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Abstract
Demonstration-based learning has shown im-
pressive performance in exploiting pretrained
language models under few-shot learning set-
tings. It is interesting to see that demonstra-
tions, even those composed of random tokens,
can still improve performance. In this paper,
we build a Structural Causal Model (SCM)
to understand demonstration-based learning
from causal perspectives and interpret random
demonstrations as interventions on the demon-
stration variable within the causal model. We
investigate the causal effects and find that the
concurrence of specific words in the demonstra-
tion will induce bias, while randomly sampled
tokens in the demonstration do not. Based on
this finding, we further propose simple ways to
construct random demonstrations, which even
outperform hand-crafted, meaningful demon-
strations on public sequence labeling bench-
marks1.

1 Introduction

Large pretrained language models (PLMs) have re-
cently shown great progress (Devlin et al., 2019;
Liu et al., 2019a; Lewis et al., 2020; Xie et al.,
2020; Huang et al., 2021). These models, such
as GPT-4 (Peng et al., 2023), PALM (Anil et al.,
2023), and Llama (Touvron et al., 2023), have
shown human-level capability with only a few il-
lustrative examples (Lake et al., 2015). Specifi-
cally, demonstration-based learning has been intro-
duced to augment the input with demonstrations,
i.e., the input and expected output pairs. Brown
et al. (2020) simply picked up to a small num-
ber of sampled instances and directly concatenated
them with the input to perform in-context learning.
Lee et al. (2022) concatenated the input with task
demonstrations to create augmented input and fed
them into PLMs to obtain improved token represen-
tations to do sequence labeling in a classifier-based
fine-tuning way.

1Code available at: github.com/zhangry868/RandDemo

However, how and why such demonstrations
help still remains unclear, and there has been a
growing amount of work investigating the mecha-
nisms of demonstration-based learning. Min et al.
(2022) investigated in-context learning with demon-
strations under zero-shot settings and found that
input with random labels can still produce perfor-
mance comparable to that of correct labels. Zhang
et al. (2022a) replaced every token in the demon-
stration with random ones and still surprisingly
observed good few-shot learners even when the
demonstration is meaningless. These observations
conflict with some existing hypotheses (Gao et al.,
2021; Lee et al., 2022) that models are learning
meaningful knowledge from demonstrations.

To better understand demonstration-based learn-
ing, we take a deeper dive into the random construc-
tion of demonstrations. Specifically, we first build
a Structural Causal Model (SCM) to understand
demonstration-based learning from a Causal Per-
spective. A causal view is developed to explore the
spurious correlations between demonstrations and
few-shot training samples. Based on the interven-
tion on the demonstration variable in the SCM, we
design multiple simple and effective ways to con-
struct random demonstrations. These methods are
evaluated on structured prediction tasks with care-
fully designed experiment setups. Empirical results
show that carefully designed random demonstra-
tions can outperform meaningful demonstrations
under the few-shot learning setting. This finding
suggests that meaningless demonstrations can still
provide valid information for PLMs. Moreover,
random demonstrations allow the learning algo-
rithm to identify important features and patterns in
the data more effectively than homogeneous hand-
crafted demonstrations.

2 Background

In this section, we introduce the background of se-
quence labeling and demonstration-based learning.
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Sentence: The Algerian War of Independence marked the end of French colonial rule in North Africa .
Labels: O B-MISC I-MISC I-MISC I-MISC O O O O B-ORG O O O B-LOC I-LOC O

Biased: French -> [ORG] Desired: French -> [MISC]
Standard: [SEP] The unnamed suspect left the British colony after being detained and then freed by the Independent Commission

Against Corruption ( ICAC ) , the radio said . Independent Commission Against Corruption is ORG . [SEP] [...]
Random: [SEP] Lebanon First Ed ##up CBOE suspect CB Chicago K Chicago Board Options Exchange ##ty Paul Gascoigne

CBOE Monday Les into vintage I ##tion Ferdinand ##ca Op [SEP] [...]

