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Abstract

A triple speech translation data comprises
speech, transcription, and translation. In the
end-to-end paradigm, text machine translation
(MT) usually plays the role of a teacher model
for the speech translation (ST) via knowledge
distillation. Parameter sharing with the teacher
is often adopted to construct the ST model
architecture, however, the two modalities are
independently fed and trained via different
losses. This situation does not match ST’s
properties across two modalities and also limits
the upper bound of the performance. Inspired
by the works of video Transformer, we pro-
pose a simple unified cross-modal ST method,
which concatenates speech and text as the in-
put, and builds a teacher that can utilize both
cross-modal information simultaneously. Ex-
perimental results show that in our unified ST
framework, models can effectively utilize the
auxiliary information from speech and text,
and achieve compelling results on MuST-C
datasets.

1 Introduction

Speech translation (ST) is the task that automati-
cally translates a source acoustic speech signal into
a text sequence in a target language. With the ad-
vance of Transformer, recent works on end-to-end
speech translation (E2E ST) can alleviate many
problems usually occurred in the cascade system
and achieve comparable performance (Bahar et al.,
2021; Bentivogli et al., 2021; Fang et al., 2022).
For the E2E ST model, MT is often used as the
teacher of ST, and methods such as knowledge dis-
tillation or contrastive learning are used to bridge
the modality gap. The MT teacher only uses the
source text (transcription) information. The speech
and text modalities are consumed individually by
ST model. There are two main drawbacks. One
is the teacher MT model can not use speech in-
formation, which limits the overall model perfor-
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mance. The other is MT uses text input, ST uses the
speech input, then close the two individual modali-
ties. There is no unified module can simultaneously
use cross-modal information.

Here, we take a further step towards more effec-
tive use of both speech and transcription text in ST.
Inspired by the related works of video Transformer
(Kim et al., 2021), when processing video, con-
catenating video information and text embedding
information can better model the cross-modal in-
formation of the video. We concatenate the prepro-
cessed speech and the transcription text jointly, and
encode the two-modal information simultaneously.
Following the recent popular advance in E2E ST
with knowledge distillation (KD) (Tang et al., 2021;
Zhao et al., 2021), it provides a practical paradigm
for transferring knowledge from rich-resource MT
task to limited resource ST task. However, we
re-define the role of teacher in our framework, be-
cause the information of the two modalities can
further improve the upper bound of model per-
formance than the single modality. Our proposed
model, a unified cross-modal concatenate ST struc-
ture (uceST) introduces the teacher-student learn-
ing with Kullback-Leibler divergence (KL) regu-
larization to transfer knowledge from cross-modal
translation model to two subtasks — ST and MT.

Our main contributions can be summarized.

(1) Compared with the previous ST frameworks
which can only utilize one single modality text in
MT teacher, we design a unified framework that can
use both input information of the two modalities
simultaneously by concatenating speech and text.
(2) Our cross-modal framework has three diverse
inputs when inference, containing three end-to-
end and cascade decoding paths. Our multi-task
learning framework allows sub-tasks to collaborate,
showing promising performance on both end-to-
end and cascade ST.

(3) We conduct various experiments on the
MuST-C corpus. When using the limited ternary
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Figure 1: The overview of the unified cross-modal concatenate framework. The left path (a) is the traditional
direct speech translation, input speech, output target text. The middle path (b) is to concatenate the preprocessed
speech sequence and the source text sequence. The right part (c) is an MT model that translates the source text (or
transcription) into the target text. <non> represents filling with <non> placeholder.

ST data, our E2E ST model can achieve state-of-
the-art performance. When adding the external
data, our method significantly improves over the
strong baselines.

2 Unified Cross-modal Concatenate ST
2.1 Background

Given the source acoustic speech sequence s, the
corresponding transcription x and the text sequence
y in target language, speech translation usually
model the conditional distribution as follows.

p(yls) = p(ylx,s)p(x]s) (1)

In most works, the assumption p(y|x) = p(y|x, s)
is usually adopted as the source transcription can
deterministicially infer the final translation. How-
ever, we prefer to leverage the original conditional
probability for our modeling.

