
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1639–1650

July 9-14, 2023 ©2023 Association for Computational Linguistics

When to Use Efficient Self Attention?
Profiling Text, Speech and Image Transformer Variants

Anuj Diwan, Eunsol Choi, David Harwath
Department of Computer Science
The University of Texas at Austin

{anuj.diwan, eunsol, harwath}@utexas.edu

Abstract

We present the first unified study of the effi-
ciency of self-attention-based Transformer vari-
ants spanning text, speech and vision. We iden-
tify input length thresholds (tipping points) at
which efficient Transformer variants become
more efficient than vanilla models, using a va-
riety of efficiency metrics (latency, through-
put, and memory). To conduct this analysis for
speech, we introduce L-HuBERT, a novel local-
attention variant of a self-supervised speech
model. We observe that these thresholds
are (a) much higher than typical dataset se-
quence lengths and (b) dependent on the met-
ric and modality, showing that choosing the
right model depends on modality, task type
(long-form vs. typical context) and resource
constraints (time vs. memory). By visu-
alising the breakdown of the computational
costs for transformer components, we also
show that non-self-attention components ex-
hibit significant computational costs. We re-
lease our profiling toolkit at https://github.
com/ajd12342/profiling-transformers.

1 Introduction and Related Work

Transformers (Vaswani et al., 2017) are widely
adopted across NLP (Devlin et al., 2019; Brown
et al., 2020), Speech Processing (Mohamed et al.,
2022) and Computer Vision (Dosovitskiy et al.,
2021). Studies have shown that scaling mod-
els up improves performance (Chowdhery et al.,
2022), making efficiency an important research
topic. Many Transformer variants focus on im-
proving the efficiency of self-attention, motivated
by its asymptotic quadratic time/space complexity
with respect to the input sequence length.1 While
these Transformer variants are designed be asymp-
totically faster, in practice they may actually be
slower, especially given modest input lengths that
are typical of many tasks.

1We refer the readers to Tay et al. (2022) for a comprehen-
sive overview of efficient Transformers.

Our paper presents two main analyses. First, we
visualize the layerwise efficiency of such models to
locate bottlenecks and attempt to answer the ques-
tion “is self-attention the true bottleneck?” We find
that in the non-asymptotic case, non-self-attention
layers contribute significantly to the overall cost,
especially for speech architectures due to the input
waveform tokenizer in models like HuBERT (Hsu
et al., 2021). Second, when should we use self-
attention-based efficient Transformers? Comparing
efficient variants with vanilla models at different
input lengths, we find that this tipping point where
efficient variants outperform vanilla architectures is
much higher than typical input lengths of existing
benchmarks across all modalities, calling into ques-
tion the efficacy of using such efficient Transform-
ers and requiring new benchmarks. We introduce
a local-attention variant of a speech Transformer,
HuBERT, to conduct this analysis. Together, our
analyses suggest that current approaches that focus
on improving self-attention might not be the most
effective for improving efficiency.

2 Efficiency Metrics

Model efficiency is an umbrella term for a suite of
efficiency metrics, which do not always correlate
with, and sometimes contradict, each other (De-
hghani et al., 2022). Further, different metrics are
relevant to different end use-cases. To cover most
use-cases, we evaluate a set of four metrics; two
for computational time and two for memory usage:
Throughput: Number of examples processed per
sec, given inputs of a given sequence length, using
the maximum possible batch size for a given GPU.
Latency-Inference: Time (in ms) to run inference
for 1 unbatched input of a given sequence length.
Max-Memory: The allocated GPU memory (MiB)
for processing 1 input of a given sequence length.
Parameter Count: Number of model parameters.

We profile models in all modalities in training
mode and inference mode. For training, while

1639

https://github.com/ajd12342/profiling-transformers
https://github.com/ajd12342/profiling-transformers

Input Embedding
Layer

Positional
Embedding Layer

Self-Attention
Layer

FF

Intermediate
Layer

Output Layer

Input

x N

Figure 1: Transformer layer types profiled in our layer-
wise efficiency profiling experiments.

Transformer architectures often use prediction
heads with a larger output space (e.g., for text gen-
eration), we choose a lightweight binary classifica-
tion head for profiling.

