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Abstract
PhotoBook is a collaborative dialogue game
where two players receive private, partially-
overlapping sets of images and resolve which
images they have in common. It presents ma-
chines with a great challenge to learn how peo-
ple build common ground around multimodal
context to communicate effectively. Meth-
ods developed in the literature, however, can-
not be deployed to real gameplay since they
only tackle some subtasks of the game, and
they require additional reference chains inputs,
whose extraction process is imperfect. There-
fore, we propose a reference chain-free listener
model that directly addresses the game’s pre-
dictive task, i.e., deciding whether an image is
shared with partner. Our DeBERTa-based lis-
tener model reads the full dialogue, and utilizes
CLIPScore features to assess utterance-image
relevance. We achieve >77% accuracy on un-
seen sets of images/game themes, outperform-
ing baseline by >17 points.

1 Introduction

PhotoBook (Haber et al., 2019) is a collaborative di-
alogue game of two players. In a game round, each
player receives 6 images of an identical theme—
the two largest objects in all images share the same
categories, e.g., dog, car, etc. The players have
some of their images in common. Their goal is to
communicate through text dialogue, and individu-
ally mark 3 privately highlighted images as either
common (i.e., shared with partner) or different. A
full game lasts 5 rounds. After each round, some
of each player’s images are replaced with different
ones under the same theme. Images may reappear
in later rounds after being swapped out. This game
setup encourages building and leveraging common
ground with multimodal contexts, which humans
are known to do to facilitate conversation (Clark
and Wilkes-Gibbs, 1986; Brennan and Clark, 1996).
Fig. 1 displays an example of a PhotoBook game.1

1In this case, the game theme is person & bench.

Models proposed in past works on the dataset
(Haber et al., 2019; Takmaz et al., 2020) are unable
to realistically play the game due to several reasons:
(i) they only address subtasks in the game whose
time span is one utterance, rendering it unnecessary
for the models to keep track of the entire game’s,
or round’s, progress; (ii) the models operate on
additional input of reference chains, i.e., past utter-
ances referring to each image, whose (rule-based)
extraction process is imperfect and hence compli-
cates learning and evaluation; and, (iii) utterances
outside of reference chains, e.g., ‘I don’t have that
one’, may also be important pieces of information.

To address the drawbacks above, we propose a
full (i.e., able to play real games), reference chain-
free listener model, which accepts all dialogue ut-
terances of a round2 and the 6 context images, and
predicts whether the 3 target (highlighted) images
are common/different. Our listener model is based
on a pretrained DeBERTa Transformer (He et al.,
2021). To incorporate visual context, CLIPScores
(Hessel et al., 2021) between each utterance and the
6 given images are infused with DeBERTa hidden
states. We employ CLIPScore as it offers strong
prior knowledge about the relevance of an utterance
to each of the 6 images, which may serve as a soft,
implicit version of reference chain used in previous
studies. Also, we chose DeBERTa since it is one of
the top performers in the SuperGLUE benchmark
(Sarlin et al., 2020) which provides a reasonably-
sized (∼100M parameters) version to suit our pur-
pose and computation resources. We further devise
a label construction scheme to create dense learning
signals. Our model scores a >77% accuracy on the
novel listener task and improves by >17% (abso-
lute) over the baseline adapted from (Takmaz et al.,

2Though ideally, the model should process the entire game,
i.e., 5 rounds, since formed consensus will be carried to subse-
quent rounds, doing so would lead to sequence lengths (>1K)
longer than most pretrained Transformers have seen, neces-
sitating an effective memory mechanism or extra adaptation
efforts. Thus, we leave this setting for future endeavors.
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okay, i have a woman in a blue 
dress on a bench reading with 
earbuds in

I have a guy on a sateboard 
touching the rode

I have that one

I have two women on a bench 
looking at a camera, one in a 
brown blouse and one in a 
purple tank

I don't have that one

okay that's it for me

i have that one

    Common         Different

    Common         Different    Common         Different

Image Set

Figure 1: A round of PhotoBook game with dialogue, player marking actions, corresponding images, and CLIPScore
(i.e., CS) difference between top and 2nd-top scoring images w.r.t. the utterance. A player needs to figure out
whether their partner has each of the 3 target (i.e., highlighted) images through text dialogue.

2020). Our code is available at github.com/
slSeanWU/photobook-full-listener.

