Hexatagging: Projective Dependency Parsing as Tagging

Afra Amini*

Tianyu Liu*

Ryan Cotterell

{afra.amini, tianyu.liu, ryan.cotterell}@inf.ethz.ch

ETH:zirich

Abstract

We introduce a novel dependency parser,
the hexatagger, that constructs dependency
trees by tagging the words in a sentence with
elements from a finite set of possible tags. In
contrast to many approaches to dependency
parsing, our approach is fully parallelizable
at training time, i.e., the structure-building
actions needed to build a dependency parse
can be predicted in parallel to each other.
Additionally, exact decoding is linear in time
and space complexity. Furthermore, we derive
a probabilistic dependency parser that predicts
hexatags using no more than a linear model
with features from a pretrained language
model, i.e., we forsake a bespoke architecture
explicitly designed for the task. Despite the
generality and simplicity of our approach, we
achieve state-of-the-art performance of 96.4
LAS and 97.4 UAS on the Penn Treebank
test set. Additionally, our parser’s linear
time complexity and parallelism significantly
improve computational efficiency, with a
roughly 10-times speed-up over previous
state-of-the-art models during decoding.

https://github.com/rycolab/
parsing-as-tagging

1 Introduction

The combination of parallel computing hardware
and highly parallelizable neural network archi-
tectures (Vaswani et al., 2017) has enabled the
pretraining of language models on increasingly
large amounts of data. In order to apply pretrained
language models to downstream NLP tasks, many
practitioners fine-tune the pretrained model while
the task-specific architecture is jointly trained from
scratch. Typically, the task-specific architecture
is built upon the hidden representations generated
by the final layer of a pretrained model. Exploiting
pretrained language models in this manner has
boosted the performance considerably on many
NLP tasks (Devlin et al., 2019; Clark et al., 2020;

*Equal contribution.

° $

&

3 (U

g

3

jasi

>

3

8=

: 0. ()

&

o

)

A B C D

22}

&

8

s

E_) Znsubj| 2% [X root A5 | 7 amod| R ~ obj
B she reads fascinating papers
2. nsubj @i_/
ck

o+ bj

5% root v
kS

Figure 1: From bottom to top, the figure shows the
dependency tree, the hexatags, and the binary head tree
for the sentence “She reads fascinating papers.”

Aghajanyan et al., 2021). However, for the end-to-
end fine-tuning process to be fully parallelizable,
it is also necessary to parallelize the training of the
task-specific architecture. Unfortunately, due to
the complexity of the output in many structured
prediction tasks in natural language, e.g., in de-
pendency parsing, state-of-the-art models still use
architectures with limited parallelization during
training (Mrini et al., 2020; Yang and Tu, 2022).
In an attempt to develop parsers parallelizable
during training, a recent line of work recasts
parsing as tagging (Li et al., 2018; Strzyz et al.,
2019; Kitaev and Klein, 2020; Amini and Cotterell,
2022). Under this approach, a parse tree is
linearized into a sequence of tags.! The benefit
of such a paradigm is that tagging can be done by
only adding a linear classifier on top of a pretrained
language model and the tags can, thus, be predicted
independently. This leads to a parser that is highly
parallelizable and whose training can be easily
harmonized with the (parallelizable) fine-tuning of
pretrained language models. During decoding, an
exact algorithm is used to recover a valid sequence

'In some tagging-based dependency parsers, the cardinal-
ity of the set of tags even grows as a function of the length of
the input sequence and, thus, is unbounded.

1453

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1453-1464
July 9-14, 2023 ©2023 Association for Computational Linguistics

mailto:afra.amini@inf.ethz.ch
mailto:tianyu.liu@inf.ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/parsing-as-tagging
https://github.com/rycolab/parsing-as-tagging

of tags which is then converted back to a parse tree.

Kitaev and Klein (2020) were the first to pro-
pose a parsing-as-tagging scheme with a constant
tag space for constituency parsing and, additionally,
the first to achieve results competitive with the state-
of-the-art non-parallelizable constituency parsers
using such a tagger. However, for dependency pars-
ing, all dependency parsing-as-tagging schemes in
the literature (Li et al., 2018; Strzyz et al., 2019;
Vacareanu et al., 2020) have infinite tag sets whose
cardinality grows with the length of the input se-
quence, which limits such parsers’ efficiency and
generality (Strzyz et al., 2019). Moreover, in some
cases, this growth hinders generalization to sen-
tences longer than the longest training sentence.
Furthermore, tagging-based dependency parsers
still do not perform competitively with the best-
performing parsers in the literature (Li et al., 2018).