Table 1: An example from the CoNLL03 dataset with different demonstrations. The NER model takes both the
sentence and a demonstration as its inputs. The top two rows show examples of the NER model inputs and outputs
with standard demonstrations. A biased prediction for ’French’ is caused by the demonstration bias. The bottom
three lines show three different demonstrations: Standard and Random demonstrations. The notation ’[SEP][...]’
indicates that there are demonstrations for other classes, which have been omitted due to limited space.

Sequence Labeling Given an input sentence x =
[x1, x2, · · · , xn] composed of n tokens, the se-
quence labeling task is to predict a tag yi ∈
Y ∪{O} for each token xi, where Y is a predefined
set of tags, and O denotes outside a tagged span. In
the few-shot setting, we only have K-shot support
set S for training which contains K examples for
each tag type. This setting usually refers to K-shot
learning. Modern sequence labeling models are
usually composed of an encoder and a classification
head. The encoders are PLMs such as BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019b),
which provides contextualized representations for
each token h = [h1, h2, · · · , hn] given the natu-
ral language sequence x = [x1, x2, · · · , xn]. The
classification head takes these contextualized rep-
resentations and predicts the label li for each token
xi. The model is optimized with the standard cross-
entropy loss.

Demonstration-based Learning Given some
demonstration x̃, we concatenate the original input
x with its demonstration x̃ as [x; x̃]. We then feed
the demonstration-augmented input [x; x̃] into the
encoder, and get the contextualized representation
[h; h̃]. The classification head takes h as the in-
put and estimate the corresponding token’s label li
in the original natural-language sequence. Please
note that we use identical demonstrations during
training and testing (Lee et al., 2022).

Demonstration Construction To construct demon-
strations, we first sample an entity e(c) for each
label type t(c), and its context s(c) from support set
S. Then we convert them into a natural language
sequence d(c) = T (s(c), e(c), t(c)), where T is the
template operator and previous works (Lee et al.,
2022) focus on finding more effective templates.
With these sequences [d(ci)]|Y |

i=1 with different tags
ci, a demonstration x̃ is built by concatenating them
together: x̃ = d(c1) ⊕ d(c2) ⊕ · · · ⊕ d(c|Y |), where
⊕ is the concatenation operator. An effective tem-

plate, such as the one used in Lee et al. (2022),
is "s(c). e(c) is t(c).". Here, we refer the "e(c) is
t(c)." part in the template as labeling part of the
demonstration.

3 Demonstration-based Learning from a
Causal Perspective

In this section, we give a specific example to show
the potential bias and understand demonstration-
based learning from a causal perspective. Specifi-
cally, we first introduce a Structural Causal Model
(SCM) (Pearl et al., 2000) to describe the mecha-
nism and identify the induced bias. Then, we per-
form demonstration variable intervention and pro-
pose multiple simple and effective random demon-
stration templates inspired by our causal model.

We observe that the frequent co-occurrence of to-
kens in the classical demonstrations generate harm-
ful superficial patterns which is misleading to the
model and leads to biased predictions (Zhang et al.,
2022a; Min et al., 2022). A specific example with
different demonstrations is provided in Table 1,
where the entity to predict is French. Following
previous work (Zhang et al., 2022a), the observed
demonstrations (i.e., standard demonstration) pro-
vides some biased information: the concurrency of
British and ICAC, which is an organization (ORG),
may lead to biased predictions: French is labeled as
an Organization while its desired prediction is other
classes (MISC). Intuitively, the co-occurrence of
two specific words in the demonstration may in-
duce bias, while randomly sampled tokens in the
demonstration do not. This specific example sug-
gests why random demonstrations may sometimes
perform better than standard ones.

3.1 Causal Model

To study the causal relationship between the NER
model and its training data, and explain the role of
the demonstration, we introduce a SCM to describe
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Figure 1: Causal views of NER. (a) shows a traditional NER model (Zeng et al., 2020), (b) shows the demonstration-
based NER model under the causal view. With demonstration D, the backdoor path G → D → X exists, which
further introduces the bias. (c) shows the demonstration-based NER model with debiasing techniques, and the red
cross means intervention. (d) is model architecture overview between classical and demonstration-based learning.