2 Related Work

In typical collaborative dialogue tasks, two agents
(i.e., players) hold incomplete or partially overlap-
ping information and communicate through text to
reach a predefined goal. The task-oriented setup
enables simple evaluation for dialogue systems via
task success rate, instead of resorting to costly hu-
man evaluation. Tasks and datasets proposed in
the literature focus either on set logic (He et al.,
2017), image understanding (De Vries et al., 2017;
Haber et al., 2019), or spatial reasoning (Udagawa
and Aizawa, 2019). They challenge dialogue sys-
tems to process multiple modalities, discard irrele-
vant information, and build common ground. Re-
searchers have utilized graph neural networks (He
et al., 2017), vision-and-language Transformers
(Lu et al., 2019; Tu et al., 2021), and pragmatic
utterance generation (Frank and Goodman, 2012;
Fried et al., 2021) to tackle the tasks.3

To our knowledge, there has not been a system
that fully addresses the PhotoBook task. It may
be particularly challenging due to the setup with
multiple highly similar images and an unbounded
set of information (e.g., scene, actions) the images
may contain. Previous PhotoBook works targeted
two subtasks: reference resolution (Haber et al.,
2019; Takmaz et al., 2020) and referring utterance
generation (Takmaz et al., 2020). The former re-
solves which of the 6 context images an utterance
is referring to, while the latter generates an infor-
mative utterance for a pre-selected image. Pro-

3Table 2 (in appendix) summarizes these tasks & methods.

posed models take in extracted reference chains—
whose rule-based extraction processes4 try to iden-
tify which utterances speak about each of the im-
ages. To obtain such chains, Haber et al. (2019)
broke the dialogue into segments using a set of
heuristics based on player marking actions. Tak-
maz et al. (2020), on the other hand, computed each
utterance’s BERTScore (Zhang et al., 2019) and
METEOR (Banerjee and Lavie, 2005) respectively
against ground-truth MSCOCO captions (Lin et al.,
2014), and VisualGenome attributes (Krishna et al.,
2017) of each image to match (at most) one utter-
ance per round to an image.

As for the reference resolution task, Haber et al.
(2019) employed LSTM encoders. One (query)
encoder takes a current dialogue segment, while the
other (i.e., context encoder) receives the 6 images’
ResNet features, and the associated reference chain
segments.5 Dot products between query encoder
output and 6 context encoder outputs are taken
to predict the image the current segment refers to.
Takmaz et al. (2020) largely kept the setup, but they
used BERT (Devlin et al., 2019) embeddings and
contextualized utterances via weighted averaging
instead of LSTMs.

Takmaz et al. (2020) claimed an 85% reference
resolution accuracy, but they also reported an 86%
precision6 on reference chain extraction, making
it difficult to conclude whether prediction errors
are due to model incompetence, or incorrect input
data/labels. (We find that some parts of extracted
reference chains either point to the wrong image or

4Algorithmic details in Appendix F.
5The 6 ‘images + ref. chains’ are processed separately.
6evaluated on a human-labeled subset of 20 games
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Figure 2: Overview of our listener model. A DeBERTa
Transformer (He et al., 2021) encodes all utterances of a
game round. Utterance-level CLIPScores (Hessel et al.,
2021) w.r.t. each image (i.e., an R6 vector) get projected
and summed with hidden states of all timesteps corre-
sponding to that utterance. Then, a 2-layer MLP takes
in pooled SegFormer (Xie et al., 2021) features of the
target image (∈ R512) and DeBERTa output to predict
whether the image is common, different, or undecided
at every token timestep.

provide no information at all.7) Yet, we do agree
that keeping track of which images have been re-
ferred to is vital for the game. Therefore, we aim
to build a full listener model that does not depend
on explicit reference chains, but gathers such infor-
mation from implicit hints given by an image-text
matching model, i.e., CLIP (Radford et al., 2021).

3 Method

3.1 Functionality of CLIPScore
Based on CLIP vision-and-language Transformer
(Radford et al., 2021), CLIPScore (Hessel et al.,
2021) is a reference-free8 metric to measure se-
mantic image-text similarity. On image captioning,
Hessel et al. (2021) showed that CLIPScore corre-
lates better with human judgment than reference-
dependent metrics like BERTScore (Zhang et al.,
2019) and SPICE (Anderson et al., 2016).