In this paper, we propose a novel way of framing
projective dependency parsing as a tagging task.
Our approach makes use of 6 distinct tags, motivat-
ing us to naming the scheme hexatagger. In our ex-
periments, hexatagger achieves state-of-the-art per-
formance on the English Penn Treebank (PTB; Mar-
cus et al., 1993) test set. Notably, it outperforms
parsers with more computationally expensive train-
ing procedures and extra constituency annotations,
e.g., the parser developed by Mrini et al. (2020).
Furthermore, hexatagger achieves results competi-
tive to Yang and Tu’s (2022) parser on the Chinese
Penn Treebank (CTB; Xue et al., 2005) test set
and 12 languages on the pseudo-projectivized data
from the Universal Dependencies (UD2.2; Nivre
et al., 2018) benchmark. In terms of efficiency, our
experiments suggest that hexatagger is 10 times
faster than previous top-performing parsers, and
consumes significantly less memory, despite using
an exact dynamic program for decoding.

2 Hexatagging

In this section, we introduce hexatagging, a tag-
ging scheme that consists of 6 unique tag types.
We further prove by construction that there exists
an injective mapping between valid sequences of
hexatags and dependency trees.

2.1 Binary Head Trees

Before going into the details on how to represent
dependency trees with a sequence of tags, we intro-
duce binary head trees (BHTs), a simple formal-
ism that serves as a useful intermediary between

dependency trees and sequence of hexatags. Intu-
itively, a BHT is a special form of a constituency
tree where each internal node is either labeled (L)
when the head of the derived constituent is in the
left subtree or (x) when the head is in the right sub-
tree. See Fig. 1 for a visual depiction of a BHT. In
the next theorem, we formally state the relationship
between the set of dependency trees and BHTs.

Theorem 1. There exists a bijective® function that
maps every projective dependency tree to a BHT.

In the following two paragraphs, we sketch a
construction that such a function exists, i.e., we
describe how to map any dependency tree to a
BHT and then how to map back any BHT to a
dependency tree and back again.

Projective Dependency Trees to BHTs. To con-
vert a dependency tree to a BHT, we start from
the root and do a depth-first traversal of the depen-
dency tree. To avoid spurious ambiguity (Eisner
and Satta, 1999), we canonically order arcs of the
tree by processing the arcs left to right and inside
out.> Algorithmically, converting a dependency
tree to a BHT proceeds as follows. When we first
visit a word, we push it onto a stack and proceed
with visiting its dependents. When there is no de-
pendent word left to visit, we create a new node
((® or (®)) and attach the top two elements in the
stack as the left and right child of this node. A step-
by-step demonstration of this algorithm is shown
in Fig. 2 and pseudocode is provided in Alg. 1.

BHTs to Projective Dependency Trees. To con-
vert a BHT back to the dependency tree we fol-
low Alg. 2. Algorithmically, we process BHT in a
depth-first fashion. Upon visiting (®) or (1) nodes,
we combine the top two elements in the stack by
creating a dependency arc between them. The di-
rection of the arc is determined by the label of the
node (®) or ()). See Fig. 3 for an example.

Once the dependency tree is converted to a BHT,
we can linearize it to a sequence of hexatags in
a straightforward manner. Theorem 2 states the
relationship between BHTSs and hexatags formally.

Theorem 2. There exists a total and injective
function that maps every BHT to a valid hexatag
sequence, i.e., in other words, every BHT can be

*We remark that the bijectivitiy follows from a canonical
ordering (left-to-right and inside-out) of a node’s dependents.

30ne can also process the right arcs first. In our experi-
ments, however, we observed no significant difference in the
performance of the parser, see App. C for more analysis.

1454

Tree Stack Op Stack
B
R
o PUSH (B) B
B
R
PUSH (A) B A
B
N ®

MAKENODE (®) [B]

B
A‘/ D @
PUsH (D) B] D
B
A
PUsH (C) [B] D C
‘/B

D I’ (R)
MAKENODE (®) [B] D]

L
b (R) (R)
MAKENODE () [B] D]

Figure 2: The example shows how to derive the BHT

for a dependency tree A B CD. The top of the stack is
on the right.

mapped to a unique hexatag sequence. However,
some hexatag sequences do not correspond to
BHTs, i.e., the function is not surjective.

In the following subsections, we prove by con-
struction that such a function exists. Throughout
the rest of the paper, we refer to those haxatagging
sequences that do correspond to BHTs as valid.

2.2 From BHT to Hexatags

To transform a given BHT to a sequence of hex-
atags, we enumerate the action sequence that a
left-corner shift—reduce parser would take when
parsing this BHT (Johnson, 1998). Left-corner
parsers have actions that align more closely with
the input sequence than top-down or bottom-up
shift—-reduce actions and, thus, offer a better lin-
earization for tagging tasks (Amini and Cotterell,
2022). A simple explanation of this linearization
process is given by Kitaev and Klein (2020, §3.1).
Their algorithm involves an in-order traversal of
the tree. Upon visiting each node, we generate a tag
that includes the direction of the arc that attaches

the node to its parent, i.e., whether that node is a

left or a right child of its parent, and the label of

the node. When traversing a BHT, this paradigm
results in 6 distinct tag types:

e x : this terminal node is the right child of its
parent;

e~ this terminal node is the left child of its par-
ent;

* x° (x"): this non-terminal node is the right child
of its parent and the head of the corresponding
constituent is on the right (respectively, left) sub-
tree;

o 7% (7"%): this non-terminal node is the left child
of its parent and the head of the corresponding
constituent is on the right (respectively, left) sub-
tree.

