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Abstract

Evaluating grounded neural language model
performance with respect to pragmatic quali-
ties like the trade off between truthfulness, con-
trastivity and overinformativity of generated ut-
terances remains a challenge in absence of data
collected from humans. To enable such evalua-
tion, we present a novel open source image-text
dataset “Annotated 3D Shapes” (A3DS) com-
prising over nine million exhaustive natural lan-
guage annotations and over 12 million variable-
granularity captions for the 480,000 images
provided by Burgess and Kim (2018). We
showcase the evaluation of pragmatic abilities
developed by a task-neutral image captioner
fine-tuned in a multi-agent communication set-
ting to produce contrastive captions. The eval-
uation is enabled by the dataset because the
exhaustive annotations allow to quantify the
presence of contrastive features in the model’s
generations. We show that the model devel-
ops human-like patterns (informativity, brevity,
over-informativity for specific features (e.g.,
shape, color biases)).

1 Introduction and Related Work

In human communication, language is rarely used
as a unimodal channel; rather, language is mostly
used in reference to the surroundings, i.e., it is
grounded in the physical world. Thus, in order
to build artificial agents that could be potentially
employed in scenarios requiring natural communi-
cation with humans, it is crucial to develop ap-
proaches for training such agents to communi-
cate about the world in a human-like way (Lake
et al., 2017). However, automatically evaluating
the human-likeness of a trained system without
costly human feedback is a recurring problem in
NLP.

In this paper, we set out to provide tools for eval-
uating human-like pragmatic abilities of grounded
models and evaluate a model trained interactively
via reinforcement learning, which is commonly

suggested to give rise to task-oriented behavior
(Lazaridou and Baroni, 2020).

Grounding of neural language models has been
advanced greatly in recent years through image
captioning models. Starting with the work by
Vinyals et al. (2016) and Karpathy et al. (2014),
neural encoder-decoder architectures have been
dominating the field, recently extending to unified
architectures (Zhou et al., 2020). However, these
approaches are task neutral, i.e., the models are
trained to produce generally true image captions.

In contrast, humans are highly flexible and prag-
matic in their use of language and, e.g., adapt the
granularity of their utterances to the requirements
of the communicative task (Searle, 1969). It is gen-
erally guided by conversational maxims, suggest-
ing that cooperative speakers should only provide
as much information as required in a given con-
text, be truthful, relevant, and brief (Grice, 1975).
Therefore, faced with a simple referential task of
picking out a target item among an array of dis-
tractors, humans tend to mention contrastive fea-
tures of the target (e.g., Kramer and van Deemter,
2012), i.e., the ones setting it apart from distrac-
tors. On the other hand, biases towards produc-
ing shape and color descriptions even when these
aren’t contrastive have been identified (e.g., De-
gen et al., 2020). For grounded language models,
the underlying pragmatic reasoning formalized as
nested Bayesian inference about the behavior of
speakers and listeners (Goodman and Frank, 2016)
inspired decoding schemes applied on top of stan-
dardly trained models (e.g., Cohn-Gordon et al.,
2018; Zarrieß et al., 2021; Shen et al., 2019; Vedan-
tam et al., 2017; Andreas and Klein, 2016).

However, evaluating the pragmatic qualities of
models’ predictions when they are applied to spe-
cific tasks (e.g., referential tasks) remains a chal-
lenge. Currently standard metrics like BLEU-n,
ROUGE, CIDEr and METEOR (Papineni et al.,
2002; Banerjee and Lavie, 2005; Vedantam et al.,
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Figure 1: Example image pair matching on five features
(left: red, right: purple ball), left image is target. Ex-
ample exhaustive ground truth caption for target: “A
tiny red ball near the right corner in front of a light
green wall on green floor.” Example short ground truth
caption: “A ball on green floor.” Contrastive caption
predicted by RP model: “A tiny red ball green near the
floor in green of”.1

2015; Lin, 2004) for evaluating models’ genera-
tions make reference to the surface form of ground
truth image annotations. They cannot provide in-
sight into models’ mechanics and possible biases
based on context-dependent functional aspects like
mentioning contrastive features or being overinfor-
mative. Given that model predictions might not
always be syntactically well-formed and yet still
count as functionally expedient for a human (e.g.,
see Fig. 1), evaluating pragmatic aspects of natural
language image captions is important. We propose
a new dataset and metrics facilitating such evalua-
tion in the next sections.