In our pilot study, we find that the CLIPScore of
an utterance-image pair is particularly high when
the utterance describes the image (see Fig. 1 for
example). These score peaks thus form an implicit
reference chain for the dialogue, giving strong
hints on whether the mentioned images are com-
mon/different when seen with subsequent partner
feedback (e.g., ‘I have that one’). Also, the ref-

7We rerun (Takmaz et al., 2020)’s experiment and show
some of the problematic examples in Appendix F & Table 5.

8i.e., does not take ground-truth text as input

erence chain extraction method in (Takmaz et al.,
2020) achieves higher precision (86%→93%) and
recall (60%→66%) when we simply replace its
core scoring metrics9 with CLIPScore. The find-
ings above show that CLIPScore captures well the
utterance-image relationships in PhotoBook, and
hence should be helpful to our listener model.

Computation-wise, reference chain extraction al-
gorithms in the literature either rely on complex
turn-level heuristics (Haber et al., 2019), or com-
pute multiple external metrics (i.e., BERTScore
and METEOR) (Takmaz et al., 2020). More impor-
tantly, they have to wait until completion of a round
to compute the chains. Our utterance-level CLIP-
Scores can be computed on the fly as utterances
arrive, and are relatively time-efficient as they in-
volve only one model (i.e., CLIP) and that batch
computation may be used to increase throughput.

Modeling-wise, reference chain extraction ex-
plicitly selects which utterances the listener model
should see, so when it is wrong, the model either
sees something irrelevant, or misses important ut-
terances. On the other hand, utterance-level CLIP-
Scores resemble using a highlighter to mark crucial
dialogue parts for the model. Even when CLIP-
Scores are sometimes inaccurate, the model could
still access the full dialogue to help its decisions

3.2 The Full Listener Model

3.2.1 Inputs
An overview of our listener model is depicted in
Fig. 2. Our model operates on three types of input
features, which collectively represent a game round
from one of the players’ perspective:

Dialogue tokens: X = {xk ∈ W |Tk|}Kk=1 (1)

CLIPScores: C = {ck ∈ R6}Kk=1 (2)

Image features: V = {vj ∈ R512}6j=1 (3)

We use k, j to index utterances and images re-
spectively. W is the text token vocabulary, and
Tk = {tk,start, . . . , tk,end} is the corresponding to-
ken timesteps for the kth utterance. To the start
of each utterance, we prepend either a [CLS] or
[SEP] token to distinguish whether it comes from
the player itself or the partner. All utterances are
concatenated to form one text input sequence to
our model.10 CLIPScore vectors (ck’s) are com-
puted in a per-utterance manner, i.e., between one

9i.e., BERTScore & METEOR. Details in Appendix F.
10Average text length (i.e.,

∑
k |Tk|) is about 120 tokens.
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utterance and each of the 6 images. Images are rep-
resented by the pooled11 features from SegFormer
(Xie et al., 2021). It is trained on semantic image
segmentation (Zhou et al., 2017), and hence should
encode crucial visual information for the game, i.e.,
objects in the scene and their spatial relationships.

3.2.2 Labels and Output
Rather than training the model to predict just once
after seeing the entire dialogue, we construct la-
bels for all timesteps, forming a label sequence
yj ∈ LT , where T =

∑
k |Tk|, for each target im-

age, where L is the label set. As there are only
3 target images out of the 6, we also only have 3
such label sequences (yj’s) for a training instance.
At each timestep t, the label of a target image,
yj,t ∈ L, is one of {undecided, common, different}.
It always starts as undecided, changes to common
or different at the moment of player marking action,
and remains there for the rest of the dialogue. Our
model’s output for a (target) image j at timestep t
is hence a distribution ŷj,t ∈ R3, which is a tempo-
rary belief about that image. Also, we apply causal
masking on DeBERTa self-attention. Such a la-
beling and masking scheme creates dense learning
signals—our model must judge an image at every
timestep based on growing dialogue context.