Layerwise Efficiency Metrics We also profile
some metrics and models in a layerwise fashion
to locate their efficiency bottlenecks. Our goal is
twofold: a) provide an empirical approach to effi-
cient model design, as an alternative to theoretical
analyses or mental models (e.g. self-attention is
O(n2)) and b) empirically answer the question "to
what degree is self-attention the bottleneck?"

We identify important layer types (Self-
Attention, Feedforward, etc.) and profile the
Latency-Inference and Parameter Count metrics
per-layer-type to obtain a fine-grained understand-
ing of which layer types and indices (layer 0 vs 11)
contribute the most to model efficiency costs. We
use param counts as a proxy for memory (profiling
real layerwise memory usage is non-trivial due to
Pytorch memory allocation intricacies). We pro-
file the layers depicted in Figure 1; more details in
Appendix E.

3 Local-Attention Speech Model

Efficient transformers (Xiong et al., 2021; Ma
et al., 2021) have not received as much attention in
Speech as they have in NLP and CV, perhaps due
to two reasons. First, there is a relative lack of long-
context speech benchmarks as compared to those in
NLP (LRA (Tay et al., 2021) and QuALITY (Pang
et al., 2022)). Second, when performing speech

Model WER ↓ WER (w/ FT) ↓
HuBERT Base 7.09 3.4

L-HuBERT (32 | 100) 21.06 | 14.48 8.52 | 7.39

Table 1: WERs on the SUPERB ASR task.

tasks like automatic speech recognition (ASR), it is
typical to segment a long speech signal into small
individual utterances and perform ASR indepen-
dently on each. For example, most Librispeech
examples are less than 5 seconds. Many popular
speech models like HuBERT (Hsu et al., 2021)
tokenize the waveform at 50 tokens per second,
implying that a typical utterance has only several
hundred tokens; far below the number of tokens
in long-context NLP tasks. Nevertheless, textless
speech models (Lakhotia et al., 2021) are becom-
ing more feasible, motivating the modelling of long
speech utterances.

Local HuBERT Model To investigate the effi-
ciency of the self-attention layer in speech mod-
els, we introduce the Local HuBERT model which
replaces HuBERT’s self-attention with the Long-
former (Beltagy et al., 2020) sliding-window self-
attention. In this attention mechanism, every token
attends to tokens within a local window context,
rather than the full token sequence. Our model
is similar to the temporally windowed-attention
Transformer acoustic model proposed by Alastruey
et al. (2021) for speech translation; our approach
differs by using the self-supervised HuBERT model
as our basis, and we evaluate on ASR. Choosing
the appropriate window size for the local attention
context is key; we explore 32 and 100 token con-
texts, corresponding to 640 ms and 2 s, inspired
by phone recognition models that typically incor-
porate similar context sizes (Peddinti et al., 2015;
feng Yeh et al., 2019).

ASR Results We initialize the L-HuBERT model
with pretrained HuBERT Base weights (pretrained
with full self-attention), and then replace self-
attention with sliding-window self-attention; due
to limited compute, we did not pretrain L-HuBERT
from scratch using sliding-window attention. We
then evaluate L-HuBERT on Librispeech (Panay-
otov et al., 2015) ASR via the SUPERB (Yang et al.,
2021) benchmark under two settings; a) Freeze:
freezing the model and only training projection
weights and b) Finetune: fully finetune the model.
We use the default S3PRL2 hyperparams; but we

2https://github.com/s3prl/s3prl

1640

https://github.com/s3prl/s3prl

Model Emb Pos SA Interm Output Others

BERT 23.8M - 29M 28.3M 28.3M 0.6M
HuBERT 4.2M 5.1M 29M 28.3M 28.3M 0.2M
ViT 0.6M - 29M 28.3M 28.3M 0.6M

Table 2: Layer-wise parameter counts. Emb: Input
Embedding, Pos: Positional Emb. SA: Self-Attention,
Interm: Intermediate.

train for 200k steps for Freeze and 104k steps for
Finetune. Both models converge by 104k steps; we
train Freeze for longer to eke out as much perfor-
mance as possible, while we stop training Finetune
due to limited compute.