2.2 Cross-modal Concatenate Framework

Inspired by video Transformer, the unified model
can take as input the concatenation of the features
of two modalities along the temporal dimension.
As shown in Figure 1(b), the speech preprocess-
ing module usually includes CNN down-sampling
and a speech encoder, such as the encoder of the

pre-trained ASR or the pre-trained audio encoder
wav2vec2.0. For the text sequence, we simply pro-
cess each token with an embedding layer. After the
concatenation, we add the position embedding and
segment embedding in the fashion of BERT.

2.2.1

Concretely, given a ternary ST example (s, x,y).
We optimize three translation tasks in parallel, in-
cluding MT, ST and our introduced unified cross-
modal translation.

Multi-task Training

Lyt = logp(y[x) + log p(y|s) + log p(y|[x,s])
(2

where [-, -] indicates the concatenation operation.

2.2.2 Regularization

Unlike other ST frameworks, the unified cross-
modal decoder output provides the teacher signal,
and the ST and MT models are two students. We
employ Kullback-Leibler divergence (KL) to mini-
mize the decoding distribution between the student
and the teacher model.

Lrr =KL (psthuniﬁed) +KL (pthpuniﬁed> 3)

Further, we impose a representation regulariza-
tion on the encoder output. Particularly, we apply
the MSE loss.

Lyse =MSE ((Zst, Zyr], Zunifiea) (4)
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Model En-DE En-Fr En-Es Paras
S S|xX X S S|xX X S S|xX X
E2E baseline 24.5 - - 349 - - 28.2 - - 76M
Cascade - - 254 - - 35.7 - - 28.9 -
Dual-Decoder (Le et al., 2020) 23.6 - - 33.5 - - 28.1 - - -
Adapter Tuning (Le et al., 2021) 24.6 - - 34.7 - - 28.7 - - 78M
Multi-Decoder (Dalmia et al., 2021) - 26.3 - - 37.0 - - - - -
Bi KD (Inaguma et al., 2021) 25.3 - - - - - - - - -
mutual KL (Zhao et al., 2021) - - - 36.3 - - 28.7 - - 76M
No Uni baseline 24.8 - 254 | 364 - 36.8 | 28.5 - 289 | 76M
Our uccST 25.51 263 257 36.6 376 369 |289" 297 292 | 76M

Table 1: BLEU scores of the speech translation results on the tst COMMON sets. The models are trained with the
ternary ST data on constrained settings. {: the SOTA performance of all E2E methods. .S indicates the ST decoding
path. S|X indicates the unified decoding path with both speech and ASR transcribed text. X indicates the MT

decoding path with ASR transcribed text. No Uni baseline refers to 4.3.

Model En-De En-Fr Paras
JT-ST* (Tang et al., 2021) 26.8 37.4 74M
E2E-ST-TDA* (Du et al., 2022) | 27.1 37.4 76M
Chimera (Han et al., 2021) 26.3 356 165M
XSTNet (Ye et al., 2021) 27.8 38.0 155M
SATE (Xu et al., 2021) 28.1 - -

STEMM (Fang et al., 2022) 28.7 37.4 155M
ConST (Ye et al., 2022) 28.3 383 155M
W2V2 baseline 27.3 36.8 155M
Our W2V2-uccST 28.8t  39.1F  158M

Model En-De En-Fr

S S| X X S S| X X
E2E 24.53 - - 34.88 - -
No Uni | 24.83 - 25.36 | 36.36 - 36.77
Unisim | 25.17 25.74 25.53 | 36.39 37.12 36.86
Ours 25.54 2632 25.65| 36.61 37.64 36.94

Table 3: Ablation analysis of concatenation in the con-
strained setting. Uni sim: Unified simple.