For an input sequence w = wy - - - wy, this process

gives us a hexatag sequence of length 2N — 1.

Fig. 1 depicts tree-to-tags transformation through

an example.

Labeled Dependency Trees. When converting
a labeled dependency tree to a sequence of hex-
atags, the arc labels must be encoded in the tags.
Therefore, while reading a terminal node, we con-
catenate the label of the arc that connects the node
to its parent with the hexatag. In this case, the num-
ber of distinct tags would be O(|.A]), where |A] is
the number of unique arc labels. For example, in
Fig. 1 the hexatag generated while processing she
is: (1, nsubj).

2.3 From Hexatags to Dependency Trees

To transform a sequence of hexatags back to a
dependency tree, we again go through a two-step
process. First, we again interpret hexatags as
actions in a left-corner shift-reduce transition
system to construct a BHT. The actions in such a
transition system are as follows:

o : shift the leaf node into the stack;

o 7% (7"): create a new node labeled (®) (respec-
tively, (1)), attach the top element in the stack
as its left child, and attach a dummy node as its
right child (& in step 2 in Fig. 3);

e x_: pop the subtree on the top of the stack. Re-
place the dummy node in the subtree with the
terminal node. Push the subtree back to the stack;

* K (x): create a new node labeled (®) (respec-
tively, ()). Pop the top element of the stack,
attach it as the new node’s left child, and set a
dummy node as the node’s right child. Pop an-
other subtree of the stack, identify the dummy

1455

node in the subtree and replace it with the newly
created subtree. Push the subtree back to the
stack (step 6 in Fig. 2);

hexatags — BHT BHT — Dep. Tree

Action BHT Stack BHT Dep. Stack
$
(R) = (R)
$
m~ B A B b A
$
s (L}
(R} (R) (R)
@zl _e_ . Al_B] [eJDl A B____
$
5 (L}
(R} (R) (R) -
3) < [B] [B] D] A B
A S TR -~
(L} (L}
®R) @ (R) -
@ A [B] [B] bl A BC
O L CEE R REEEEEEEE
(L) (L}
®R 2 s (R) (R) -
)~ B B [@& B KD ABCD
A L L= e mmm -
(L] (L]
(R) (R) (R) (R) .
6)x" [al [B] [c] o [a] [B] [c] D] A BC D
N~ ABCD

Figure 3: The example shows how to derive BHT from
hexatags and how to transform BHT to a dependency
tree. The top of the stacks is on the right.

3 Probability Model

In this section, we explain how to predict hexatags
in parallel. Our tagging model predicts two
hexatags for each word in the input sequence
with the exception of that last word, for which
we only predict one tag. As discussed in §2.1,
a hexatagger produces a sequence of 2N — 1
tags t = [t1,t2,...,tan—1] for an input sequence
of length N, w = wjws---wy. Therefore, an
intuitive way to match the tag sequence with the
input sequence is to assign two tags to each word.
We denote a training corpus S of M tuples of input
sequences and tag sequences {(w™, ™) }M_,.

To learn the scoring function over tags, we
follow the same independence assumption as in
(Kitaev and Klein, 2020), i.e., the probability
of predicting each tag is independent of other
tags given the input sequence. This assumption
barely harms model performance (see Amini and

Cotterell, 2022, Table 3), but significantly speeds
up the training process by enabling each tag to
be predicted in parallel, and complexity reduces
by a factor of O(N). The training objective is
to minimize the negative log-likelihood of the
gold-standard tag sequences, i.e.

Z log pe(t | w)

(w,t)eS

£(6) = — (1a)

2N—-1

=— > log Hpe (tn | w)

(w,t)eS

= _ Z <Z log pg(ten—1 | w) (lc)

(w,t)esS “n=1

(1b)

N—-1
+) " log poltan | w)>

n=1

where 0 refers collectively to the parameters of
the two linear projections and the parameters of
the pretrained model. To obtain pg(te, | w) and
po(tant1 | w), we apply two independent linear
projections on the contextualized representation
of w,* given by a pretrained model and convert
that to a probability distribution using softmax.

4 Decoding

Our goal in this section is to develop an efficient
algorithm to find the highest-scoring hexatag se-
quence under the model developed in §3. As stated
in Theorem 2, the transformation function between
BHTs and hexatag sequences is not surjective, i.e.,
not all the tag sequences can be transformed back
into a BHT. Therefore, we need to find a valid
hexatag sequence with the maximum probability
under the model that can be transformed back to
a BHT. Once such hexatag sequence is found, we
can follow the two-step algorithm described in §2.3
to obtain the corresponding dependency tree.