We report Word Error Rate (WER) on Lib-
rispeech test-clean in Table 1; lower is better. In
the frozen setting (middle column), we see a large
WER increase over HuBERT; we hypothesize that
this is due to the attention layer mismatch since
we initialize L-HuBERT with HuBERT weights
that were pretrained with full self attention, rather
than pretraining L-HuBERT from scratch. How-
ever, in the finetuning setting, the gap between
HuBERT Base and L-HuBERT narrows consider-
ably and using a larger window size achieves better
performance. As our L-HuBERT model is a reason-
able architecture capable of moderate ASR perfor-
mance, we can continue to study its computational
efficiency (we profile the window-100 variant).

4 Methods and Implementation

We analyze the Base versions of the BERT (De-
vlin et al., 2019), Longformer (Beltagy et al., 2020)
and Nyströmformer (Xiong et al., 2021) models
for text; the HuBERT (Hsu et al., 2021) and L-
HuBERT (Section 3) models for speech; and Vision
Transformer (Dosovitskiy et al., 2021) and Swin
Transformer (Liu et al., 2021) models for vision;
BERT, HuBERT and ViT are standard Transformer
encoder architectures. Longformer, L-HuBERT
and Swin use fixed-pattern self-attention while Nys-
trömformer uses approximate self-attention.

4.1 Sequence Length Ranges

We profile our models on a wide range of input se-
quence lengths to cover both avg. sequence lengths
of commonly used contemporary datasets (Table 3)
and typical sequence lengths of long-context tasks.
Details about how we compute sequence lengths in
Table 3 can be found in Appendix B. Most image
datasets use images resized to 224 or 512 pixels.
Below, range(a, b, c) means a range from a to b

in steps of c. Since there is no difference between
synthetic and real inputs from a computational com-
plexity standpoint, we use synthetic inputs to more
easily control for their sequence lengths.
Text Modality The input is ‘This is a sentence.’
repeated n times, n ∈ range(10, 560, 10) i.e.
range(62, 3362, 60) tokens for all tokenizers.
Speech Modality The inputs have durations in
range(1, 50, 0.5) sec i.e. range(50, 2500, 25) to-
kens for all featurizers (CNNs with 20 ms framer-
ate). Our sampling strategy is in Appendix A.
Image Modality We use square inputs of dimen-
sion in range(32, 1024, 32) pixels by rescaling a
fixed image. The # tokens depend on featurizer
patch size, which is different for different models.

4.2 Implementational Details

We profile time-based metrics (latency/throughput)
using Pytorch CUDA Events3 by executing 20
iterations sequentially. The first few iterations
serve as GPU warm-start; thus, we report the av-
erage of the last 10. We record Max-Memory
with torch.cuda.max_memory_allocated() and
param counts with torchinfo (Yep, 2020).

To profile throughput, we approximate the max
batch size that fits on a single GPU using a linear
estimator; more details in Appendix C. Finally, we
profile the layerwise Latency-Inference metric us-
ing torchprof (Wong, 2020). We attach profiling
hooks to modules of interest (e.g. Self-Attention,
Embedding), giving us execution times of their
forward() functions (other modules/functions are
not profiled). We use the Huggingface (Wolf et al.,
2020) implementations of text and image models
and fairseq (Ott et al., 2019) implementations for
speech models; more details in Appendix D.

5 Profiling Results

5.1 Layerwise Profiling Results

Figure 2 shows the layerwise Latency-Inference for
all 3 vanilla architectures in each modality. Figures
for efficient models are in Appendix F. Color dark-
ness represents the layer index (layer 0 is darkest).
Table 2 shows the layerwise param count.

Asymptotically, self-attention dominates the
computation. However, since the average seq
length for most text and speech tasks is less than
1000 tokens and most image datasets are used at

3https://pytorch.org/docs/stable/generated/
torch.cuda.Event.html

1641

https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html

Text Speech

Dataset SST MNLI SQ ON CNN HPQA TQA TEDL LJS VoxC Libri S-SQuAD Spotify
of tokens 23 36 177 506 863 1, 316 6, 589 301 328 390 615 3080 101400

Table 3: Average token sequence lengths. Left to right: Stanford Sentiment Treebank, MultiNLI, SQuAD2.0,
OntoNotes, CNN-DailyMail, HotpotQA, TriviaQA, TEDLIUM, LJSpeech, VoxCeleb Speaker Recognition, Lib-
rispeech, Spoken SQuAD, Spotify Podcasts.