3.2.3 Model Components
The backbone of our model is a pretrained base
DeBERTa (He et al., 2021), which takes in concate-
nated utterances X = {xk ∈ W |Tk|}Kk=1 = {xt ∈
W}Tt=1, and contextualizes them into hidden states:

H(l) = {h(l)
t ∈ Rd}Tt=1 , l ∈ {1, . . . , L} , (4)

where d (= 768) is DeBERTa’s hidden size, and l
is layer index (# layers L = 12). We do not adopt
vision-and-language Transformers (Lu et al., 2019;
Wang et al., 2022) for they are pretrained on ‘sin-
gle image-short text’ pairs, which mismatches our
scenario. Following Wu and Yang (2022)’s recom-
mendation on feeding time-varying conditions to
Transformers, utterance-level CLIPScores (i.e., C)
are projected and summed with DeBERTa hidden
states at all layers:12

H(l) ← {H(l)
Tk = h

(l)
t∈Tk +Wproj ck }Kk=1 , (5)

11Pooling of the 16×16 SegFormer patch features per image
into one involves 2d-conv. downsampling other than taking
the mean, as we also attempt fusing visual context by cross-
attending to patch features. More details in Appendix B.

12Additional experiments in Appendix D shows that feeding
CLIPScore to fewer layers harms the performance.

valid test

Random guess 50.0 50.0
Modified (Takmaz et al., 2020) 64.2 ± 1.7 59.0 ± 0.7

w/ CLIPScore ref chains 65.0 ± 1.4 59.7 ± 0.8
Ours 84.8 ± 1.3 77.3 ± 0.3

a. +VisAttn 75.0 ± 0.6 69.8 ± 3.3
b. −CLIPScore 70.7 ± 1.1 64.8 ± 1.5
c. −CLIPScore +VisAttn 69.8 ± 1.1 64.9 ± 0.4
d. −Dense learning signals 59.4 ± 1.8 55.9 ± 0.9

Human 95.0 94.5

Table 1: Listener model accuracy (%) of baselines and
our model (full & ablated versions). StDev of 3 runs
with fixed seeds shown after ±. Pairwise bootstrap
tests corroborate (p < .001) that our full model outper-
forms all baselines and ablated versions. Human is the
accuracy annotators achieved during dataset creation.
(VisAttn: cross-attention to patch features of 6 context
images.)

where Wproj ∈ Rd×6 is a learnable matrix.
To make predictions, we place a 2-layer MLP

(with GELU activation) on top of DeBERTa. It
takes in the concatenation of the pooled target im-
age features and the last-layer DeBERTa hidden
state, and produces a distribution over the label set
L = {undecided, common, different}:

ŷj,t = MLPR512+d→R3([vj ;h
(L)
t ]) . (6)

We add learnable positional embeddings to vj’s to
make our model aware of the target image’s index.

4 Experiments and Results

Our listener model is trained with the maximum
likelihood estimation (MLE) loss function:

E(X ,C,V,Y)∈Dtrain

∑

j,t

− log pŷj,t
(yj,t | X , C,vj),

(7)
where Dtrain is the training split, and Y is the set
of label sequences associated with a data instance.
The same images/themes are guaranteed not to ap-
pear in multiple dataset splits. We refer readers to
Appendix A for more implementation and training
details. Evaluation metric adopted here is accuracy
measured at the end of dialogue, i.e., at evaluation,
we ignore temporary beliefs in the chat. To set a
baseline, we modify the reference resolution model
in (Takmaz et al., 2020) to suit our listener task.13

Table 1 lists the evaluation results. Our method
outperforms baseline by 17∼20 percentage points,
closing the gap to human performance by more
than half. Examining the ablations, we can observe

13Modification details are in Appendix C.
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that both removing CLIPScore inputs and dense
learning signals (i.e., having labels at all timesteps,
see Sec. 3.2.2) cause serious accuracy degradation,
indicating their essentiality in our model, and that
a pretrained Transformer does not trivially beat a
fully MLP-based baseline. Besides, though adding
cross-attention to image features14 (i.e., ablations
a. & c.) seems to be a more intuitive way to involve
visual context, it leads to more severe overfitting15

and hence does not help in our case. We provide
more detailed observations on our best-performing
model’s behavior and outputs in Appendix G.

5 Conclusions and Future Work

In this paper, we first discussed why it is difficult
to deploy existing reference chain-dependent Pho-
toBook models to real gameplay, and demonstrated
that CLIPScore’s image-text matching capability
may provide implicit reference chains to the task.
We then developed a novel listener model that is
reference chain-free, and able to realistically play
the game given text dialogue and the set of context
images, just as what human players see. The model
is built on a DeBERTa Transformer backbone, and
brings in visual context by infusing utterance-level
CLIPScores with its hidden states. On the newly
proposed full listener task, i.e., predicting whether
an image is shared with partner, our model achieves
77∼84% accuracy on unseen sets of images, sur-
passing baseline (Takmaz et al., 2020) by over 17
points. Ablation studies also showed that feeding
CLIPScores and imposing dense learning signals
are both indispensable to our model’s success.