the inference step in NER models. Figure 1 shows
the SCM of NER models. There are mainly 6 vari-
ables in NER models: 1) Demonstration Tokens
D, the tokens which form the demonstration; 2)
Context Tokens C, the tokens that are related to the
context; 3) Entity Tokens E, the tokens which are
entities; 4) Input Example X , which is composed
of C and E in the traditional model and composed
of C, E and D in the demonstration-based models;
5) Unobserved confounders G, a confounding vari-
able (not a concrete token) that influences the gen-
eration of C, E and D; 6) Evaluation result Y , the
evaluation result (the F1 score) of the NER models.
Under the causal view, the key difference between
the traditional NER model and the demonstration-
based NER model is that, the demonstration-based
NER model has an additional node D. With the
introduction of the demonstration D, a backdoor
path G → D → X exists, which further introduces
the bias.

Inspired by our SCM model (Figure 1b), we de-
velop sampling techniques to generates new coun-
terfactual examples by the interventions on the ex-
isting observational examples to alleviate this bias.
The benefits of interventions on E and C have been
studied in (Zeng et al., 2020). In this paper, we fo-
cus on understanding the role of demonstrations in
NER models under the causal view. We understand
the co-occurrence of tokens and harmful superficial
patterns from the causal perspective and focus on
using interventions on the demonstration variable
to create new counterfactual demonstrations.

3.2 Controllable Random Demonstrations

In this section, we first provide a running exam-
ple to better understand the induced bias from
human-crafted demonstrations and then present dif-
ferent ways of intervention on the demonstration to-
kens. The intervention is implemented via control-

lable random demonstrations to create new coun-
terfactual examples, as replacing standard demon-
strations with random tokens can remove induce
bias and still make the model a good few-shot
learner (Zhang et al., 2022a).

In Lee et al. (2022), an effective template T
is "s(c). e(c) is t(c), and an example demonstra-
tion d(c) can be "[SEP] Obama returns to White
House. Obama is PER.". Intuitively, the model
understands the demonstrations and then better per-
forms inference. However, random demonstrations
can still bring performance improvement (Zhang
et al., 2022a). The random template is as simple as
"[si]Li=1", where si ∈ p, and p is a token distribu-
tion. Random demonstrations are composed of L
tokens randomly sampled from p.
Demonstration Intervention We use the interven-
tion on the demonstration tokens to create new
counterfactual examples, to alleviate the biases. If
we do not carefully design D, the backdoor path
will exist and the model performance is degraded.
Our causal framework enables us to think about
the problem from a causal perspective and guides
us how to properly design D. We denote uniform
distribution composed of vocabulary words of the
PLMs as pV . Given the token distribution pV , for
any word wi ∈ pV , we have pV(wi) =

1
|V| . Then

we have a plain way to construct random demon-
strations.

An important observation is that not all counter-
factual examples are correct or useful. Hence, the
intervention can be better implemented by replac-
ing the uniform distribution with a non-uniform
distribution, i.e., by adding or removing words
and changing specific words’ probabilities. Some
mechanism is needed to identify good counterfac-
tual demonstrations, to avoid introducing noise. An
intuitive solution is that we consider tokens from
the support set are more helpful as PLMs are fine-
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Mode
NER Chunking

CoNLL03 OntoNotes 5.0 CoNLL00

F1 Precision Recall F1 Precision Recall F1 Precision Recall

No Demo. 28.71±10.31 39.96±11.25 22.68±9.09 37.37±7.58 33.80±6.79 41.92±8.85 63.17±4.22 59.28±5.05 67.72±3.51

Standard 45.86±6.08 47.38±5.93 44.75±7.07 40.21±7.65 32.51±6.87 52.82±8.28 70.55±3.08 66.53±4.40 75.21±2.11
Random 41.33±7.36 45.41±7.37 38.22±7.65 39.71±7.56 32.28±6.56 51.63±8.75 69.28±2.78 64.75±3.85 74.57±1.66

Rand-S 45.55±8.02 46.84±7.71 44.60±8.62 41.60±7.05 33.96±6.29 53.75±7.80 70.63±3.01 66.24±4.29 75.75±1.70
Rand-W 45.93±7.57 47.79±7.42 44.50 ±8.13 45.49±3.77 37.82±3.64 57.18±4.17 72.15±3.16 68.00±4.42 76.94±1.67
Rand-E 47.32±7.42 48.96±7.02 46.02±8.11 46.06±3.84 38.32±3.65 57.81±4.31 74.02±2.93 70.37±4.23 78.18±1.75

Table 2: Main results for traditional token classification method (No Demo.) and demonstration-based learning with
different modes of demonstrations under 5-shot scenario.

tuned on the support set. We expect to see a better
downstream predictor when the demonstrations are
constructed randomly from a intervened token dis-
tribution.