Table 2: The ST BLEU results on the tst. COMMON
dataset when using the external MT data. * indicates
they did not use the pre-trained wav2vec2.0.

where we concatenate the encoder outputs of ST
and MT such that it results in the same length as
the unified model.

2.2.3 Training and Inference

In summary, the final loss of the proposed uccST
can be written as follows.

L=Lyr+ Nk +nLrsE 5)
where A and 6 are hyper-parameters. During infer-
ence, we have 3 optional decoding paths. If only
audio is available, we can actually choose any de-
coding path. For the cross-modal unified or MT
decoding path, it requires the transcription from an
additional ASR, which is commonly a pre-training
step for ST.

3 Experiments Settings

3.1 Datasets and Settings

Data For a fair comparison with previous works,
we conduct our experiments on the widely used
MuST-C V1: English-German (En-De), English-

French (En-Fr) and English-Spanish (En-Es) cor-
pus (Gangi et al., 2019).

On En-De and En-Fr, we also verify to what

extent the auxiliary MT data can improve our multi-
task training. Specifically, we extract about 20M
sentence pairs for the WMT14 En-Fr, 4.5M for
WMT14 En-De, and 18M for Opensubtitle2018
En-De.
Settings We implement all our experiments on
Fairseq!. We experiment with two architectures?.
One is the transformer model with 512 hidden
units 2048 feed-forward size, which is same as
Tang et al. (2021), in purpose for constrained ST
data. The other one is to leverage pre-trained
wav2vec2.0(Baevski et al., 2020) as the speech pre-
processing module. Since wav2vec2.0 has been
already pre-trained with the audio data of Lib-
rispeech(Panayotov et al., 2015), we only compare
this setup to other works with same architecture.
During training, the text input is ground truth tran-
script of MuST-C. Note that the transcription data
in Librispeech is not used in our case. We select
the alternative batches between ST and MT with
sampling ratios 1.0 and 0.25, respectively.

1https: //github.com/pytorch/fairseq
2ht’cps: //github.com/pytorch/fairseq/tree/main/
examples/speech_to_text
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4 Experiments Results

4.1 Results on the Constrained ST Data

As shown in Table 1, our method achieves an ap-
pealing performance on the three language pairs in
the restricted ternary MuST-C data.

Compared with the direct E2E ST baseline, our
method has enhanced 0.7 to 1.7 BLEU on the three
language directions, with an average gain of 1.13
BLEU. In a word, our approach can achieve the
SOTA translation performance among all end-to-
end ST methods.

Compared with the cascade method that we
have reproduced, our E2E ST decoding path sur-
passes the cascade on the language pairs En-Fr,
and reaches a comparable level on En-De and En-
Es. The results of the MT decoding path with the
transcription exceed the cascade method on all lan-
guage pairs. Our cross-modal unified decoding
method has enhanced 0.8 to 1.9 BLEU than the cas-
cade method, with an average gain of 1.17 BLEU.
In summary, our E2E ST method has matched or
surpassed the cascade method on the constrained
triple ST data, and our cross-modal unified decod-
ing method has exceeded the traditional cascade
baseline.

4.2 Results on the External Data

Since our model is a multitask learning method
that includes the MT subtask, we add additional
MT data for comparison experiments. As shown in
Table 2, we compare different baselines with simi-
lar data usage. Our E2E method (i.e., ST decoding
path) and the corresponding baselines are presented
in the bottom two rows. The first two rows in the
table are the baselines without wav2vec2.0, and
the middle part of the table represents the meth-
ods with wav2vec2.0 architecture. It is concluded
that the pre-trained audio encoder model is indeed
helpful for downstream ST task. By introducing
more auxiliary MT data, our model with pre-trained
wav2vec2.0 improves 1.5 and 2.3 BLEU on the two
language pairs En-De and En-Fr, respectively. In
shot, our approach outperforms existing state-of-
the-art models, especially on En-Fr.