Future studies may leverage parameter-efficient
transfer learning (He et al., 2022; Houlsby et al.,
2019; Hu et al., 2022; Perez et al., 2018) to cope
with image data scarcity of PhotoBook (and poten-
tially other datasets and tasks). It is also interesting
to develop a speaker model that uses temporary be-
liefs from our listener model and takes pragmatics
(Frank and Goodman, 2012; Fried et al., 2021) into
account to generate informative responses. Pairing
such a model with our listener model may complete
the collaborative dialogue task end-to-end.

6 Limitations

The PhotoBook dataset has a very limited number
of images (i.e., 360) and image combinations (i.e.,

14Cross-attention mechanism explained in Appendix B.
15Likely due to limited dataset size and configuration. More

analysis and exploration can be found in Appendix E.

5 per game theme), which may lead to undesirable
overfitting behavior as we discuss in Appendix E.
Also, since our model depends heavily on CLIP
(Radford et al., 2021), it is likely to inherit CLIP’s
biases and weaknesses. For example, Radford et al.
(2021) mentioned that CLIP fails to perform well
on abstract or more complex tasks, such as count-
ing or understanding spatial relationships between
objects. Finally, whether our listener model can
be easily applied/adapted to productive real-world
tasks (e.g., automated customer service with image
inputs) requires further exploration.
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Appendices

A Details on Model Implementation and
Training

Our listener model’s implementation is based on
HuggingFace’s DeBERTa module.16 The 16×16
(512-dimensional) patch features for each context
image are extracted from last encoder layer of the
publically released SegFormer-b4 model17 trained

16github.com/huggingface/transformers/
blob/main/src/transformers/models/
deberta/modeling_deberta.py

17huggingface.co/nvidia/
segformer-b4-finetuned-ade-512-512
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on ADE20k (Zhou et al., 2017) semantic image seg-
mentation dataset. CLIPScores between utterances
and images are computed using the official repos-
itory18 which employs Vision Transformer-base
(ViT-B/32) (Dosovitskiy et al., 2021) as the image
encoder. Our listener model adds ∼1M trainable
parameters to the 12-layer base DeBERTa back-
bone, which originally has 100M parameters.

We split our dataset to train/validation/test with
a 70/10/20 ratio and make sure that a theme (i.e.,
categories of the 2 largest objects appearing in all
6 context images in a game round), and hence any
image, does not lie across multiple splits. Since a
game round has 2 perspectives (i.e., players), it also
spawns 2 instances. Rounds in which players make
mistakes, or mark images before the first utterance,
are filtered out. We finally obtain 13.7K/1.8K/3.7K
instances for each of the splits respectively.

We train the model for 100 epochs and early stop
on validation accuracy with 10 epochs of patience.
AdamW (Loshchilov and Hutter, 2018) optimizer
with 10−3 weight decay is used. We warm up the
learning rate linearly for 500 steps to 2 × 10−5,
and then linearly decay it to 0 for the rest of the
training. Batch size is set to 16. Training takes
around 8 hours to complete on an NVIDIA A100
GPU with 40G memory. For fair comparison across
model settings and baselines, we randomly draw
3 seeds and run training on all settings/baselines
with them.

B Details on the Attempt to Infuse Visual
Features with Cross Attention

In addition to fusing CLIPScores into DeBERTa
self-attention, we also attempt cross-attending De-
BERTa hidden states to the 6 context images’ Seg-
Former features to incorporate visual information.

We denote the SegFormer patch features by:

V(pt) = {v(pt)
j,p ∈ R512}6, 16×16

j=1, p=1 , (8)

where j, p respectively indexes images and patches.
All image features (16×16×6= 1536 vectors) are
concatenated into one long sequence for the De-
BERTa hidden states (with text & CLIPScore in-
formation) to cross-attend to. As a sequence with
length over 1.5K would lead to large memory foot-
print for attention operations, we downsample the
patch features (to 8×8×6 = 384 vectors) through
strided 2D group convolution before feeding them

18github.com/jmhessel/clipscore

to cross-attention, i.e.,

V̇(pt) = StridedGroupConv2D(V(pt)) (9)