Input Embedding Positional Embedding Self-Attention Intermediate Output Other
Text (BERT) Speech (HuBERT) Vision (ViT)

0 1000 2000 3000
of tokens

0

50

100

150

200

La
te

nc
y

(m
s)

0 10 20 30 40 50
Duration (s)

0 500 1000 1500 2000 2500
of tokens

0

25

50

75

100

125

150

La
te

nc
y

(m
s)

0 200 400 600 800 1000
Dimension

0

50

100

150

200

250

La
te

nc
y

(m
s)

Figure 2: Layerwise latency of different vanilla Transformer architectures in inference mode.

BERT Nyströmformer Longformer HuBERT L-HuBERT ViT Swin

Inference-Latency Inference-Max-Memory

0 1000 2000 3000
of tokens

50

100

150

200

250

La
te

nc
y

(m
s)

0 1000 2000 3000
of tokens

400

600

800

1000

1200

1400

1600

M
em

or
y

(M
iB

)

0 200 400 600 800 1000
Dimension

50

100

150

200

250

300

350

La
te

nc
y

(m
s)

0 200 400 600 800 1000
Dimension

250

500

750

1000

1250

1500

1750

2000

M
em

or
y

(M
iB

)

Figure 3: Overall Inference-time Profiling Results. Text and speech models in first row, vision models in second.

a max dimension of 512, at these points, non-self-
attention components take up 35%, 58.8% and
43.75% latency for NLP, speech and images. Ad-
ditionally, parameter counts of SA are also compa-
rable to Interm/Output layers. This shows that it is
also important to direct efficiency efforts for other
model components.

While the latency associated with embedding
layers is minimal for BERT, they are sizable for
HuBERT. HuBERT uses a CNN feature extractor
with different strides and kernel sizes and consumes
more time in the earlier CNN layers as opposed to
later ones, as is visible in Figure 2, which shows

darker shades i.e. earlier layers dominating the
computation. Optimal efficiency strategies can thus
differ across modalities, e.g. Wu et al. (2022) slims
down this CNN feature extractor embedding layer.
On the other hand, embedding layers take up a lot
of parameters in BERT; thus, it may be helpful to
shrink the BERT embedding layer for memory pur-
poses (as opposed to latency for HuBERT). Finally,
analyzing Transformer variants (Appendix F), we
see that self-attention in Longformer, Swin and L-
HuBERT encouragingly scales latency linearly, but
with large overhead for smaller inputs.

1642

BERT Nyströmformer Longformer HuBERT L-HuBERT ViT Swin

Training-Throughput Training-Max-Memory

0 1000 2000 3000
of tokens

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (#

 e
xa

m
pl

es
 /

s)

0 1000 2000 3000
of tokens

0

2500

5000

7500

10000

12500

15000

17500

M
em

or
y

(M
iB

)

0 200 400 600 800 1000
Dimension

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (#

 e
xa

m
pl

es
 /

s)

0 200 400 600 800 1000
Dimension

0

5000

10000

15000

20000

M
em

or
y

(M
iB

)

Figure 4: Overall Training-time Profiling Results. Text and speech models in first row, vision models in second.

5.2 Overall Profiling Results

Our profiling results are in Figures 3 and 4. Infer-
ence Throughput is in the Appendix at Figure 6,
exhibiting similar trends as training Throughput.

Tipping Point Analysis We see that most vari-
ants are slower and more memory hungry than
vanilla models for input lengths of typical-context
tasks. We define the tipping point for each modal-
ity: the input length at which the variant becomes
more efficient than the vanilla model. For text and
speech, it is 1750 − 2000 tokens for inference la-
tency and max-memory, greater than typical input
lengths (Table 3). However, while the tipping point
for training max-memory is ≈ 1500 tokens for text
(still a large number), it is ≈ 0 − 250 for speech,
an encouraging result. For images, it is 500− 700
pixels for all metrics apart from throughput. This
is less reasonable for 224 pixel datasets but good
for high resolution image datasets (512/1024). All
variants are either worse or comparable than vanilla
models across modalities for throughput.