2 Methods

2.1 A3DS
To enable such evaluation, we provide novel an-
notations for the dataset 3DShapes (Burgess and
Kim, 2018) (introduced in Kim and Mnih (2018))
in the “Annotated 3D Shapes” (A3DS) dataset. The
image dataset consists of 480,000 unique images
of 3D geometric objects, constructed by varying
six features (×number of distinct feature values):
shape type (×4), shape color (×10), shape scale
(×8), shape orientation relative to the background
(×15), wall color (×10) and floor color (×10). For
each image, two sets of ground truth captions were
generated: exhaustive captions mentioning all six
features and their values, and short captions, men-
tioning two or three features of the image only (see
example annotation in Fig. 1). The captions were
constructed with a hand-written grammar from the
numeric labels shipped with the original dataset.

1The last token was predicted nine times. This shows how
the caption can be contrastive for the given task inspite of
surface form artefacts.

For each distinct feature value, different natural
language descriptions were created. In total, over
nine million exhaustive captions and 12 million
short captions are released as part of this work.2

The important advantage of this synthetic dataset
for investigating referential language use of mod-
els trained on it is that the numeric labels allow
to easily identify contrastive versus redundant fea-
tures of the target image in any given context of
distractor images. Furthermore, training with fully
exhaustive captions allows to focus evaluations on
models’ contrastive abilities, excluding insufficient
granularity of training data as a potential reason for
a system’s failure to be contrastive.

Because all natural language expressions for
each label are known, it is possible to compre-
hensively evaluate model predictions by-feature.
Predictions of fine-tuned models which may devi-
ate from ground truth captions in their surface form
(e.g., due to language drift; see, e.g., Lazaridou
et al. (2020)) can also be evaluated. We consider
a caption contrastive if at least one of the known
contrastive features for a given context (target and
distractors) is mentioned in the target’s description.
For contrastive color features, a caption is consid-
ered contrastive if it mentions the respective color
irrespective of other mentioned aspects, if the color
is unique for the target. If several features in the
target image have the same color, the description
is considered contrastive only if the color name
occurs together with the correct head noun (e.g.,
"floor", "wall", object shape). For other contrastive
features like shape, the respective expression (e.g.,
"ball", "in the left corner") has to literally occur in
the generated caption. For the example, in Fig. 1,
we were able to identify that the caption is con-
trastive because the contrastive feature is the red
color of the ball in the target image (left), there is
only one red feature in the target image, and the
generated caption contains the term "red".

We suggest informative metrics for evaluating
pragmatic abilities of models on this dataset in the
next section.

2.2 Evaluation Metrics

The metrics are informed by notions that are con-
sidered important in the cognitive science literature
for cooperative and efficient pragmatic communi-

2https://tinyurl.com/2p8w6rct. The repository also
contains endpoints for running model evaluations described
in the next section and a sandboxed version of the dataset and
the pretrained model for easy exploration.
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cation (e.g., Grice, 1975) and used commonly in
the literature on computational generation of refer-
ring expressions (e.g., Kramer and van Deemter,
2012). In the context of a reference task, we de-
fine pragmatically relevant categories of features a
model might mention. Given a target and distractor
image, each feature falls in one of the following
three categories:

• Contrastive feature: true of target and false of
distractor.

• Non-contrastive feature: true of both the tar-
get and the distractor, and, therefore, redun-
dant for the purpose of reference.

• False feature: false of the target.

From these categories, we derive the following met-
rics (higher values are better), where c is the num-
ber of contrastive features mentioned in a generated
caption y, k is the total number of features men-
tioned in y, and z is the ground truth number of
contrastive features between the images:

• Discriminativity d: d = 1 if c > 0 else 0, indi-
cating if the caption successfully identifies the
target, thus a binary measure of task success.

• Contrastive efficiency e (applies only to dis-
criminative captions, i.e., for d = 1): e = 1
if k = c = 1, else: e = 1 − c−1

k−1 , indicating
whether the description avoids overmodifica-
tion with contrastive features. This notion
captures the extent to which the caption is
economic and observes the communicative
Maxim of Quantity, i.e., includes necessary
details for the task but not more (Grice, 1975).

• Relevance r: r = 1 − k−c
6−z , indicates the

propensity to avoid producing redundant non-
contrastive features. This is formalized via the
proportion of mentioned non-contrastive fea-
tures (k − c) compared to all non-contrastive
features (6 − z). It represents the commu-
nicative Maxim of Relevance (Grice, 1975)
by measuring the degree to which details un-
necessary for the task are excluded.