H(l) ← Attention(H(l), V̇(pt), V̇(pt)) , (10)

whereH(l) is the lth-layer DeBERTa hidden states.
The patch features in V̇(pt) are further mean-pooled
to form inputs (for target images), i.e., V , to our
final MLP classifier (please check Eqn. 3 & 6, too):

V = {vj}6j=1 = {MeanPool({v̇(pt)
j,p }8×8

p=1) }6j=1

(11)
In the model settings whose performance is re-

ported in Table 1 (i.e., ablations a. & c.), we place
two such cross-attention layers with tied weights
before all DeBERTa self-attention layers to give the
model more chances to digest and reason with vi-
sual inputs. Doing so introduces 8M new trainable
parameters (cf. ∼1M for our best model). We also
try to place these cross-attention layers later in the
model in unreported experiments. However, when
using visual cross-attention, our listener model al-
ways suffers more from overfitting—lower training
loss but worse evaluation accuracy.

C Adapting Takmaz et al. (2020)’s Model
for Our Listener Task

The reference resolution model in (Takmaz et al.,
2020) contains two components: query encoder
and context encoder:

• Query encoder: takes in BERT embeddings of
a current utterance and the concatenation of 6
context images’ ResNet features, and outputs
one representation through learnable weighted
averaging (across utterance timesteps).

• Context encoder: encodes each of the 6 images
and the associated reference chain (i.e., past
utterances referring to that image) separately.
The average of each reference chain utterance’s
BERT embeddings gets summed with that im-
age’s ResNet features to form the context repre-
sentation for that image.

The model is based on fully-connected layers en-
tirely. Finally, dot products between the query rep-
resentation and 6 context representations are taken,
and the argmax is deemed the referent image of
the current utterance.

To adapt their model to our full listener task, we
feed to the query encoder BERT embeddings of
the whole round of dialogue and ResNet features
of the target image instead. We mean-pool the 6
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Dataset size Inputs Tgt. resolution SoTA E2E performance SoTA techniques

MutualFriends (He et al., 2017) 11K dialogues Text (tabular) Bilateral 96% (He et al., 2017) GNN, LSTM
GuessWhat?! (De Vries et al., 2017) 150K dialogs, 66K imgs Text & image Unilateral 63% (Tu et al., 2021) ViLBERT
OneCommon (Udagawa and Aizawa, 2019) 5K dialogues Text & dots on plane Bilateral 76% (Fried et al., 2021) LSTM, CRF, RSA
PhotoBook (Haber et al., 2019) 12.5k dialogs, 360 imgs Text & 6 images Bilateral No complete system yet ResNet, LSTM

Table 2: Some datasets for collaborative dialogue tasks. Bilateral (or unilateral) ‘Tgt. resolution’ means whether it
requires both (or just one) players to figure out the entities/objects they should focus on. (Performance is measured
by end-to-end task success.)

context encoder representations, concatenate this
pooled representation with the query representa-
tion, and apply a GELU-activated 2-layer MLP
(similar to our model’s) on top of the concatenated
representations to predict whether the target im-
age is common or different. This modified baseline
model can hence be trained using an objective sim-
ilar to our model’s (i.e., Eqn. 7). Note that there is
no dense learning signal for this adapted baseline,
as the representation from query encoder is already
pooled across timesteps.

D Experiments on CLIPScore Injection
Layers

Layers fed valid test

[emb] 72.4 ± 0.7 66.3 ± 0.5

[emb, 1st] 78.7 ± 1.4 71.9 ± 1.6

[emb, 1st∼5th] 82.2 ± 1.0 76.5 ± 1.1

[4th∼9th] 82.7 ± 0.7 76.1 ± 0.6

[7th∼12th] 83.0 ± 0.6 75.9 ± 0.6

All layers 84.8 ± 1.3 77.3 ± 0.3

w/o CLIPScores 70.7 ± 1.1 64.8 ± 1.5

Human 95.0 94.5

Table 3: Accuracy (%) of our listener model with CLIP-
Scores fed to various layers. StDev of 3 runs with spe-
cific random seeds shown after ±.