We hypothesize that some efficient models suffer
from additional overheads; while vanilla attention
benefits from highly optimized matrix multiplica-
tion, windowed attention requires complex reshap-
ing and preprocessing.

Choosing the Right Model Depends on Resource
Constraints Our results show that the choice of
the right model depends on resource constraints.
Suppose that one is training models under a time
constraint; then, throughput is the bottleneck and

efficient models would not be a good fit. On the
other hand, efficient models are useful for long
context memory-constrained inference.

Local Attention and Excessive Padding The
Longformer pads input lengths to be a multiple of
512 and Swin requires input dimension to be a mul-
tiple of 224. This slows shorter inputs down and
results in extremely low performance (measured by
all 3 metrics) as compared to vanilla models.

Comparing Parameter Counts The Long-
former uses more parameters compared to vanilla
BERT (148M vs. 109M) because it uses two sets of
Q,K,V projection matrices for its global and local
attention operations; sharing these may decrease
its memory usage. For other modalities, efficient
models do not incur more parameters.

6 Conclusion

We present an empirical efficiency analysis of
vanilla Transformers and their self-attention-based
efficient variants across modalities, metrics and in-
put context sizes. We find substantial differences
across modalities and metrics when analyzing the
tipping point for efficient variants. Finally, the
layerwise analysis finds that self-attention is not
the only bottleneck. We recommend that all effi-
cient model papers should report such cross-modal,
layerwise profiling results on multiple efficiency
metrics covering a variety of use-cases to provide
a full picture of the benefits of the model.

1643

Limitations

We focus primarily on comparing model efficien-
cies using a variety of efficiency metrics and do not
consider model performance; one can perform a
more elaborate analysis of performance-efficiency
tradeoffs, which we did not do here.

We only profile a total of seven models across
three modalities while there are more efficient vari-
ants and vanilla Transformers proposed in the liter-
ature. While we choose our models to be as repre-
sentative of each modality and efficiency technique
as possible, we cannot extrapolate results to other
model variants and other modalities. In particular,
modalities like video and genomics and efficiency
approaches like quantization would be interesting
to profile, which we did not do.

Acknowledgements

We thank the reviewers and the meta-reviewer of
the ACL community for helpful feedback on the
draft. This work was partially funded by a grant
from UT Machine Learning Lab.

References
Belen Alastruey, Gerard I. Gállego, and Marta R. Costa-

jussà. 2021. Efficient Transformer for Direct Speech
Translation.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The Long-Document Trans-
former. ArXiv preprint, abs/2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners. In
Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob

Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways.

Ann Clifton, Sravana Reddy, Yongze Yu, Aasish Pappu,
Rezvaneh Rezapour, Hamed Bonab, Maria Eskevich,
Gareth Jones, Jussi Karlgren, Ben Carterette, and
Rosie Jones. 2020. 100,000 Podcasts: A Spoken En-
glish Document Corpus. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 5903–5917, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas Beyer,
and Ashish Vaswani. 2022. The Efficiency Mis-
nomer. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recog-
nition at Scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Ching feng Yeh, Jay Mahadeokar, Kaustubh Kalgaonkar,
Yongqiang Wang, Duc Le, Mahaveer Jain, Kjell Schu-
bert, Christian Fuegen, and Michael L. Seltzer. 2019.
Transformer-transducer: End-to-end speech recogni-
tion with self-attention. ArXiv, abs/1910.12977.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching Machines to Read
and Comprehend. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December

1644

https://arxiv.org/abs/2107.03069
https://arxiv.org/abs/2107.03069
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/2020.coling-main.519
https://doi.org/10.18653/v1/2020.coling-main.519
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html

7-12, 2015, Montreal, Quebec, Canada, pages 1693–
1701.

François Hernandez, Vincent Nguyen, Sahar Ghannay,
Natalia Tomashenko, and Yannick Estève. Ted-lium
3: Twice as much data and corpus repartition for
experiments on speaker adaptation. In Speech and
Computer, pages 198–208. Springer International
Publishing.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. HuBERT: Self-Supervised
Speech Representation Learning by Masked Predic-
tion of Hidden Units. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 29:3451–
3460.