To find the highest-scoring valid hexatag se-
quence, we follow the linear-time algorithm de-
veloped by Kitaev and Klein (2020). For a hexatag
sequence to be valid, we should be able to interpret
it as actions in a left-corner shift-reduce transitions
system, described in §2.3. Concretely:

* The first action can only be » because other

actions need at least one item in the stack;

* The actions x", & can only be performed if

there is at least two items in the stack;

*If a word consists of more than one subword, we apply
the projection to the last subword.

1456

bg ca cs de en es fr it nl no ro ru Avg.
Zhang et al. (2020) 90.77 9129 9154 8046 8732 90.86 8796 9191 88.62 91.02 8690 9333 89.33
Wang and Tu (2020) 90.53 9283 92.12 81.73 89.72 9207 853 9278 90.19 91.88 8588 92.67 90.07

+BERT mutitingual

Wang and Tu (2020) 91.30 9360 92.09 82.00 90.75 9262 8932 93.66 91.21 91.74 86.40 92.61 90.61
Dozat and Manning (2017) 90.30 94.49 92.65 8598 91.13 9378 91.77 9472 91.04 9421 8724 9453 9182
Yang and Tu (2022) 91.10 9446 9257 8587 91.32 93.84 91.69 9478 91.65 9428 8748 9445 91.96
Hexatagger 92.87 9379 9282 8518 90.85 93.17 9150 9472 91.89 9395 87.54 9403 91.86

Table 1: LAS scores on the test sets of 12 languages in UD 2.2. Hexatagger achieves competitive performance in all

languages and is state-of-the-art in 4 languages.

PTB CTB
Model UAS LAS UAS LAS
Zhou and Zhao (2019)* 97.0 954 912 892
Mrini et al. (2020)* 974 963 946 89.3

Chen and Manning (2014) 91.8 89.6 839 824
Dozat and Manning (2017) 95.7 94.1 89.3 88.2
Yang and Tu (2022)# 974 958 935 925

974 964 932 919

Hexatagger

Table 2: Results on PTB and CTB. * indicates us-
age of extra constituency annotation. # is our re-
implementation using the same pretrained encoder with
hexatagger.

» After performing all the actions, the stack
should contain a single element.
The above shows that the validity of a hexatag
sequence only depends on the number of elements
in the stack at each point of the derivation.’

5 Experiments

We conduct experiments on the English Penn
Treebank (PTB; Marcus et al., 1993), the Chinese
Penn Treebank (CTB; Xue et al., 2005), and the
Universal Dependencies 2.2 (UD2.2; Nivre et al.,
2018). For UD2.2, we adopt the pseudo-projective
transformation (Nivre and Nilsson, 2005) to
convert non-projective trees into projective trees
following previous work (Wang and Tu, 2020;
Yang and Tu, 2022). We report dataset statistics
in App. E and hyperparameter settings in App. F.

Accuracy. We train the hexatagger model based
on XLNet (Yang et al., 2019) and report the results
on PTB and CTB in Table 2. Furthermore, we eval-

SSpecifically, The decoding algorithm can be thought of
as constructing a lattice where each node corresponds to the
number of elements in the stack for each transition step (/N x d
nodes for maximum stack size of d, d < N). Each transition
corresponds to performing a valid action. The score of the tag
at step n is set to the negative log probability — log pe(t, |
w) of the corresponding hexatag given by the model. Finally,
we remark that our decoding algorithm is essentially a shortest-
path dynamic program that finds the highest-scoring valid
hexatag sequence. See Amini and Cotterell (2022, §5.1) for a
deeper discussion of this point.

Speed (sent/s) 1 Memory (GB) |
Sent length Hexatagger Biaffine Hexatagger Biaffine
32 2916 493 2.9 4.5
64 3011 328 3.0 10.1
128 2649 202 3.7 30.6
256 3270 98 4.5 56.2*
overall 3176 338 3.0 10.6

Table 3: Comparison of parsing speed and memory
consumption on PTB test set. Results are averaged
over 3 random runs on the same server with one Nvidia
A100-80GB GPU using BERT-large as encoder. We use
a batch size of 128 sentences, except for * that uses 64,
which otherwise results in an out-of-memory error.

uate hexatagger in a set of 12 topologically diverse
languages on UD corpus, where we use Multilin-
gual BERT (Devlin et al., 2019) as the underlying
model (see Table 1). In PTB, we observe that hex-
atagger achieves state-of-the-art results, compared
to models with custom architectures and even in
some cases with extra annotation. In CTB and UD,
hexatagger follows the best performance closely.

Efficiency. We compare the efficiency of hexatag-
ger with biaffine modules,® which are the backbone
of many neural graph-based parsers (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017;
Mrini et al., 2020; Yang and Tu, 2022). As de-
picted in Table 3, we observe that our hexatagger
is an order of magnitude faster and consumes less
memory. Further analysis is included in App. C.