Wu and Yang (2022) maintained that feeding time-
varying conditions to Transformers more times
over the attention layers enhances the conditions’
influence, and hence improves performance. There-
fore, we choose to infuse CLIPScores with De-
BERTa at all attention layers by default. Table 3
shows the performance when we inject CLIPScores
to fewer layers. As expected, the more layers CLIP-
Scores are fed to, the better the performance (6
layers > 2 layers > 1 layer, all with p < .01). Yet,
infusing at earlier or later layers (3rd ∼5th columns
in Table 3) does not make a meaningful difference.

val (I) val (P) test (I/P)

Full model 63.7 97.4 71.2 / 76.6
b. −CLIPSc 58.6 91.7 63.8 / 63.6
c. −CLIPSc +VisAttn 57.4 99.1 63.9 / 57.2

Table 4: Accuracy (%) with repartitioned train/val sets.
Test sets (I)/(P) are identical and are the same as the
one used in Tables 1 & 3. They are meant to report test
accuracy under (I)/(P) partitioning. All results are from
the same random seed.

E Experiments on Overfitting Behavior

Haber et al. (2019) stated that to collect a sufficient
number of reference chains for each game theme,
only 5 unique combinations (of two sets of 6 im-
ages) were picked and shown to the players.19 This
number is drastically smaller than the total # of pos-
sible combinations. (Suppose we want the players
to have 2∼4 images in common, then there would
be

(
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)
+
(
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9
3

)
+
(
12
6

)(
6
4
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8
2

)
≈ 4.85M

combinations.) Also, we observe that models with
full access to image features (i.e., those with visual
cross-attention) exhibit worse overfitting. Hence,
we suspect that our model overfits to specific im-
age combinations, i.e., memorizing the labels from
them. To test this hypothesis out, we repartition
our train & validation sets such that a game theme
appears in both sets, but in two different ways:

• train/val (I): val set has unseen image combina-
tions, but seen pairs of players

• train/val (P): val set has unseen pairs of players,
but seen image combinations

The test set is left unchanged. We train the models
for 50 epochs without early stopping here.

Performance resulting from these repartitions is
shown in Table 4. The numbers support our hypoth-
esis in general. Across different settings, our model
does almost perfectly when an image combination
(and hence the correct common/different answers)
is seen during training (i.e., val (P)), and fails when
being presented with a new image combination of a

19in the 5 rounds of a game with randomized order
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seen game theme. As anticipated, the accuracy gap
is the worst when visual cross-attention is added.
Moreover, it is worth mentioning that our models
perform even worse on ‘seen images, unseen image
combination’ (i.e., val (I)) than on ‘unseen images’
(i.e., test set). Therefore, we conjecture that, with
such a limited number of images and image com-
binations, it becomes trivial for deep models to
exploit the (prescribed) relationships between in-
puts and labels, hindering the desirable learning
goal—knowing the differences across similar im-
ages, and identifying crucial ones for the predictive
task with the help of dialogue. This is a major
limitation of the PhotoBook dataset.

F The (Imperfect) Reference Chain
Extraction Process

Previous works on reference resolution (Haber
et al., 2019; Takmaz et al., 2020) require extracted
reference chains for training and evaluation. We re-
run experiments for the reference resolution model
in (Takmaz et al., 2020) and get an 85% accuracy
(on reference resolution, not our full listener task),
which is similar to the reported number. Upon
examining the predictions, we find that 9 out of
10 wrong predictions (w.r.t. extracted labels) with
the highest confidence are caused by problematic
input data/labels resulting from reference chain ex-
traction. These cases are either due to mislabeled
ground truth (while the model actually makes a
reasonable prediction), low-quality utterances that
provide vague or irrelevant information, reference
chains not consistently pointing to one image, or a
mix of all the above. Table 5 presents some exam-
ples.

G Further Observations on Our Listener
Model Behavior and Outputs

First, we are interested in how characteristics of
those R6 CLIPScore vectors might influence our lis-
tener model’s decisions. As mentioned in Sec. 3.1,
an image tends to get a much higher CLIPScore
when being spoken about by the utterance. There-
fore, we look at the 3 CLIPScore vectors per round
with the largest difference between highest and
2nd-highest CLIPScore values.20 We then group
rounds (in test set) according to whether the model
predicts all 3 target images correctly as common

20A player has to deal with 3 images per round, and we ob-
serve that in most cases, there is one utterance talking specifi-
cally about each image.

or different.21 For the all-correct cases, the dif-
ference between the top two values in the CLIP-
Score vectors (3 per round, as said above) has a
mean= 0.112 (std= 0.063), whereas in the cases
where the model makes one or more mistakes, the
mean is 0.101 (std= 0.062). Unpaired t-test indi-
cates a significant difference (p < .001) between
the pair of statistics. This suggests a possibility that
our model works better when CLIPScores contrast
different images more clearly.