4.3 Ablation Analysis of Concatenation

In order to analyze whether our concatenation is ef-
fective, we have done comparative experiments on
different input models. As shown in Table 3, E2E
baseline indicates Figure 1(a). No Unified baseline
means to removing the (b) in Figure 1, and the KL

tst. COMMON ST(BLEU)
Our uccST 25.54
w/o KL 25.12
w/o MSE 24.93
w/o multi-task 24.53

Table 4: Ablation study on the En-De tst_ COMMON
set in the constrained setting.

loss is calculated between ST and MT. Unified sim-
ple model only concatenates the speech and text
sequence from each corresponding encoder output.
In accordance to the result, no concatenation or the
concatenation method in Unified simple model is
inferior to our proposal.

4.4 Ablation Study on Loss

To analyze the importance of each component of
the overall uccST loss, we conduct an ablation
study by removing each loss step by step. Table 4
summarizes the results of the ablation study. We
first remove the KL loss but reserve the unified
structure. It concludes that the KL terms contribute
to an improvement of 0.42 BLEU score. After fur-
ther removing the MSE loss, the model becomes
a standard multi-task ST Transformer. When re-
moving multi-task, it reduces to a standard E2E ST
model.

4.5 Comparison with the Cascaded Model

As shown in Table 5, our proposed E2E ST has
reached a comparable level to cascaded methods,
both in data-constrained and non-constrained cases.
As to the two decoding methods that require tran-
scription text, our method can outperform the cas-
cade baseline. Meanwhile, we can observe that
with the additional external data, the gap between
two inference setups S|X and S is narrowed.

5 Related Works

Cascade ST. Cascade ST system concatenates the
individual ASR and MT components (Stentiford
and Steer, 1988; Waibel et al., 1991), and repre-
sents an intuitive solution to achieve reasonable
performance and high intelligibility. At the same
time, this cascade method also faces some thorny
problems: the traditional cascade method suffers
from error propagation and the loss of acoustic
information that might be useful to improve final
translations. To alleviate the aforementioned prob-
lems, some tight integration methods have been
proposed (Sperber et al., 2019; Bahar et al., 2020).
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Model En-De En-Fr

ASR MT S S|X X ASR MT S S| X X
Cascade 12.11 29.87 - - 2544 | 11.09 43.21 - - 35.72
Ours - - 25.54 26.32 25.65 - - 36.61 37.64 36.94
Cascade(ext) | 9.85 33.66 - - 2897 | 9.76 46.13 39.16
Ours(ext) - - 28.82 29.03 28.95 - - 39.11 39.32 39.26

Table 5: BLEU scores on the tst. COMMON dataset with cascade method and ours. (ext) is with pre-trained
wav2vec2.0 on external MT data. ASR task scores are reported as WER, and others are BLEU.

End-to-end ST. To overcome the weakness of cas-
cade models, Berard et al. (2016) proposed the first
direct neural network model of an encoder decoder
architecture without the intermediate transcription.
Currently, more effective solutions are used in end-
to-end ST models (Park et al., 2019; Dong et al.,
2021). To alleviate the cross-modal difficulty in
end-to-end models, two-pass (Kano et al., 2017;
Anastasopoulos and Chiang, 2018) methods are
proposed. Curriculum learning (Kano et al., 2017;
Wang et al., 2020) is proposed to improve perfor-
mance of ST models.

6 Conclusion

In this paper, we designed a unified ST framework.
Compared with the previous ST frameworks which
can only utilize one single modality text in MT
teacher, our method can use both information of
the two modalities simultaneously by concatenat-
ing speech and text. Our ST method can better
utilize the cross-modal information. Experiments
show that our method can significantly improve ST
performance regardless of using the limited ternary
data or adding auxiliary external data.