The difference between random demonstrations
lies in the vocabulary and its associated probability
distributions. We perform the interventions by con-
trolling the vocabulary and changing the probabil-
ity of random tokens. We encourage entity words
(e.g., ICAC, British) to appear more frequently
compared to the others (e.g., is). Based on the
previous theoretical justification, we consider the
following variants of constructing random demon-
strations2 construction methods as counterfactual
alternatives of the standard demonstrations3:
• Random: random context with tokens uniformly

sampled from PLMs vocabulary V .
• Rand-S: random context with tokens uniformly

sampled from unique words (i.e., vocabulary) of
support set, denoted as S.

• Rand-W 4: random context with tokens sampled
from S , and entity tokens in support set, denoted
as W; tokens from W have four times higher
probability compared with those from S .

• Rand-E: similar to Rand-W, but replace entity
tokens with entities composed of coherent tokens
in support set, denoted as U .

4 Experimental Results

4.1 Experiment Setup
Datasets We conduct experiments on two se-
quence labeling tasks: (i) named entity recog-
nition (NER) on dataset CoNLL03 (Tjong
Kim Sang and De Meulder, 2003), and OntoNotes
5.0 (Weischedel et al., 2013); and (ii) chunking on
dataset CoNLL00 (Tjong Kim Sang and Buchholz,

2Random: [SEP] {random context}
3Standard: [SEP] {context} {entity} is {tag}.
4Empirical results show sampling only from W leads to

poor performance.

2000). Following previous works Ma et al. (2021);
Zhang et al. (2022a), we omit the 7 value types in
OntoNotes and only consider the 6 most frequent
types in CoNLL00. For few-shot data sampling,
we follow the greedy sampling strategy proposed
by Yang and Katiyar (2020) to sample K shots
for each type in an increasing order with respect
to their frequencies, the detailed algorithm can be
found. For each dataset, we sample 5 different
K-shot support sets and report mean and standard
deviation of metrics. For each K-shot support set,
we run the experiments with 3 random seeds.

Main Results We show the results for
demonstration-based learning with different
modes of demonstrations as well as classical
sequence labeling with no demonstration in Table 2.
The results show that demonstration-based method
can consistently improve model performance.
In demonstration-based methods, the Random
approach shows the worst performance and Rand-S
shows comparable results with the standard demon-
strations, and the conclusion is consistent with
previous works (Zhang et al., 2022a). Interestingly,
if we modify the token sampling distributions
and sample more entity or entity-related words
as Rand-W and Rand-E, our model shows even
better performance than standard meaningful
demonstrations. The difference between Rand-W
and Rand-E lies in whether there are complete
entities, and the results show that adding complete
entities instead of random entity words can lead
to better performance. At the same time, it shows
adding random tokens related to the support set
can reduce the fine-tuned bias, which verifies our
hypothesis in Section 3.1. Intuitively, the benefits
of demonstration-based methods come from
tokens of support sets S instead of meaningful
demonstrations, as the standard demonstration
sampled from the support set also shows good
performance.
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Figure 2: Results with different support set size on CoNLL03, NRB and WTS datasets.

Mode CoNLL03 OntoNotes5.0 CoNLL00

No Demo. 45.70±8.13 51.62±2.76 72.80±3.53
Standard 45.73±7.29 54.76±2.36 75.90±1.95

Rand-S 46.86±6.50 54.35±2.67 72.23±3.42
Rand-W 52.11±6.15 54.48±2.35 73.84±2.19
Rand-E 52.87±7.64 55.94±2.38 75.30±3.06

Table 3: Main results (F1 scores) of RoBERTa-Large
for traditional token classification with different modes
of demonstrations under 5-shot scenario.