Next, we inspect the cases where our model pre-
dicts all 3 target images incorrectly. Out of 111
such rounds, 72 are concentrated in two themes,
i.e., cup & dining table, and car & motorcycle. Im-
ages in the two themes are usually more difficult
to be told apart. Human players also score a lower
94.1% accuracy on either of the two themes, com-
pared to the 95.3% overall, and 94.5% over the
test set. Table 6 displays two examples of such
all-wrong rounds (respectively from cup & dining
table and car & motorcycle game themes). In the
first example, target images 1 and 2 are highly sim-
ilar such that player used ‘sandwhich’ and ‘mug’
to describe both of them. In the second example,
apart from similar images, multiple questions were
thrown at the same time and answered as many as
4 utterances later. Typos (e.g., sandwhich, vlack)
and automatically filtered words (e.g., m**fin) may
also confuse the model. However, we note that
with so many inputs (i.e., text, CLIPScores, pooled
target image feature) to our listener model, it is not
straightforward to figure out the actual causes of
wrong predictions.

21The model gets 1.7K out of 3.7K samples entirely cor-
rectly, while the rest have 1∼3 wrong predictions.
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“Mislabeled” ground truth and 
“correct” prediction

Not enough 
information in an 
utterance 

Correct label but 
wrong prediction

Reference 
Chain

● guy riding 
biycle with red 
stripped bicyle

● No sharkboard 
guy

● guy on bike 
with red striped 
board

● My last on is a 
family sitting at 
a gray table next 
to some steps

● I don't have that 
one 

● A man M on his 
shirt

● does he have 
gla*ses and and 
is the elephant a 
statue 

N/A

Utterance I have two kids, 
one holding a red 
surfboard.

guy in a grey shirt 
with laptop

 Yes. two phones on red 
laptop

Probability 29.98% 29.69% 28.71% 28.63%

Ground-truth

Prediction

person_surfboard/COCO_train2014_00
0000515743.jpg

couch_dining_table/COCO_train2014_0
00000580057.jpg

person_elephant/COCO_train2014_000
000065220.jpg

dining_table_laptop/COCO_train2014_
000000468357.jpg

Table 5: Examples of wrong predictions with the highest confidence by the reference resolution model proposed in
(Takmaz et al., 2020). Most of these cases can be attributed to errors arising from reference chain extraction. The
‘Utterance’ input is actually the latest utterance in an extracted reference chain. ‘Probability’ means the probability
assigned to the predicted image.
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Context and Target Images Utterances Labels and Predictions

• A: I need to get my eyes
checked lol

• A: Okay so same english
m**fin sandwhich

• A: green tea mug
• B: Nope
• A: okay and I have the half

keyboard latte one
• B: yes
• A: and the last one.. idk
• A: it’s a sandwhich but it

looks like a mess
• A: there is a black mug in

the bottom left corner
• B: Yup and something blue

to the top left and striped to
the top right? I have that

• A: yeah that’s it
• A: that’s all I have
• B: Do you have the donut,

with the blue mug and
red/white staw?

• A: nope
• B: All done here too!

True labels:
• Tgt. Image 1: Different

• Tgt. Image 2: Common

• Tgt. Image 3: Common

Model predictions:
• Tgt. Image 1: Common

• Tgt. Image 2: Different

• Tgt. Image 3: Different

• B: I have the checkered
shirt guy. do you have him?

• A: do you have man vlack
jacket and helmet next to
silver car ?

• A: Yes i do have the check-
ered shirt

• B: Is that the one at a gas
station

• A: no its on a street
• B: oh then I don’t have it
• A: do you have red parked

motorcycle in fornt of black
car ?

• B: Do you have one with
a guy on a motorcycle in
front of a gas station?

• B: Yeah I have that one
• A: no i do not have gas sta-

tion
• B: ok I’m set
• A: me too

True labels:
• Tgt. Image 1: Common

• Tgt. Image 2: Common

• Tgt. Image 3: Different

Model predictions:
• Tgt. Image 1: Different

• Tgt. Image 2: Different

• Tgt. Image 3: Common

Table 6: Selected examples on which our best-performing listener model predicts all 3 target images wrong. Both
examples are from player A’s view. Indices of target images are marked in red in the image’s lower-right corner.
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