1. Two of these
solutions solve ScoNe and could perhaps explain
neural models that learn the task perfectly, and two
others implement flawed heuristics that could ex-
plain neural models with poor task performance.

Figure 1a and Figure 1b present two intuitive
and correct algorithms that solve ScoNe, but have
distinct intermediate variables and internal struc-

ture. The first computes two Booleans representing
whether each negation scopes, and the second com-
putes a count of how many negations scope.

Figure 1d is the flawed heuristic that ignores
negation that we discussed in Section 3 as a hypoth-
esis about how models fail at our task. Figure 1d
is a second flawed heuristic that counts the number
of negations present but ignores scope.

Using the toolkit of causal abstraction, we can as-
sess models not only behaviorally, but also evaluate
whether they implement an interpretable algorithm.
The results of Geiger et al. (2023b) begin to show
how such analyses could be extended to in-context
learning with LLMs, as in Section 4.

6 Conclusion

We introduced ScoNe, a benchmark for fine-tuning
and in-context learning experiments on negation.
ScoNe is challenging for NLI models fine-tuned
on other datasets, even those designed for nega-
tion reasoning, but modest amount of fine-tuning
on ScoNe leads to success. For in-context learn-
ing, we find that that InstructGPT models fail dra-
matically on ScoNe. However, we also introduce
ScoNe-NLG, which uses more narrative-like exam-
ples to probe models’ capacity to handle negation,
and show that InstructGPT is successful with zero-
shot and few-shot prompts for this task. These
results show that ScoNe supports fine-grained as-
sessments of whether models can reason accurately
about natural language negation, and our discus-
sion in Section 5 suggests that ScoNe can be a
powerful tool for discovering how models reason
semantically.
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Limitations

We are releasing ScoNe as a diagnostic tool for con-
ducting controlled scientific experiments. This is
our primary intended use, and we advise against un-
critical use of ScoNe for real-world applications, as
we have not audited the dataset for such purposes.

As a diagnostic tool, ScoNe’s primary limitation
is its focus on English. Cross-linguistically, we
find many strategies for expressing negation. The
English-language strategy of using mostly adver-
bial modifiers for sentential negation is not the only
one by any means, and we would expect to see
quite different results for languages in which nega-
tion is expressed, for example, with verbal suffixes.
This highlights the value of potential future efforts
extending ScoNe to other languages.

By the same token, we acknowledge that many
linguistic phenomena interact with negation even
internal to English. ScoNe restricts to negation in
the context of lexical entailment, and mostly uses
“not” as the negative morpheme. This excludes a
wide range of negation morphemes and negation
strategies that ultimately need to be brought into
the picture.

Finally, we note that there may be undesirable
biases in ScoNe that could interact with biases in
the models. ScoNe is in part derived from SNLI,
which is known to contain gaps, social biases, and
artifacts (Poliak et al., 2018; McCoy et al., 2019;
Belinkov et al., 2019; Gururangan et al., 2018;
Tsuchiya, 2018), and ScoNe may inherit some of
these.
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Appendices

A Experimental Details

A.1 Fine-tuning Protocol

For our fine-tuning experiments, we used a learning rate of 1e-5, batch size of 4, gradient accumulation
steps of 6 for a total of 10 epochs. We used these default hyperparameters as they were successful in
fine-tuning on ScoNe. We implemented these experiments with Pytorch (Paszke et al., 2019) and used the
scikit learn package (Pedregosa et al., 2011).

A.2 Hugging Face Models

We test RoBERTa1 and DeBERTa2 in these experiments. We used the roberta-large model fine-
tuned on MNLI3 with 354 million parameters, 500K steps, and trained on 1,024 V100 GPUs (Liu
et al., 2019). DeBERTa-v3-base-mnli-fever-anli model4 was fine-tuned on MNLI, Fever-NLI,5 and ANLI.6

RoBERTa weights link:
https://huggingface.co/roberta-large-mnli

Deberta weights link:
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

A.3 Fine-Tuning Datasets

We further fine-tuned our model on the datasets MoNLI,7 Negation-NLI, 8 MED. 9

B RoBERTa Results

No One Two Two One One Scoped,
Fine-tuning Datasets Negation Not Scoped Not Scoped Scoped Scoped One not Scoped

MAF-NLI 96.5 97.0 97.0 96.5 3.0 5.0
MAF-NLI+ MoNLI (Geiger et al., 2020) 85.4 100.0 100.0 4.5 100.0 100.0
MAF-NLI+ MED (Yanaka et al., 2020) 85.1 92.0 89.5 44.6 85.5 81.5

MAF-NLI+ Neg-NLI (Hossain et al., 2020) 93.1 97.5 93.0 73.2 20.5 17.5
MAF-NLI+ MoNLI + ScoNe-NLI 100.0 100.0 100.0 100.0 100.0 100.0

Table 6: RoBERTa fine-tuning results on ScoNe-NLI. MAF-NLI stands for on MNLI, ANLI, and Fever-NLI.