4.2 Analysis

Ablation Studies We further investigate whether
the performance gain of demonstration-based learn-
ing changes over the size of support set. We present
results of different modes of demonstrations under
K = 5, 10, 20 shots in Figure 2. With more train-
ing examples in the support set, the relative perfor-
mance gap between Rand-E and Standard remains,
but it becomes smaller. This indicates that carefully
designed random demonstrations show a consistent
performance improvement upon standard demon-
stration. We also observe that the variance within
each group becomes smaller as more data becomes
available. Among random demonstrations, Rand-E
consistently shows better performance than Rand-
W and Rand-S, which verifies our hypothesis based
on the SCM.

Additionally, we investigate the effect of us-
ing different base models and replace BERT with
RoBERTa. The observed results for RoBERTa in
Table 3 are consistent with those of BERT, demon-
strating that Rand-E exhibits superior performance
across different model architectures.
Name Regularity Bias Name Regularity Bias
(Ghaddar et al., 2021; Lin et al., 2020) in NER
occurs when a model relies on a signal from the
entity name to make predictions and disregards evi-
dence from the local context. Ghaddar et al. (2021)
carefully designed a testbed utilizing Wikipedia
disambiguation pages to diagnose the Name Regu-

larity Bias of NER models. Details about the NRB
dataset are provided in the appendix.

We use both the NRB and WTS (as control sets)
datasets to evaluate the model trained with differ-
ent modes of demonstrations on CoNLL03. The
results show a smaller gap for random demonstra-
tions, suggesting that random demonstration-based
learning can better leverage context information
instead of the name regularity patterns.

5 Conclusions

In this paper, we present a casual view to under-
stand demonstration-based learning. Based on the
structural causal model we constructed, we inves-
tigate the causal effects and discover that the con-
currence of specific words in the demonstration
can induce bias. To address this issue, we perform
interventions by constructing random demonstra-
tions. Our empirical results indicate that carefully
designed random demonstrations consistently out-
perform meaningful demonstrations on public se-
quence labeling benchmarks.

6 Limitations

All our experiments are done on the sequence la-
beling task, and they can be further evaluated on
sentence classification tasks with classifier-based
fine-tuning since the [CLS] token used for classifi-
cation represents the whole sentence. We provide
a causal opinion on demonstration-based learning
and a simple but not systematic method to alleviate
the induced bias. Our demonstration-based learn-
ing builds upon previous works (Lee et al., 2022;
Zhang et al., 2022a), where BERT or RoBERTa are
used instead of Large Language Models, such as
InstructGPT (Ouyang et al., 2022), PaLM (Chowd-
hery et al., 2022), and OPT (Zhang et al., 2022b).
Furthermore, our conclusions are drawn from few-
shot learning settings and cannot be directly applied
to zero-shot inference.
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Dataset |Y | L |Dtest|
CoNLL03 4 18 3453
OntoNotes 5.0 11 21 12217
CoNLL00 6 36 2012

Table 4: Data Statistics. |Y |: # of entity types. L:
average # of tokens in input sentence. |Dsupport|: aver-
age # of sentences in 5-shot support set over 5 different
sub-samples. |Dtest|: # of sentences in test set.

A Appendix

NRB Dataset Details The NRB dataset contains
examples whose labels can be easily inferred from
the local context, but they are difficult to be tagged
by a popular NER system. The WTS dataset is a
domain control set that includes the same query
terms covered by NRB, but these can be correctly
labeled by both the popular NER tagger and the lo-
cal context-only tagger. Therefore, the gap between
the NRB and WTS sets measures how effectively
the model captures context information to predict
token labels.
Effects of Sampling Probability We present two
variants, Random-E[X] and Random-W[X], where
X refers to how many times the probability of pre-
ferred tokens is higher. In this ablation study, we
consistently observe that Random-E4 performs bet-
ter than Random-E2, and Random-W4 outperforms
Random-E4. However, if we increase the X value
to a very large number, the performance deterio-
rates.
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Figure 3: F1, Precision and Recall with more variants of Random Demonstrations on CoNLL03.
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