Limitations

A lot of recent work especially in computer vi-
sion has leveraged the unsupervised methods or
unpaired multi-modality data to pre-trained cross-
modal language model. Applying the same idea
into speech language model is also discussed in
some recent research works. To compare fairly
with previous works in ST area, we do not build
our model on top of such frameworks and discuss
how to utilize the raw audio. In terms of the model
training, multi-tasks may affect each other due to
uneven data distribution, and we have just scratched
the surface of this part of the analysis.

Ethics Statement

This work designs a unified cross-modal concate-
nate ST structure to take better advantage of the
two modalities of speech and text. The datasets and
pre-trained models we use are publicly available
and are widely used in the research community,
whether in a constrained or unconstrained situa-
tion.
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A Appendix

Experience Settings The data statistics are shown
in Table 6.

corpus | ST(H/Sents) MT(Sents)
En-De | 408/234K  22.5M(WMT+OS)
En-Fr 492/280K 20M(WMT)
En-Es 504/270K -

Table 6: The statistics for the three language pairs.
H: Hours. Sents: Sentences. OS: OpenSubtiles2018.
WMT: WMT14.

We implement all our experiments on Fairseq?.
We experiment with two architectures*: a Trans-
former model with 512 hidden units 2048 feed-
forward size. All ST and ASR models use the same
encoder with 12 layers and 6 decoder layers. The
corresponding MT model also has 6 encoder and
decoder layers. We share parameters of all 6 text
encoder Transformer layers with the top 6 Trans-
former layers in the speech encoder. Hence the
preprocessed speech is composed of CNN layers
and 6 Transformer layers. The model architecture

3This tool can be accessed via https://github.com/
pytorch/fairseq

4ht’cps://github.com/pytorch/fairseq/tree/main/
examples/speech_to_text
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is same as (Tang et al., 2021), when on constrained
ST data.

When using the pre-trained wav2vec2.0
(Baevski et al., 2020) as the preprocessed speech
module, we add two additional 1- dimensional
convolutional layers to further shrink the audio,
with kernel size 5, stride size 2, padding 2, and
hidden dimension 1024. Then stack our Unified
concatenate model.

For all experiments on limited triple data, we
used the Adam optimizer (Kingma and Ba, 2015)
with the learning rate 2e — 3. The dropout rate and
the label smoothing are both set as 0.1. We choose
A1 = 1.0, A2 = 1.0 and n = 0.3 in the training
loss equation through grid search ([0.2, 1.5] for A
and [0.1, 0.5] for 7).

For adding external corpus experiments, we fine-
tune on the triple data with multi-task learning loss.
We select the alternative batches between ST and
MT with sample ratios 1.0 and 0.25, respectively.
We randomly select 1M WMT14 and 1M Open-
Subtitle18 as our fine-tune MT data on En-De. We
randomly select 2M WMT14 on En-Fr. For all
models at inference, we average 10 checkpoints
with a beam size 5.

Limited ST Baselines We compare our method
with various baseline models on constrained ST
situation:

* E2E ST baseline: The direct ST model trans-
lates the speech inputs to the target language
text without transcription. The encoder of the
E2E ST model is initialized by first training
on the ASR data from the triple ST data.

Cascade baseline: ASR and MT models are
independently trained, and then the outputs
of the ASR model are taken as the inputs
to the MT model. The ASR model uses the
same model settings as the corresponding ST
model.

* AFS model: AFS model (Zhang et al., 2020)
inserts a module between the ST encoder and
a pre-trained ASR encoder to filter speech
features for translation. AFS model is an end-
to-end speech translation.

¢ Dual-decoder model: Dual-decoder Trans-
former is an end-to-end ST architecture that
jointly performs ASR and ST (Le et al., 2020).
The ASR and MT decoders use attention mod-
ules to exchange information with each other.
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* Bi KD: Source and target bidirectional Knowl-
edge Distillation (Inaguma et al., 2021).

e mutual KL: Bidirectional KL for ST and MT
(Zhao et al., 2021).
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