• Optimal discriminativity od: od = 1 if c = 1
else 0. It is a binary indicator summarizing
d and e, by binarizing the observance of the
Maxim of Quantity for contrastive captions
only (Grice, 1975).

In the next section, we showcase how these metrics
can be applied in order to evaluate the development
of pragmatic abilities of an image captioner through
fine-tuning in an interactive setting.

2.3 Experiment

The multi-agent communication setting wherein
the image captioner is trained as the sender agent
together with an artificial receiver agent to com-
plete a communicative task (e.g., reference game)
allows to fine-tune the sender’s captioning behav-
ior based directly on task performance, e.g., via
deep reinforcement learning (e.g., Lazaridou et al.,
2020; Lazaridou and Baroni, 2020; Lazaridou et al.,
2016; Havrylov and Titov, 2017), without making
use of a supervised task specific dataset. Applied
to the reference task, the idea is that the sender
agent will learn to produce more contrastive de-
scriptions which are helpful for the receiver to com-
plete the task. Lazaridou et al. (2020) compare
sender agent architectures in terms of their task-
specific improvement, but they do not investigate
properties like overinformativity that might have
emerged during the multi-agent training.

To investigate these potentenial effects, follow-
ing the “multi-task learning” training regime from
Lazaridou et al. (2020) we pretrained a baseline
image captioner (B) on 150,000 image-exhaustive
caption pairs constructed from 30,000 images sam-
pled from A3DS. It was then fine-tuned on another
150,0000 pairs on a reference game together with a
listener agent. In the reference game, both agents
received concatenated pairs of images i = [i1; i2],
where it, t ∈ {1, 2} was the target known only to
the sender. The sender was trained to produce a
description of the target, so that the listener guesses
the target correctly, given the same images in ran-
domized order. The sender received the reward
r = 1 if the guess was correct, and r = −1 other-
wise. Both the sender and the listener consisted of
a pretrained ResNet-50 image encoder which was
not fine-tuned during the reference game, and a
trainable linear layer projecting the ResNet image
features to 512-dimensional features. These were
input into one-layer LSTM language modules with
the hidden layer size h = 512. Further architec-
tural and training details followed Lazaridou et al.
(2020).3

We trained two sender-agent pairs in the refer-
ence game setting: in the random pairs setting (RP),

3The weight λs for the speaker loss was set to 0.75.
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one feature two features three features

Score B RP SP B RP SP B RP SP

Discriminativity 0.999 0.822 0.824 0.997 0.576 0.586 0.984 0.527 0.541
Contrastive efficiency 0.198 0.879 0.875 0.203 0.963 0.955 0.251 0.856 0.875
Relevance 0.150 0.668 0.640 0.162 0.522 0.521 0.149 0.684 0.665
Optimal contrastivity 0.014 0.457 0.452 0.039 0.485 0.476 0.148 0.335 0.367
Mentioned features # 5.880 2.944 3.125 5.871 2.950 3.133 5.876 2.955 3.135
Listener accuracy — 0.919 0.895 — 0.887 0.900 — 0.862 0.860

Table 1: Pragmatic evaluation results by test set category for each model (B: pretrained baseline, RP: random pairs
fine-tuning, SP: similar pairs fine-tuning), averaged across test sets within category. Bold numbers indicate best
performance across models and test sets.

Figure 2: Generation proportions of each feature (x-axis) when it was non-contrastive for each model (color) by test
category (facets). Generation proportions of all features for the baseline (not shown) are at ceiling on all test sets,
except for the scale category being at around 0.9 due to a tokenization glitch.

the agents saw pairs of (distinct) images selected
at random. In the similar pairs setting (SP), they
received images which had at least three overlap-
ping features (e.g., target and distractor depicted
the same shape of the same color with background
of the same color).4

3 Results

The agents were evaluated on three categories of
test sets, each set containing 7500 image pairs. In
the one-feature category, six sets were constructed
where test pairs matched at least on one of each
possible features. The two-features category in-
cluded three sets of pairs matched on at least two
object features and a set with two random match-

4The speaker included ≈5.3M, the listener ≈2.15M train-
able parameters. Pretraining for 10 epochs took around 10h,
fine-tuning for 5 epochs—20h/model on NVIDIA A40 GPU.

