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Abstract

In this position paper, we argue that computa-
tional text analysis lacks and requires organiz-
ing principles. A broad space separates its two
constituent disciplines—natural language pro-
cessing and social science—which has to date
been sidestepped rather than filled by applying
increasingly complex computational models to
problems in social science research. We con-
trast descriptive and integrative findings, and
our review of approximately 60 papers on com-
putational text analysis reveals that those from
*ACL venues are typically descriptive. The lack
of theory began at the area’s inception and has,
over the decades, grown more important and
challenging. A return to theoretically grounded
research questions will propel the area from both
theoretical and methodological points of view.

1 Introduction

Computational text analysis methods—an umbrella
combining natural language processing with social
science—are in a honeymoon period (Lazer and
Radford, 2017; van Atteveldt and Peng, 2018). To-
day’s social scientist might reach for the tools of
computer science for their speed, scale, granular-
ity, and consistency; for instance, natural language
processing offers “to analyze signals ranging from
simple lexical cues to word clusters to choices of
syntactic structure” (Boydstun et al., 2014). The
numerical outputs tell a story that is simple, easy
to make sense of, and in that regard comforting.
Conversely, today’s computer scientist may see the
problems of social science as answerable by objec-
tivity and reductionism, eschewing interpretation
for quantitative analysis.

The conclusion of this reasoning, and the dom-
inant stance in computational social science, is a
reliance on machines alone to answer questions in
the field, surrendering to their supposed objectivity

* Equal contribution.

or impartiality. Can a machine’s output go beyond
descriptive catalogs of evidence, accelerating under-
standing of processes and motivations? From our
experience, computers are nowhere near supplanting
humans in interpreting social science results.1

An interdisciplinary inquiry must go farther than
matching computational techniques to social sci-
ence questions (O’Connor et al., 2011; Nguyen
et al., 2020). It embraces synergistic methodology
and connects the norms and standards of evidence
from both. This means partnering computer sci-
ence’s preference for the structured, generalizable,
and objective with the unstructured, critical, and
contextual which the social sciences champion. This
level of interdisciplinarity addresses the question
raised by descriptive findings: So what?

We see theory as the solution, empowering rather
than shackling investigations. What this paper advo-
cates is not one particular theory—certainly these
are myriad, and “even subject matter which has
been under intensive and prolonged study remains
at the unsettled periphery of research” (Nagel, 1963).
Instead, we expand on our prior work (Dore and
McCarthy, 2022) to clarify calls echoed for decades
by computational and social science (McDermott,
1976; Jelinek, 2005; Hajič and Hajičová, 2007;
Hofman et al., 2018; Lipton and Steinhardt, 2019;
Baden et al., 2021). Underlying each, we find, is the
urge to return to theory, which we espouse herein.

2 Description vs. Integration

We contrast descriptive findings and theoretical anal-
ysis. An example of a descriptive finding is that
an apple falls, or that it falls faster when pushed
than dropped, or even that it falls at a particular rate
estimated with some standard error by a complex

1See, e.g., Noam Chomsky’s remark on GPT-3: “You can’t
go to a physics conference and say: I’ve got a great theory. It
accounts for everything and is so simple it can be captured in
two words: ‘Anything goes.’ All known and unknown laws of
nature are accommodated. . . Of course, everything impossible
is accommodated also. That’s GPT-3.” [link]
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interpolation. A theoretical analysis of the same phe-
nomenon, credited to Newton, is that a fundamental
force acts upon the apple, and that this same force
governs the motion of the heavens. The theoretical
analysis links the finding about the world critically
to a broader body of knowledge and context.

Despite advances in causal inference in NLP,
the descriptive is all that a machine can provide to
the social sciences (Feder et al., 2021). Certainly
the methods of computational text analysis have
advanced since the General Inquirer (Stone and
Hunt, 1963) and Mosteller and Wallace’s statistical
inference of text authorship (1963). But methods
are means, not ends. They uncover more descriptive
findings in data: the rate of an apple’s fall, the
topics of refugees’ tweets (Walk et al., 2022), the
space given to marginalized groups in textbooks
(Lucy et al., 2020), or patterns of state censorship
(Bamman et al., 2012; King et al., 2013).