C ScoNe Dataset Details

For some examples, we modified the lexical items replaced. Consider the NMoNLI sentence pair ‘a man
is not tossing anything’-‘a man is not tossing socks’ (entailment), and non-scoping counterpart ‘a man not
here is tossing something’-‘a man not here is tossing socks’ (neutral). Here, ’anything’ must be replaced
by ’something’. The positive and negative examples in MoNLI do not come in minimal pairs, so the
examples in ScoNe-NLI with no negation are not from PMoNLI.

1released under the MIT license
2released under the MIT license
3released under the MIT license
4released under the MIT license
5released under the Creative Commons Attribution-ShareAlike License (version 3.0)
6released under the Attribution-NonCommercial 4.0 International license
7released under the Creative Commons Attribution Share Alike 4.0 International license
8released under the MIT license
9released under the Creative Commons Attribution Share Alike 4.0 International license
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D Prompting Methods

The experimental runs reported in the paper were conducted on January 11, 2023. We used InstructGPT10

models with 1.3 billion parameters and 6 billion parameter. The exact cost of constructing the InstructGPT
models is not public, but the pre-training protocol involves (1) fine-tuning a GPT3 model on an instruction
following dataset, (2) fine-tuning a GPT3 model to rank different answers to the instruction following
dataset, and (3) using reenforcement learning to combine these two models. We use a temperature
parameter of 0.0 for all experiments. If the response contains “yes” (case-insensitive), then we infer the
label entailment, else we infer neutral. Across experiments, the only thing that varies is the nature of
the prompt function.

E In-Context Learning Prompts

We have indicated all actual newlines with \n. The newlines in the formatting are just to make them
intuitive to read.

E.1 Conditional Question Prompt
Prompt example

Is it true that if we didn’t eat pizza, then we didn’t eat food?

E.2 Few-Shot Conditional Question Prompt
Prompt example

Q1: Is it true that if a not so tall person reading a paper is not currently sitting inside a building, then
a not so tall person reading a paper is not currently sitting inside a club?\n
A1: Yes\n
\n
Q2: Is it true that if the man does not own a dog and does not own a cat, then the man does not own
a retriever and does not own a cat?\n
A2: Yes\n
\n
Q3: Is it true that if a not so tall person reading a paper is not currently sitting inside a cabin, then a
not so tall person reading a paper is not currently sitting inside a building?\n
A3: Maybe\n
\n
Q4: Is it true that if a not so tall person reading a paper is not currently sitting inside a casino, then a
not so tall person reading a paper is not currently sitting inside a building? A4: Maybe\n
\n
Q: Is it true that if we didn’t eat pizza, then we didn’t eat food?\n
A:

E.3 Hypothesis Question Prompt
Prompt example

Assume that we didn’t eat pizza. Is it then definitely true that we didn’t eat food? Answer Yes or No.

10information on terms of use is available at: https://openai.com/terms/
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E.4 Few-Shot Hypothesis Question Prompt
Prompt example

Q1: Assume that a not so tall person reading a paper is not currently sitting inside a building. Is it
then definitely true that a not so tall person reading a paper is not currently sitting inside a casino?
Answer Yes or No.\n
A1: Yes\n
\n
Q2: Assume that the girl will not get a stuffed dog as a gift, but not because she failed the exam. Is it
then definitely true that the girl will not get a stuffed pinscher as a gift, but not because she failed the
exam? Answer Yes or No.\n
A2: Yes\n
\n
Q3: Assume that the girl will not get a stuffed shetland as a gift, but not because she failed the exam.
Is it then definitely true that the girl will not get a stuffed dog as a gift, but not because she failed the
exam? Answer Yes or No.\n
A3: No\n
\n
Q4: Assume that a not so tall person reading a paper is not currently sitting inside a monastery. Is it
then definitely true that a not so tall person reading a paper is not currently sitting inside a building?
Answer Yes or No.\n
A4: No\n
\n
Q: Assume that we didn’t eat pizza. Is it then definitely true that we didn’t eat food? Answer Yes or
No.\n
A:

E.5 Conditional Truth Evaluation Prompt
Prompt example

If we didn’t eat pizza, then we didn’t eat food. Is this true?