ing features. The three-features category included
sets where at least all object features, all back-
ground features, or three randomly sampled fea-
tures matched. These sets allowed to evaluate in
which conditions it was more difficult for the sender
to produce appropriate captions. In the following,
the fine-tuned sender models (RP and SP) are com-
pared to the baseline model (B), which is the pre-
trained task-neutral image captioner. The average
number of falsely named features was 0.720 for
baseline, 0.139 (RP) and 0.316 (SP). Table 1 shows
listener test accuracies on all test splits, showing
that the agents successfully learned the reference
task (0.5 is chance). In terms of discriminativity
d, it was more difficult for the fine-tuned models
to identify the correct feature when two or three
features were identical across the pair (Table 1).
These average difficulties were driven by the fail-
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ure on test sets where the non-contrastive features
included shape (e.g., a pair showing a red vs. a blue
block), indicating that the shape was easiest to pick
up on for the models, although all features were
mentioned in all training captions. For instance, d
was 0.750 for SP on the object color-scale matched
test set, and 0.724 on the random two-feature test
set, but 0.501 on the shape-object color matched set.
The discriminativity on random and background
feature matched three-feature test sets was 0.618
| 0.875 (RP) and 0.854 | 0.605 (SP), while it was
only 0.087 (RP) and 0.164 (SP) on the object fea-
ture matched test set.

The better contrastive performance of the base-
line came at a cost of generally overmodifying
the messages with contrastive features (see low
contrastive efficiency, Table 1). Low relevance
scores also show that the baseline did not identify
functionally appropriate features well. In contrast,
both fine-tuned models showed higher contrastive
efficiency and relevance, indicating that the task
based fine-tuning might have helped the models
to learn contrastiveness. The fine-tuned models
also showed higher optimal constrastivity which
is, however, still far from perfect. In general, no
qualitative differences between the two- and three-
feature datasets or RP and SP settings are apparent.

Figure 2 shows how frequently the models’ pre-
dictions mentioned a specific feature when it was
contrastively irrelevant (i.e., it zooms in on predic-
tions where r < 1). For the fine-tuned models, it
suggests potential biases towards redundantly pro-
ducing object-related features (shape, scale, color
of object), matching human biases (see Section 1),
as opposed to background descriptions. The pro-
portions slightly increase for object color and scale
in the two- and three-feature test sets, potentially
hinting at overmodification as the model’s loop-
hole behavior in a more complex setting. The SP
model has a stronger redundancy propensity than
RP. The apparent trend towards mentioning shape
is in line with the pattern of discriminativity results
described above where models relied on the shape
being the discriminative feature between target and
distractor.

4 Conclusion

We provide the A3DS dataset alongside evaluation
metrics for investigating referential pragmatic abili-
ties acquired by grounded language models on this
dataset. With this dataset, we identify that an im-

age captioner fine-tuned interactively via reinforce-
ment learning developed a strikingly human-like
shape bias, while being less overinformative than
a task-neutral model. Future research could ex-
pand such evaluations by including metrics which
investigate additional aspects that might matter to
human referential expression generation (e.g., the
current metrics are agnostic to the surface order of
discriminative features, while humans have prefer-
ences towards certain adjective ordering; Scontras
et al. (2017)). Although these results are specific
to the given architecture, with this work we hope
to inspire research opening up black box language
models—an important task in the age of LLMs.

Limitations

The identified tendencies towards mentioning
object-related features and the reliance on the shape
as a contrastive feature might be driven by the gram-
matical structure of the annotations, mostly pre-
senting object features in sentence-initial subject
position, although 40% of exhaustive captions men-
tion either the scale or the object color as the last
word in the sentence. Therefore, these results call
for investigating the biases of model architectures
less sensitive to sentence length than LSTMs, as
well as extending the annotations with additional
grammars. Further, this evaluation provides de-
scriptive results of the models’ pragmatic abilities,
leaving the question of whether it is indeed a prag-
matic inductive bias or, e.g., structural language
drift (Lazaridou et al., 2020) causing the observed
patterns, unanswered. Finally, since the evalua-
tion pertains to the surface form of the predictions,
applying decoding schemes other than greedy de-
coding used in this work might provide different
patterns, indicating to which degree potential bi-
ases are due to model mechanics in opposition to
sampling parameters.
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The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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C �3 Did you run computational experiments?
2.3

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
2.3

�7 C2. Did you discuss the experimental setup, including hyperparameter search and best-found hyper-
parameter values?
No hyperparameter search was conducted. Since the computational experiment architecture repli-
cates existing cited work, parameters reported there or single selected parameters were used.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
3

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
The used Spacy model is reported in the supplementary online repository documentation exposing
the newly created resource.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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