The foils to descriptive findings are integrative
findings (Hofman et al., 2021), which offer causal
explanations that enable future predictions—a the-
ory, or as a ‘model’ in the sense of the Standard
Model, rather than of a statistical model. Integrative
findings can either offer new theories or couch their
explanations in existing theories—but the theory is
essential either way.

3 We Don’t Integrate

To contrast descriptive and integrative findings, we
reviewed approximately 60 papers in computational
text analysis published in *ACL venues. In Table 1,
we describe several of these in terms of their descrip-
tive or theory-grounded contributions.2 Descriptive
papers may refer to social science theories or make
generalizable claims, as when Demszky et al. (2019)
write, “The shooter’s race appears to play a role in
topic preference: if the shooter is white, Democrats
become more likely to focus on shooter’s identity,”
but they do not link to the two to each other.

An excellent theory-grounded quantitative work
is Nelson (2021); she confirms some of the most
compelling features of identity theory, specifically
that identities based on race were most distinguished
by cultural discourse, whereas those based on gen-
der by the domestic and the economic discourse.
Similarly, we conducted theory-grounded quantita-
tive work to investigate the application of the protest

2Following Lipton and Steinhardt (2019), we only describe
papers by established researchers to “avoid singling out junior
students. . . who lack the opportunity to reply symmetrically”.

paradigm and thematic framing in how western-
and Hong Kong based newspapers portray protests
in Hong Kong (McCarthy et al., 2021; McCarthy
and Dore, 2022). Generally, it remains challeng-
ing to find computational social science papers in
*ACL venues that go beyond description and pre-
diction, advancing theory. Why is this? We believe
it stemmed from the field’s “empirical turn”.3

Few remember when the meetings of ACL of-
fered a few dozen papers, all entrenched in for-
malisms and linguistic theories. Arguably, 1996
was a turning point when the founders of SIGDAT
held the first EMNLP at Penn under the auspices
of the ACL.4 This gave a spotlight to the few but
growing empiricists in the field and drew in more.

EMNLP began a half-decade of measurable reor-
ganization the field (Anderson et al., 2012). That
EMNLP remains affiliated with ACL keeps the
language-focused machine learning practitioners in
our tent. The slow blurring of boundaries between
each *ACL conference’s expectations (Church,
2020) increases this unity. Both groups belong
under this tent. But without a doubt, one group’s
voice is becoming less heard.

Publication venues within the ACL focus on
methods over theory.5 Techniques are taken off
the shelf without critical examination because these
are “the best” (often “state of the art”) for their
purposes (Ethayarajh and Jurafsky, 2020). This
widens the gap between theoretical and empirical
work.6 Hopkins and King (2010) claim, “computer
scientists may be interested in finding the needle in
the haystack. . . social scientists are more commonly
interested in characterizing the haystack”—evincing
the value of broader context.7 Wallach (2018), quot-
ing Hopkins and King, explains that the two groups

3A lesser reason is the challenge of serving two masters:
adequately covering both the theoretical and methodological
components within 8 pages. We recently received two reviews
for an *ACL submission: one advocating for more of the social
science context in the main text by eschewing methods to the
appendix, and the other instructing us to do the opposite.

4And its predecessor the Workshop on Very Large Corpora.
5This is due to the outsized influence of computer science,

often seen as the science of method (Hoare and Jones, 1989;
Shapiro, 2001), when not instead seen as an engineering disci-
pline (Rapaport, 2005).

6A related criticism is that empirical research has narrowed
to focus on ‘easy’ questions that its tools can address (Coleman,
1986; Baden et al., 2021), especially when research questions
are baked into the design of the task.

7As evidence, see Siegel (2018): “We usually don’t know
about causation, and we often don’t necessarily care. . . the ob-
jective is more to predict than it is to understand the world. . . It
just needs to work; prediction trumps explanation.”

1587



Descriptive

Chang et al. (2009) The article presents new quantitative methods to measure semantic meaning in inferred topics. The
authors emphasize the qualitative relevance of their findings as it validates the use of topics for corpus
exploration and information retrieval. However, their working hypothesis and empirical findings are
not connected to the extremely relevant field of communication theory.