6 Conclusion

In summary, hexatagging, our novel scheme, offers
a parallelizable and efficiently decodable backbone
for dependency parsing. Without relying on custom
architecture for dependency parsing, the hexatag-
ger achieves state-of-the-art accuracy on several
datasets using no more than a pretrained language
model and linear classifiers.

®By biaffine model we refer to a slim parameterization of
a dependency parser that scores the existence of a dependency

between w; and w; using a biaffine attention layer over the
words’ contextualized representations.

1457

Limitations

Non-projectivity. The primary theoretical lim-
itation of hexatagger is that it can only produce
projective dependency trees. We would like to ex-
plore the possibility of extending hexatagger to
non-projective parsing for future work.

Interpretibility. As a trade-off for efficiency,
hexatagger does not model dependency arcs
directly. Compared to graph-based models that
explicitly score arc scores between pairs of words,
it is more difficult to interpret the output of
hexatagger.

Ethics Statement

We do not believe the work presented here further
amplifies biases already present in the datasets.
Therefore, we foresee no ethical concerns in this
work.

Acknowledgments

We would like to thank Tim Vieira for his invalu-
able feedback throughout the process of this paper.
Afra Amini is supported by ETH Al Center doc-
toral fellowship.

References

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava,
Xilun Chen, Luke Zettlemoyer, and Sonal Gupta.
2021. Muppet: Massive multi-task representations
with pre-finetuning. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 5799-5811, Online and Punta
Cana, Dominican Republic. Association for Com-
putational Linguistics.

Afra Amini and Ryan Cotterell. 2022. On parsing as
tagging. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 8884—8900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2):237-265.

Dangi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740750, Doha, Qatar. Association for Com-
putational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than

generators. In International Conference on Learning
Representations.

Shay B. Cohen and Daniel Gildea. 2016. Parsing
Linear Context-Free Rewriting Systems with Fast
Matrix Multiplication. Computational Linguistics,
42(3):421-455.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the work-
shop on Cross-Framework and Cross-Domain Parser
Evaluation, pages 1-8, Manchester, UK. Coling 2008
Organizing Committee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Jason Eisner. 1996. Efficient normal-form parsing for
combinatory categorial grammar. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 79-86, Santa
Cruz.

Jason Eisner and Giorgio Satta. 1999. Efficient parsing
for bilexical context-free grammars and head automa-
ton grammars. In Proceedings of the 37th Annual
Meeting of the Association for Computational Lin-
guistics, pages 457-464, College Park, Maryland,
USA. Association for Computational Linguistics.

Mark Johnson. 1998. Finite-state approximation of
constraint-based grammars using left-corner gram-
mar transforms. In 36th Annual Meeting of the As-
sociation for Computational Linguistics and 17th
International Conference on Computational Linguis-
tics, Volume 1, pages 619-623, Montreal, Quebec,
Canada. Association for Computational Linguistics.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225-240.

1458

https://doi.org/10.18653/v1/2021.emnlp-main.468
https://doi.org/10.18653/v1/2021.emnlp-main.468
https://aclanthology.org/2022.emnlp-main.607
https://aclanthology.org/2022.emnlp-main.607
https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.1162/COLI_a_00254
https://doi.org/10.1162/COLI_a_00254
https://doi.org/10.1162/COLI_a_00254
https://aclanthology.org/W08-1301
https://aclanthology.org/W08-1301
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
http://cs.jhu.edu/~jason/papers/#eisner-1996-acl
http://cs.jhu.edu/~jason/papers/#eisner-1996-acl
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/980845.980948
https://doi.org/10.3115/980845.980948
https://doi.org/10.3115/980845.980948
https://doi.org/10.1162/tacl_a_00017
https://doi.org/10.1162/tacl_a_00017

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of the
Association for Computational Linguistics, 4:313—

327.

Nikita Kitaev and Dan Klein. 2020. Tetra-tagging:
Word-synchronous parsing with linear-time inference.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6255—
6261, Online. Association for Computational Lin-
guistics.

Taku Kudo and Yuji Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. In
COLING-02: The 6th Conference on Natural Lan-
guage Learning 2002 (CoNLL-2002).

Marco Kuhlmann, Carlos Gémez-Rodriguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 673—682, Portland, Oregon, USA.
Association for Computational Linguistics.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global neural CCG parsing with optimality guaran-
tees. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2366-2376, Austin, Texas. Association
for Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3203-3214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Haji¢. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523-530, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Ryan McDonald and Giorgio Satta. 2007. On the
complexity of non-projective data-driven dependency
parsing. In Proceedings of the Tenth International
Conference on Parsing Technologies, pages 121-132,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP

2020, pages 731-742, Online. Association for Com-
putational Linguistics.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149-160, Nancy, France.