Keith Ito and Linda Johnson. 2017. The LJ
Speech Dataset. https://keithito.com/
LJ-Speech-Dataset/.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Abdelrahman
Mohamed, and Emmanuel Dupoux. 2021. On gen-
erative spoken language modeling from raw audio.
Transactions of the Association for Computational
Linguistics, 9:1336–1354.

Chia-Hsuan Li, Szu-Lin Wu, Chi-Liang Liu, and Hung-
yi Lee. 2018. Spoken SQuAD: A Study of Mitigating
the Impact of Speech Recognition Errors on Listen-
ing Comprehension. In Interspeech 2018, 19th An-
nual Conference of the International Speech Commu-
nication Association, Hyderabad, India, 2-6 Septem-
ber 2018, pages 3459–3463. ISCA.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin Transformer: Hierarchical Vision Transformer
using Shifted Windows. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, pages
9992–10002. IEEE.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.
Luna: Linear Unified Nested Attention. In NeurIPS.

Abdelrahman Mohamed, Hung yi Lee, Lasse Borgholt,
Jakob D. Havtorn, Joakim Edin, Christian Igel, Ka-
trin Kirchhoff, Shang-Wen Li, Karen Livescu, Lars
Maaloe, Tara N. Sainath, and Shinji Watanabe. 2022.
Self-Supervised Speech Representation Learning: A
Review. IEEE Journal of Selected Topics in Signal
Processing, 16(6):1179–1210.

Arsha Nagrani, Joon Son Chung, and Andrew Zisser-
man. 2017. VoxCeleb: A Large-Scale Speaker Iden-
tification Dataset. In Interspeech 2017, 18th Annual
Conference of the International Speech Communica-
tion Association, Stockholm, Sweden, August 20-24,
2017, pages 2616–2620. ISCA.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2015, South
Brisbane, Queensland, Australia, April 19-24, 2015,
pages 5206–5210. IEEE.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He,
and Samuel Bowman. 2022. Quality: Question an-
swering with long input texts, yes! In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5336–5358,
Seattle, United States. Association for Computational
Linguistics.

Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khu-
danpur. 2015. A time delay neural network architec-
ture for efficient modeling of long temporal contexts.
In Proc. Interspeech 2015, pages 3214–3218.

Sameer S. Pradhan and Nianwen Xue. 2009. OntoNotes:
The 90% solution. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Tutorial Abstracts, pages 11–12, Boulder, Colorado.
Association for Computational Linguistics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

1645

https://doi.org/10.1007/978-3-319-99579-3_21
https://doi.org/10.1007/978-3-319-99579-3_21
https://doi.org/10.1007/978-3-319-99579-3_21
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1162/tacl_a_00430
https://doi.org/10.1162/tacl_a_00430
https://doi.org/10.21437/Interspeech.2018-1714
https://doi.org/10.21437/Interspeech.2018-1714
https://doi.org/10.21437/Interspeech.2018-1714
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/jstsp.2022.3207050
https://doi.org/10.1109/jstsp.2022.3207050
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0950.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0950.html
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.18653/v1/2022.naacl-main.391
https://doi.org/10.18653/v1/2022.naacl-main.391
https://doi.org/10.21437/Interspeech.2015-647
https://doi.org/10.21437/Interspeech.2015-647
https://aclanthology.org/N09-4006
https://aclanthology.org/N09-4006
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
Range Arena : A Benchmark for Efficient Transform-
ers. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald
Metzler. 2022. Efficient Transformers: A Survey.
In ACM Comput. Surv., volume 55, New York, NY,
USA. Association for Computing Machinery.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Alexander William Wong. 2020. torchprof. https:
//github.com/awwong1/torchprof.

Felix Wu, Kwangyoun Kim, Jing Pan, Kyu J. Han,
Kilian Q. Weinberger, and Yoav Artzi. 2022.
Performance-Efficiency Trade-Offs in Unsupervised
Pre-Training for Speech Recognition. In ICASSP
2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 7667–7671.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
2021. Nyströmformer: A Nyström-based Algorithm
for Approximating Self-Attention. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 14138–14148. AAAI Press.