Bamman et al. (2012) The article presents the first large–scale analysis of political content censorship in social media. The
authors miss the opportunity to relate their hypothesis and findings to censorship theory, a natural
theoretical context for the research, which would strengthen the relevance and generalizability of the
findings.

Field et al. (2018) The article discusses media manipulation in Russia in the context of agenda-setting and framing, the
tools that Russian state-owned (or heavily influenced) media outlets use to distract public attention from
domestic economic politics. The authors implicitly refer to propaganda theory and autocratic theory
throughout the article even though their findings are not discussed in relation to these theories.

Demszky et al. (2019) The article applies “a more comprhensive NLP framework to study linguistic aspects of polarization in
social media”. While the article implicitly refer to theories of social conformity and social conflict, the
findings are not linked or discussed (either explicitly or implicitly) to the theoretical frameworks
that the authors touch on in their §1.

Integrative

DiMaggio et al. (2013) The article describes how topic models of newspaper articles help to study the politicization of
government support for arts organizations and artists in the late 1980s in the US. The authors clearly
define the theoretical context of their investigation and emphasize the relationship between theory
and method throughout the paper.

Bamman et al. (2014) The article validates an empirical model that “employs multiple effects to account for the influence of
extra-linguistic information (such as author)” by testing specific parameters against a variety of
theory-based hypotheses derived from writing styles theories of England between 1700 and 1899.

Nelson (2021) The article argues that the full potential of machine learning can be better realized by “leveraging the
epistemological alignment between machine learning and inductive research.” The author empirically
demonstrates this by anchoring in identity theory a word embedding model of first-person narratives
of the nineteenth-century U.S. South.

Table 1: Contrast between work in computational text analysis with descriptive findings versus integrative findings.

are interested in very different research questions,
and that computational social science must be more
than computer science with social data; it must
strive for valid explanatory models. In the same
vein, at ACL 2022, ACL fellow Eduard Hovy re-
marked that NLP must be more than “just machine
learning on corpora”.

Social scientists are also coming to terms with
the meaning of computational techniques applied
more often in social science (Bail, 2014; Biernacki,
2015; Lee and Martin, 2015; Spillman, 2015). The
focus of the debates, however, is on which methods
are best suited to extract meaning from text, without
addressing any theoretical considerations related
to the methods or whether a theoretical framework
for those methods even exists. The discussions on
whether computational methods make social science
research more efficient, reliable, and reproducible
overtake attempts at theory-building.

4 Moving Forward

We are not denying the value of computational
approaches to analyzing text. Certainly, comput-

ing can be an instrumental approach for modeling
and understanding social complexity. This does
not mean that other approaches, such as historical,
ethnographic, or mathematical, become irrelevant.
On the contrary, computational methods necessar-
ily (whether awarely or not) rely on these earlier
approaches to add value, in terms of improving
our explanations and understanding (Radford and
Joseph, 2020).

As we are a field that prioritizes methods, con-
sider the seminal book on methods in science: Ab-
bott (2004) taxonomizes scientific ways of knowing.
Its five broad categories are ethnography, histor-
ical narration, standard causal analysis, small-N
comparison, and formal modeling. We in NLP
myopically choose the third and fifth of these, ig-
noring the value of the others. But the broader point
of Methods of Discovery is not methods. It is the
research question. Any methodology should be
grounded in the question, not incremental tweaks
and reviewers’ comfort (Church, 2020). This admits
even qualitative or mixed-method approaches to text
analysis.

The role of humans in scientific inquiry is nothing
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new. Using qualitative analysis to complement
quantitative techniques has its roots in Achen and
Snidal (1989)’s recommendation to use historical
case studies as a complement to statistical research.8

Their plea was strengthened by Verba’s work in the
early 1990s (Verba et al., 1993, 1995; Verba, 1996)
and Tarrow (1995), who openly called for bridging
qualitative and quantitative modes of research in
social science. In doing so, they have enriched
the field with critical methodological innovations
(Gerring, 2004), benefiting from the recognition that
“quantitative methods must augment humans, not
replace them” (Grimmer and Stewart, 2013, 4).