Joakim Nivre, Mitchell Abrams, Zeljko Agi¢, Lars
Ahrenberg, Lene Antonsen, Maria Jesus Aranz-
abe, Gashaw Arutie, Masayuki Asahara, Luma
Ateyah, Mohammed Attia, Aitziber Atutxa, Lies-
beth Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica
Barbu Mititelu, John Bauer, Sandra Bellato, Kepa
Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, Eck-
hard Bick, Rogier Blokland, Victoria Bobicev, Carl
Borstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Giilsen Ce-
biroglu Eryigit, Giuseppe G. A. Celano, Savas Cetin,
Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Silvie Cinkov4, Aurélie Collomb, Cagr1 C6l-
tekin, Miriam Connor, Marine Courtin, Elizabeth
Davidson, Marie-Catherine de Marneffe, Valeria
de Paiva, Arantza Diaz de Ilarraza, Carly Dicker-
son, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat,
Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali
Elkahky, Binyam Ephrem, TomaZ Erjavec, Aline Eti-
enne, Richard Farkas, Hector Fernandez Alcalde, Jen-
nifer Foster, Cldudia Freitas, Katarina GajdoSova,
Daniel Galbraith, Marcos Garcia, Moa Girdenfors,
Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gokirmak, Yoav Goldberg, Xavier
Gémez Guinovart, Berta Gonzales Saavedra, Matias
Grioni, Normunds Grazitis, Bruno Guillaume, Cé-
line Guillot-Barbance, Nizar Habash, Jan Haji¢, Jan
Haji¢ jr., Linh Ha My, Na-Rae Han, Kim Harris, Dag
Haug, Barbora Hladka4, Jaroslava Hlavacova, Florinel
Hociung, Petter Hohle, Jena Hwang, Radu Ion, Elena
Irimia, Tomas Jelinek, Anders Johannsen, Fredrik
Jgrgensen, Hiiner Kagikara, Sylvain Kahane, Hiroshi
Kanayama, Jenna Kanerva, Tolga Kayadelen, Va-
clava Kettnerova, Jesse Kirchner, Natalia Kotsyba,
Simon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phuong
Lé Héng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying Li,
KyungTae Lim, Nikola Ljubesi¢, Olga Loginova,
Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christo-
pher Manning, Ruli Manurung, Citdlina Mardn-
duc, David Marecek, Katrin Marheinecke, Héctor
Martinez Alonso, André Martins, Jan Masek, Yuji
Matsumoto, Ryan McDonald, Gustavo Mendonga,
Niko Miekka, Anna Missild, Catalin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Shinsuke Mori, Bjartur Mortensen,
Bohdan Moskalevskyi, Kadri Muischnek, Yugo Mu-
rawaki, Kaili Miiiirisep, Pinkey Nainwani, Juan Igna-
cio Navarro Horfiiacek, Anna Nedoluzhko, Gunta
Nespore-Bérzkalne, Luong Nguyén Thi, Huyén
Nguyén Thi Minh, Vitaly Nikolaev, Rattima Nitisaroj,

1459

https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.18653/v1/2020.acl-main.557
https://doi.org/10.18653/v1/2020.acl-main.557
https://aclanthology.org/W02-2016
https://aclanthology.org/W02-2016
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://doi.org/10.18653/v1/D16-1262
https://doi.org/10.18653/v1/D16-1262
https://aclanthology.org/C18-1271
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/H05-1066
https://aclanthology.org/H05-1066
https://aclanthology.org/W07-2216
https://aclanthology.org/W07-2216
https://aclanthology.org/W07-2216
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017

Hanna Nurmi, Stina Ojala, Adédayo Oludokun, Mai
Omura, Petya Osenova, Robert Ostling, Lilja @vrelid,
Niko Partanen, Elena Pascual, Marco Passarotti, Ag-
nieszka Patejuk, Siyao Peng, Cenel-Augusto Perez,
Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily
Pitler, Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalnina, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiérkowski, Tiina Puolakainen,
Sampo Pyysalo, Andriela Ridbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Car-
los Ramisch, Vinit Ravishankar, Livy Real, Siva
Reddy, Georg Rehm, Michael RieBler, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-
manenko, Rudolf Rosa, Davide Rovati, Valentin
Rosca, Olga Rudina, Shoval Sadde, Shadi Saleh,
Tanja Samardzi¢, Stephanie Samson, Manuela San-
guinetti, Baiba Saulite, Yanin Sawanakunanon,
Nathan Schneider, Sebastian Schuster, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Muh Shohibussirri, Dmitry Sichi-
nava, Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simké, Maria Simkova, Kiril Simov, Aaron
Smith, Isabela Soares-Bastos, Antonio Stella, Milan
Straka, Jana Strnadovd, Alane Suhr, Umut Sulubacak,
Zsolt Szanté, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdenka UreSova, Larraitz Uria, Hans Uszkor-
eit, Sowmya Vajjala, Daniel van Niekerk, Gertjan
van Noord, Viktor Varga, Veronika Vincze, Lars
Wallin, Jonathan North Washington, Seyi Williams,
Mats Wirén, Tsegay Woldemariam, Tak-sum Wong,
Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu,
Zdenék Zabokrtsky, Amir Zeldes, Daniel Zeman,
Manying Zhang, and Hanzhi Zhu. 2018. Universal
dependencies 2.2. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguis-
tics (UFAL), Faculty of Mathematics and Physics,
Charles University.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-

projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 99—-106, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Michalina Strzyz, David Vilares, and Carlos Gémez-
Rodriguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717-723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Robert Vacareanu, George Caique Gouveia Barbosa,
Marco A. Valenzuela-Escdrcega, and Mihai Sur-
deanu. 2020. Parsing as tagging. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 5225-5231, Marseille, France. Eu-
ropean Language Resources Association.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93-99, Suzhou, China. Association
for Computational Linguistics.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer.
2005. The penn chinese treebank: Phrase structure

annotation of a large corpus. Natural Language En-
gineering, 11(2):207-238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the Eighth International
Conference on Parsing Technologies, pages 195-206,
Nancy, France.

Songlin Yang and Kewei Tu. 2022. Headed-span-based
projective dependency parsing. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2188-2200, Dublin, Ireland. Association for Compu-
tational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295-3305, Online. Association for Computa-
tional Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562-571,
Honolulu, Hawaii. Association for Computational
Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396—
2408, Florence, Italy. Association for Computational
Linguistics.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020.
Please mind the root: Decoding arborescences for
dependency parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4809—4819, Online. As-
sociation for Computational Linguistics.

1460

http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://aclanthology.org/2020.lrec-1.643
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://aclanthology.org/W03-3023
https://aclanthology.org/W03-3023
https://aclanthology.org/W03-3023
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/2022.acl-long.155
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://doi.org/10.18653/v1/2020.emnlp-main.390

A Algorithms

Algorithm 1 Create a BHT from a dependency
tree.
1: procedure DEP2TREE(head)

2 stack.push(head)

3 for dep in LEFTDEP(head) :

4 DEP2TREE(dep)

5 left < stack.pop()

6: right < stack.pop()

7 stack.push(MAKENODE((®), left, right))
8 for dep in RIGHTDEP(head) :

9: DEP2TREE(dep)

10: left < stack.pop()

11: right < stack.pop()

12: stack.push(MAKENODE((QD), left, right))

Algorithm 2 Create a dependency tree from a BHT.

1: procedure TREE2DEP(node)

2: if node is leaf :

3: return node

4: left <— TREE2DEP(node.left)

5: right < TREE2DEP(node.right)
6: ifnodeis © :

7

7 &
return MAKEARC(left right)

VS
8: return MAKEARC(left right)

B Related Work

Traditionally, approaches to dependency parsing
have been taxonomized into graph-based and
transition-based parsers. The authors of this pa-
per take the stance that this distinction is mislead-
ing because the difference lies not in the models
themselves, but rather in whether exact or approx-
imate inference algorithms are employed. For
instance, Kuhlmann et al. (2011) gives exact al-
gorithms for transition-based dependency parsers,
which exposes the inability to formally distinguish
graph-based and transition-based parsers. Thus, we
classify our related work into sections: exact and
approximate decoding. Further, we review works
on tagging-based parsing which is the most relevant
line of work to this paper.

Exact Decoding. Most exact algorithms for pro-
jective dependency parsing models apply a modi-
fied form of the CKY algorithm on nested depen-
dency trees. The best runtime among the com-
monly deployed algorithms O (N?) (Eisner, 1996),
but algorithms based on fast matrix multiplication
exist and can achieve a lower runtime bound (Co-
hen and Gildea, 2016). However, exact decoding

of non-projective parsers is intractable unless un-
der independence assumptions, e.g., edge factored
assumption (McDonald and Satta, 2007). Edge-
factored parsers (McDonald et al., 2005; Dozat
et al., 2017) construct graphs by scoring all possi-
ble arcs between each pair of words. They then use
the maximum spanning tree (MST) finding algo-
rithms for decoding to build the valid dependency
trees with maximum score in O(N 2) (Zmigrod
et al., 2020). The discussed algorithms are exact in
inferring the dependency structure, however, they
are neither fast nor parallelizable.

Approximate Decoding. Despite not being ex-
act, transition-based parsers offer faster and typ-
ically linear-time parsing algorithms (Kudo and
Matsumoto, 2002; Yamada and Matsumoto, 2003;
Nivre, 2003). The dependency tree is inferred with
a greedy search through transition system actions.
Following this approach, actions are not predicted
in parallel and the configuration of the transition
system (stack and buffer) needs to be modeled with
aneural network (Chen and Manning, 2014), which
prevents using pretrained models out of the box.

Tagging-based parsing. Inspired by Bangalore
and Joshi’s (1999) seminal work supertagging, a
recent line of work aims to utilize pretrained mod-
els and parse dependency trees by inferring tags for
each word in the input sequence. Li et al. (2018);
Kiperwasser and Ballesteros (2018) predict the rel-
ative position of the dependent with respect to its
parent as the tag. They then use beam tree con-
straints (Lee et al., 2016) to infer valid dependency
trees. Strzyz et al. (2019) provides a framework
for analyzing similar tagging schemes. Although
these works have demonstrated potential in this
area, none achieved state-of-the-art results com-
pared to custom architectures and algorithms de-
veloped for dependency parsing. Additionally, the
output space, or size of the tag set, is unrestricted,
which limits the efficiency of this approach.