Shu-Wen Yang, Po-Han Chi, Yung-Sung Chuang,
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin,
Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-
Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko-
tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong,
Shang-Wen Li, Shinji Watanabe, Abdelrahman Mo-
hamed, and Hung-yi Lee. 2021. SUPERB: Speech
Processing Universal PERformance Benchmark. In
Interspeech 2021, 22nd Annual Conference of the
International Speech Communication Association,
Brno, Czechia, 30 August - 3 September 2021, pages
1194–1198. ISCA.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Tyler Yep. 2020. torchinfo. https://github.com/
TylerYep/torchinfo.

A Sampling Speech Utterances for
Profiling

To obtain speech inputs of length i seconds to
i + 0.5 seconds for all i less than 12 seconds, we
sample 5 speech utterances from the training set
of the Librispeech dataset (Panayotov et al., 2015)
whose lengths fall within this range and compute
aggregate metrics over these 5 utterances. Since
the Librispeech dataset does not contain extremely
long speech utterances, for i of length greater than
12 seconds, we adopt a different approach to gen-
erate inputs. To generate such an input utterance
of length between i and i + 0.5 seconds, we first
sample 5 speech utterances from the Librispeech
training set of input length ranging from i

5 to i+0.5
5

and concatenate them to obtain utterances of length
ranging from i to i + 0.5 as desired. We do this
5 times to get 5 different utterances and compute
aggregate metrics over these 5 utterances.

B Computing Token Lengths for NLP
and Speech Datasets

We compute average sequence token lengths for
7 NLP datasets and 6 speech datasets. For all
speech datasets, we compute mean utterance dura-
tions and multiply durations by 50 to obtain number
of tokens (model framerates are 20 ms i.e. ×50).
For TEDLIUM (Hernandez et al.), LJSpeech (Ito
and Johnson, 2017), VoxCeleb Speaker Recog-
nition Dataset (Nagrani et al., 2017) and Lib-
rispeech (Panayotov et al., 2015), we compute

1646

https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.1145/3530811
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://github.com/awwong1/torchprof
https://github.com/awwong1/torchprof
https://doi.org/10.1109/ICASSP43922.2022.9747432
https://doi.org/10.1109/ICASSP43922.2022.9747432
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://ojs.aaai.org/index.php/AAAI/article/view/17664
https://doi.org/10.21437/Interspeech.2021-1775
https://doi.org/10.21437/Interspeech.2021-1775
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://github.com/TylerYep/torchinfo
https://github.com/TylerYep/torchinfo

mean validation-set utterance durations; for Spo-
ken SQuAD (Li et al., 2018), we report mean
validation-set paragraph duration and for the Spo-
tify English Podcasts dataset (Clifton et al., 2020),
we report mean podcast duration directly obtained
from Clifton et al. (2020).
SST (Socher et al., 2013). We use test-set sen-
tences. We use the HuggingFace BERTTokenizer.
MNLI (Williams et al., 2018). We use
validation-matched-set examples by concatenating
the premise and the hypothesis. We use the Hug-
gingFace BERTTokenizer.
SQuAD2.0 (Rajpurkar et al., 2018). We use
validation-set examples by concatenating the con-
text and the question. We use the HuggingFace
BERTTokenizer.
OntoNotes (Pradhan and Xue, 2009). We obtain
this number from the Longformer (Beltagy et al.,
2020) paper.
CNN-Dailymail (Hermann et al., 2015). We use
the 3.0.0 version of the dataset and use test-set
articles. We use the HuggingFace BERTTokenizer.
HotpotQA (Yang et al., 2018). We obtain this
number from the Longformer (Beltagy et al., 2020)
paper.
TriviaQA (Joshi et al., 2017). We obtain this num-
ber from the Longformer (Beltagy et al., 2020)
paper.