The field can draw more from social science’s
rich tradition of inductive theory-building and in-
terpretation to develop its theoretical approach—to
prize either induction or deduction alone is a myth
of scientific procedure (Thagard, 1988), but the
melding of the two opens new doors. Rather than
eschewing the complexity (a criticism leveled by
Baden et al., 2021), it should put complexity at the
center of its ontology on the basis that there are no
immutable laws in social life or optimal solutions to
social problems.

Skepticism can linger toward findings not drawn
from the standard practices of one’s own field; in-
deed, social science was long skeptical of computa-
tional contributions (Armstrong, 1967). We believe
that this drives the hyperfocus on improving a few
accepted methods instead of exploring more broadly.
If the doorway between disciplines is only narrowly
open, this reflects a lack of appreciation for each
field’s ways of knowing. The disciplinary divide
keeps computational researchers from embracing
methods beyond standard causal analysis or for-
mal modeling, so the interpreter-centric richness
allowed by histories, ethnographies, and small-N
exploration are precluded.

5 Conclusion

We have explained the distinction between descrip-
tive and theoretical findings as it pertains to compu-
tational text analysis. The bulk of work we found
provided vast descriptive findings, often of high
quality, but not giving back to questions of theory.
We offer several suggestions on how to ‘push the
pendulum back’ by prioritizing theory-building or

8Expertise plays a role as well (Shing et al., 2018), which
is why Mechanical Turk doesn’t fill the need for qualitative
analysis. This is exemplified by Radford and Joseph (2020)’s
observation of “non-expert annotators provid[ing] unreliable
annotations, even after a discussion period”.

theory-affirming research questions and accepting
whichever methods are best suited toward answering
it—not only the familiar and entrenched ones.

We are not the first to advocate for a shift in
the patterns of applying computational techniques
to real-world problems. There is a steady drum-
beat from voices in the field advocating careful
approaches (Nagel, 1963; McDermott, 1976; Je-
linek, 2005; Hajič and Hajičová, 2007; Hofman
et al., 2018; Lipton and Steinhardt, 2019; Baden
et al., 2021). What we see underlying all of these—
those writing against ‘mathiness’ and speculation,
advocating for clear evaluation over anecdotes, crit-
icizing textual researchers’ dilution of conceptual
standards, highlighting work that ties linguistic in-
formation into complex models—is an unspoken,
perhaps unrealized, call for a return to theory.

Not only do we aver that incorporating theory is
essential; but also, other fields have strengthened
themselves when espousing organizing principles
beyond those of their progenitors. Behavioral eco-
nomics is a success story here. It transcended the
neat (but psychosocially stripped) mathematics it
draws from to acknowledge deviations from ratio-
nality and blend economics with cognitive science
(Kahneman and Tversky, 1979; Thaler, 1980; Thaler
and Sunstein, 2009).

For scientific—not simply engineering—
advances to arise from the *ACL community,
authors and reviewers alike must resist the
temptation toward incremental, ‘safe’ research
and follow Church (2005): “Controversial papers
are great; boring unobjectionable incremental
papers are not.” In reviewing new research, we
should privilege not only work that presents
new and unusual computational methods, but
also interactions between computational and
humanistic approaches to answering research
questions. EMNLP was founded because of
reviewing biases at ACL against groundbreaking
methodological advances, and since then the two
have homogenized; “EMNLP reviewing is no
longer much of a differentiator” (Church, 2020).
We found that theoretically grounded findings in
text analysis are often published in non-*ACL
venues (Table 1), but ACL sets the standard
for work involving computational text analysis
and NLP. Is there no home for groundbreaking
integrative or interdisciplinary work in *ACL, such
that a new venue is required? Or can we adapt our
standards to invite deeper connections to theory and
new ways of knowing?
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Limitations

The key limitation of our work is that, when con-
ducting the review of approximately 60 papers (by
searching through the ACL Anthology for works
in computational social science since 2010), we
encountered a skewed distribution of descriptive
versus integrative works. In fact, it was relatively
simple to find descriptive works, and that section
of Table 1 could have been much longer. We also
recognize that, due to the mixed nature of our field,
scientific and integrative findings are not the only
goal—our ‘big tent’ includes engineers as well, who
value gains in performance indicators. Finally, the
fact that we have few examples of papers showing
a return to theory renders the possibility that our
central claim is misinterpreted in a normative way
as a mandate.
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