1813



E.6 Few-Shot Conditional Truth Evaluation Prompt
Prompt example

C1: If the man does not own a dog and does not own a cat, then the man does not own a shetland
and does not own a cat. Is this true?\n
A1: Yes\n
\n
C2: If a not so tall person reading a paper is not currently sitting inside a building, then a not so tall
person reading a paper is not currently sitting inside a house. Is this true?\n
A2: Yes\n
\n
C3: If the man does not own a collie and does not own a cat, then the man does not own a dog and
does not own a cat. Is this true?\n
A3: Maybe\n
\n
C4: If the man does not own a corgi and does not own a cat, then the man does not own a dog and
does not own a cat. Is this true?\n
A4: Maybe\n
\n
C:If we didn’t eat pizza, then we didn’t eat food. Is this true?\n
A:

E.7 Brown Et Al Style Prompt
Prompt example

C: We didn’t eat pizza\n
Q: We didn’t eat food. Yes, No, or Maybe?

E.8 Few-Shot Brown Et Al Style Prompt
Prompt example

C1: The man, who’s eyes are not open, is not steering a car.\n
Q1: The man, who’s eyes are not open, is not steering a sedan. Yes, No, or Maybe?\n
A2: Yes\n
\n
C2: A dog not on the playground did not catch any ball.\n
Q2: A dog not on the playground did not catch any volleyball. Yes, No, or Maybe?\n
A3: Yes\n
\n
C3: the man does not own a collie and does not own a cat.\n
Q3: the man does not own a dog and does not own a cat. Yes, No, or Maybe?\n
A4: Maybe\n
\n
C4: A not so tall person reading a paper is not currently sitting inside a inn.\n
Q4: A not so tall person reading a paper is not currently sitting inside a building. Yes, No, or
Maybe?\n
A5: Maybe\n
\n
C: We didn’t eat pizza\n
Q: We didn’t eat food. Yes, No, or Maybe?\n
A:
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E.9 Structured Prompt
Prompt example

P: We didn’t eat pizza\n
H: We didn’t eat food\n
L:

E.10 Few-Shot Structured Prompt
Prompt example

P1: The players who did not score did not have a ball.\n
H1: The players who did not score did not have a baseball.\n
L1: entailment\n
\n
P2: the man does not own a dog and does not own a cat.\n
H2: the man does not own a poodle and does not own a cat.\n
L2: entailment\n
\n
P3: the man does not own a terrier and does not own a cat.\n
H3: the man does not own a dog and does not own a cat.\n
L3: neutral\n
\n
P4: the man does not own a husky and does not own a cat.\n
H4: the man does not own a dog and does not own a cat.\n
L4: neutral\n
\n
P: We didn’t eat pizza\n
H: We didn’t eat food\n
L:

E.11 Reasoning Prompt
Prompt example

Logical and commonsense reasoning exam.\n
\n
Explain your reasoning in detail, then answer with Yes or No. Your answers should follow this 4-line
format:\n
\n
Premise: <a tricky logical statement about the world>.\n
Question: <question requiring logical deduction>.\n
Reasoning: <an explanation of what you understand about the possible scenarios>.\n
Answer: <Yes or No>.\n
\n
Premise: we didn’t eat pizza\n
Question: Can we logically conclude for sure that we didn’t eat food?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that
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E.12 Few-shot Reasoning Prompt
For this prompt, we insert two demonstrations right before the test example. These are of the correct type
for the test example, and they exemplify each of the two labels. The demonstrations are from a fixed set
of examples, which we include here:

E.12.1 No Negation
Prompt example

Here are some examples of the kind of reasoning you should do:\n
\n
Premise: The students ate pizza\n
Question: Can we logically conclude for sure that the students ate food?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students ate pizza entails that the students ate food.\n
Answer: Yes\n
\n
Premise: The students ate food\n
Question: Can we logically conclude for sure that the students ate pizza?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type
of food. Therefore, the premise that the students ate food does not allow us to conclude that the
students ate pizza. They might have eaten something else.\n
Answer: No\n
\n

E.12.2 One Scoped
Prompt example

Here are some examples of the kind of reasoning you should do:\n
\n
Premise: The students didn’t eat any pizza\n
Question: Can we logically conclude for sure that the students didn’t eat any food?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students didn’t eat any pizza does not allow us to conclude that
the students didn’t eat any food. They might have eaten something else.\n
Answer: No\n
\n
Premise: The students didn’t eat any food\n
Question: Can we logically conclude for sure that the students didn’t eat any pizza?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students didn’t eat any food entails that the students didn’t eat
any pizza.\n
Answer: Yes\n
\n
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E.12.3 One Not Scoped
Prompt example