C Implementing Throughput Profiling

To profile Throughput, we need to compute the
max batch size that can fit on a single GPU. We ap-
proximately predict this using a linear estimator as
follows. We first record the memory B reserved on
the GPU after just loading the model. Next, we in-
dependently run batches of sizes 1 and 2 and record
memory usages M1 and M2. We use an NVIDIA
Quadro RTX 8000 GPU with a maximum memory
of 45000 MiB. Thus, assuming a linear relationship
between batch size and memory consumption, we
predict a maximum batch size of bsz = 45000−B

M2−M1
.

In practice, this is an overestimate; we keep de-
creasing the batch size by a factor of 0.9 until no
OOM errors occur and this is our final estimate.

D Implementational Details for Models

We use the following HuggingFace config-
urations: bert-base-uncased for BERT,
allenai/longformer-base-4096 for Long-
former, uw-madison/nystromformer-4096
for Nyströmformer,

google/vit-base-patch16-224 for ViT and
microsoft/swin-base-patch4-window7-224
for Swin. The BERT model natively supports
a maximum of 512 tokens as input because
it has 512 positional embeddings; we modify
the positional embedding computation to allow
an arbitrarily long input to be provided. The
Longformer internally pads all input lengths to
a multiple of 512. For Swin, we pad images to
have an input dimension that is a multiple of 224;
this is necessary due to the windowed attention
mechanism in Swin. In fact, the Swin model
natively supports only a 224 × 224 resolution;
we make a small modification in order to support
resolutions that are multiples of 224. We use
the HuBERT Base model for both HuBERT and
L-HuBERT.

E Transformer Layer Types

Input Embedding Layer. (/red) Maps the input
sequence into fixed-dimensional embeddings. This
is a linear layer for text and a CNN featurizer for
image/speech.
Positional Embedding Layer. (/fuchsia) For
text and image models this is part of the input em-
bedding layer. For speech models, this is a very
wide convolution layer.
Self Attention Layer.(/blue) The multi-head self
attention block, which computes self-attention out-
puts and maps the result to the model dimension.
Intermediate Layer.(/yellow) Linear layer of the
feedforward block that maps the output from the
Self Attention block into the ‘feedforward dimen-
sion’ (typically 4x the model dimension).
Output Layer.(/green) Second linear layer of the
feedforward block, which maps the output from
Intermediate layer back to the model dimension.
Other Layers.(/black) Other modules (activa-
tions, layer normalizations, other linear layers, etc.)
not covered by the above components.

F Additional Profiling Analyses

We report layerwise profiling runs for efficient self-
attention variants and inference-time throughput
profiling runs for all variants in this section at Fig-
ures 5 and 6.

1647

Input Embedding Positional Embedding Self-Attention Intermediate Output Other
Longformer Nyströmformer

0 1000 2000 3000
of tokens

0

50

100

150

200

La
te

nc
y

(m
s)

0 1000 2000 3000
of tokens

0

50

100

150

200

La
te

nc
y

(m
s)

L-HuBERT Swin

0 10 20 30 40 50
Duration (s)

0 500 1000 1500 2000 2500
of tokens

0

25

50

75

100

125

150

La
te

nc
y

(m
s)

0 200 400 600 800 1000
Dimension

0

25

50

75

100

125

150
La

te
nc

y
(m

s)

Figure 5: Layerwise latency of different Transformer variants in inference mode.

Text+Speech Image

0 1000 2000 3000
of tokens

0

200

400

600

Th
ro

ug
hp

ut
 (#

 e
xa

m
pl

es
 /

s)

0 200 400 600 800 1000
Dimension

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 (#

 e
xa

m
pl

es
 /

s)

Figure 6: Throughput Profiling Results in inference mode.

1648

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

The Limitations section

�3 A2. Did you discuss any potential risks of your work?
The Limitations section

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3, 4

�3 B1. Did you cite the creators of artifacts you used?
Section 3, 4

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not explicitly, since we use publicly available Huggingface and Fairseq models that are intended for
research use

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We use publicly available Huggingface and Fairseq models that are intended for research use

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 4 and 4.2, Appendices B,D

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
We only use datasets to profile models over different sequence lengths, but don’t use the content of
the dataset itself. Thus we report the relevant statistic i.e. dataset sequence length.

C �3 Did you run computational experiments?
Section 3, 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.1, 4.2, Appendix C.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1649

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.2

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4.2

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3, 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1650