C Analysis

LEFT-FIRST vs. RIGHT-FIRST. We examine the
effect of the two orders of binarization of Alg. 1 in
Table 4. In our experiments, the choice of left-first
or right-first order has little to no effect on parsing
performance.

1461

PTB CTB
Model UAS LAS UAS LAS
Right-first 972 963 93.2 919
Left-first 974 964 93.1 919

Table 4: Comparison of left-first and right-first binariza-
tion.

D Efficiency Evaluation

For efficiency comparison, we use BERT-large as
the base feature encoder for both Hexatagger and
Biaffine. We use the English PTB test set and
truncate or pad the input sentences to the control
length. The results are averaged over 3 random runs
on the same server with one Nvidia A100-80GB
GPU. The other experimental settings are kept the
same (i.e., the version of PyTorch and Transformer,
FP32 precision, batching).

E Datasets

Preprocessing. Following previous work (Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2017), the dependency annotations are derived
by the Stanford Dependency converter v3.3.0
(de Marneffe and Manning, 2008) from the tree-
bank annotations. Punctuation is omitted for evalu-
ation. Gold part-of-speech tags are provided to the
model both during training and evaluation follow-
ing the code released by Mrini et al. (2020).

Some other authors use system-predicted part-
of-speech tags (Zhou and Zhao, 2019) or use mixed
configurations. E.g., Yang and Tu (2022) uses
gold part-of-speech tags on CTB and UD, while
not using any on PTB, Dozat and Manning (2017)
uses gold part-of-speech tags on CTB but system-
predicted ones on PTB. Our preliminary experi-
ments show that removing the usage of part-of-
speech information barely affects the UAS metric,
and gives us a performance of 97.4 UAS and 95.8
LAS on PTB.

Splits. All the datasets splits are consistent with
previous work. For PTB, we follow the standard
split of Marcus et al. (1993), resulting in 39,832
sentences for training, 1,700 for development, and
2,416 for testing. For CTB, we follow the split of
Zhang and Clark (2008), resulting in 16,091 sen-
tences for training, 803 for development, and 1,910
for testing. For UD2.2, we follow Yang and Tu
(2022) and use the standard splits of the following

corpora for experiments: BG-btb, CA-ancora, CS-
pdt, DE-gsd, EN-ewt, ES-ancora, FR-gsd, IT-isdt,
NL-alpino, NO-rrt, RO-rrt, RU-syntagrus.

Licenses. The PTB and CTB datasets are li-
censed under LDC User Agreement. The UD2.2
dataset is licensed under the Universal Dependen-
cies License Agreement.

F Hyperparameter Settings

We use the Python NLTK package to process the
datasets, i.e., converting CoNLL-U formatted data
to dependency trees, extracting dependency arcs
from dependency trees for evaluation, implement-
ing Alg. 1 and 2. For UD, we apply MaltParser
v1.9.27 to pseudo-projectivize the non-projective
trees (Nivre and Nilsson, 2005).

We use xInet-large-cased® for English PTB,
chinese-xInet-mid® for CTB, and bert-multilingual-
cased'? for UD.

The dimension of POS tag embedding is set to
256 for all experiments. On top of concatenated
pretrained representations and POS embedding, we
use a 3-layer BiLSTM with a hidden size of 768 for
base-sized models (bert-multilingual-cased on UD)
and 1024 for large-sized models (xInet-large-cased
on PTB and chinese-xInet-mid on CTB).

Dropout layers with a rate of 0.33 are applied
after the concatenated embedding layer, between
LSTM layers, and before the MLP projection layer
to hexatags.

For training, we used AdamW with a learning
rate of 2e—>5 for pretrained LMs and 1e—4 for POS
embedding, BiLSTM, and MLP. The gradient clip-
ping threshold is set to 1.0. The batch size is set to
32.

7http://www.maltparser.org/download.html
8https://huggingface.co/xlnet—large—cased
9https://huggingface.co/hfl/chinese—xlnet—mid
Yhttps://huggingface.co/
bert-base-multilingual-cased

1462

http://www.maltparser.org/download.html
https://huggingface.co/xlnet-large-cased
https://huggingface.co/hfl/chinese-xlnet-mid
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
Limitations

¥ A2. Did you discuss any potential risks of your work?
Ethics Statement

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract and Sec. 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?
5, App. D

¥/ B1. Did you cite the creators of artifacts you used?
5

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
App D

vf B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
App D

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

¥/ B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
App D

¥f B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
App D

C ¥ Dpid you run computational experiments?
5
¥ C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
App. E

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

1463

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
App. E

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

5

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

App. F

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1464