Here are some examples of the kind of reasoning you should do:\n
\n
Premise: The students who weren’t in class ate pizza\n
Question: Can we logically conclude for sure that the students who weren’t in class ate food?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students who weren’t in class ate pizza entails that the students
who weren’t in class ate food.\n
Answer: Yes\n
\n
Premise: The students who weren’t in class ate food\n
Question: Can we logically conclude for sure that the students who weren’t in class ate pizza?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students who weren’t in class ate food does not allow us to
conclude that the students who weren’t in class ate pizza. They might have eaten something else.\n
Answer: No\n
\n

E.12.4 One Scoped, One Not Scoped
Prompt example

Here are some examples of the kind of reasoning you should do:\n
\n
Premise: The students who weren’t in class didn’t eat any pizza\n
Question: Can we logically conclude for sure that the students who weren’t in class didn’t eat any
food?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students who weren’t in class didn’t eat any pizza does not
allow us to conclude that the students who weren’t in class didn’t eat any food. They might have
eaten something else.\n
Answer: No\n
\n
Premise: The students who weren’t in class didn’t eat any food\n
Question: Can we logically conclude for sure that the students who weren’t in class didn’t eat any
pizza?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students who weren’t in class didn’t eat any food entails that
the students who weren’t in class didn’t eat any pizza.\n
Answer: Yes\n
\n
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E.12.5 Two Not Scoped
Prompt example

Here are some examples of the kind of reasoning you should do:\n
\n
Premise: The students who weren’t in class ate pizza that wasn’t hot\n
Question: Can we logically conclude for sure that the students who weren’t in class ate food that
wasn’t hot?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students who weren’t in class ate pizza that wasn’t hot entails
that the students who weren’t in class ate food that wasn’t hot.\n
Answer: Yes\n
\n
Premise: The students who weren’t in class ate food that wasn’t hot\n
Question: Can we logically conclude for sure that the students who weren’t in class ate pizza that
wasn’t hot?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that the students who weren’t in class ate food that wasn’t hot does not
allow us to conclude that the students who weren’t in class ate pizza that wasn’t hot. They might
have eaten something else.\n
Answer: No\n
\n

E.12.6 Two Scoped
Prompt example

Here are some examples of the kind of reasoning you should do:\n
\n
Premise: It is not the case that the students didn’t eat any pizza\n
Question: Can we logically conclude for sure that it is not the case that the students didn’t eat any
food?\n
Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a type of
food. Therefore, the premise that it is not the case that the students didn’t eat any pizza entails that it
is not the case that the students didn’t eat any food.\n
Answer: Yes\n
\n
Premise: It is not the case that the students didn’t eat any food\n
Question: Can we logically conclude for sure that it is not the case that the students didn’t eat any
pizza? Reasoning: Let’s think logically step by step. The premise basically tells us that pizza is a
type of food. Therefore, the premise that it is not the case that the students didn’t eat any food does
not allow us to conclude that it is not the case that the students didn’t eat any pizza. They might have
eaten something else.\n
Answer: No\n
\n
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E.13 ScoNe-NLG Prompts
In the zero-shot condition, models are simply prompted with the ScoNe-NLG examples. In the few-shot
condition, the test is example is proceeded with a fixed set of four demonstrations, separated by double
newlines. The examples are as follows:

Prompt example
Glen is not a fan of learning math. When he sees that his new high school requires that he take a
geometry course, he is not pleased.\n
\n
I saw John take his BMW to the store the other day, so when Suzy asked me if John owns a car, I
said yes.\n
\n
I’ve seen John with a dog that isn’t very cute, so when Suzy asked me if John owns a pet, I said
yes.\n
\n
I recently confirmed that John is not allergic to any shellfish. So it makes sense that when we served
shrimp

F In-Context Learning Results for davinci-002

No One Two Two One One Scoped,
Negation Not Scoped Not scoped Scoped Scoped One not Scoped Overall

Zero-shot

Structured 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Brown et al. 0.69 0.60 0.59 0.55 0.50 0.48 0.57
Conditional Q 0.76 0.55 0.65 0.50 0.50 0.50 0.58
Conditional Truth 0.76 0.64 0.66 0.60 0.50 0.57 0.62
Hypothesis Q 0.80 0.83 0.86 0.62 0.45 0.40 0.66
Reasoning 0.85 0.70 0.68 0.62 0.57 0.56 0.66

Few-shot

Structured 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Brown et al. 0.82 0.75 0.78 0.72 0.35 0.29 0.62
Conditional Q 0.92 0.82 0.78 0.52 0.36 0.32 0.62
Conditional Truth 0.92 0.89 0.88 0.59 0.36 0.37 0.67
Hypothesis Q 0.99 0.91 0.92 0.68 0.38 0.40 0.72
Reasoning 0.73 0.85 0.78 0.62 0.74 0.54 0.71

Table 7: In-context learning results for GPT-3 (davinci-002 engine).
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