Towards Adaptive Prefix Tuning
for Parameter-Efficient Language Model Fine-tuning

Zhen-Ru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu Wang,
Jun Huang, Songfang Huang
Alibaba Group
{zhangzhenru.zzr,chuanqi. tcq, shuofeng. xhy}@alibaba-inc.com
{chengyu.wcy, huangjun.hj, songfang.hsf}@alibaba-inc.com

Abstract

Fine-tuning large pre-trained language mod-
els on various downstream tasks with whole
parameters is prohibitively expensive. Hence,
Parameter-efficient fine-tuning has attracted at-
tention that only optimizes a few task-specific
parameters with the frozen pre-trained model.
In this work, we focus on prefix tuning, which
only optimizes continuous prefix vectors (i.e.
pseudo tokens) inserted into Transformer lay-
ers. Based on the observation that the learned
syntax and semantics representation varies a lot
at different layers, we argue that the adaptive
prefix will be further tailored to each layer than
the fixed one, enabling the fine-tuning more
effective and efficient. Thus, we propose Adap-
tive Prefix Tuning (APT) to adjust the prefix
in terms of both fine-grained token level and
coarse-grained layer level with a gate mech-
anism. Experiments on the SuperGLUE and
NER datasets show the effectiveness of APT.
In addition, taking the gate as a probing, we
validate the efficiency and effectiveness of the
variable prefix.

1 Introduction

Vanilla fine-tuning strategy usually adjusts all the
parameters to adapt the pre-trained language model
to downstream tasks. Parameter-efficient learning
(He et al., 2022; Houlsby et al., 2019; Lester et al.,
2021; Guo et al., 2021; Ben Zaken et al., 2022) is
an emerging framework that freezes the pre-trained
model and only tunes a few number of task-specific
parameters for downstream tasks. For instance,
Prefix tuning (Li and Liang, 2021; Liu et al., 2022)
prepends length-equivalent pseudo prefix tokens,
i.e. continuous task-specific vectors to each layer of
the pre-trained model, achieving comparable even
superior performance with only 0.1-3% parameters.

In previous works, the length of prefix tokens
(or the number of trainable parameters) is usually
the same at each layer. However, a potential ob-
servation lies in that the structure information and

4

Lx Add & Norm

Feed Forward

Q000 E00000)

il) I Gated Weight «;

000(=00000) e

Prefix Input

Add & Norm

Multi-Head Attention

II

Hidden States

Figure 1: An illustration of the proposed approach APT
where the left is the internal structure of Transformer
with inserted prefixes, and the right is the schematic of
prefix gate mechanism.

representational capacity embedded in each layer
are prone to be inconsistent (Jawahar et al., 2019).
It is generally considered that the bottom layers of
the language model tend to capture concrete and
shallow phrase-level features, while the top layers
concerns more with abstract semantic information
(Tenney et al., 2019). Based on the perspective, we
assume adaptive prefix can grab the emphasis more
flexibly to adapt to various downstream tasks.

In light of above motivation, we investigate the
adaptive prefix in this work. We propose Adaptive
Prefix Tuning (APT) with an adaptive gate mech-
anism at both fine-grained token level and coarse-
grained layer level. Specifically, as shown in Fig-
ure 1, for fine granularity, APT scores each individ-
ual prefix token via gated weight assignment. Then,
the scaled weight is utilized to balance the inserted
task-specific prefix tokens and original input tokens
for current layer at coarse-grained level.

Extensive experiments against prefix tuning on
the sentence and token classification tasks in full
data and low resources setting validate the effec-
tiveness of APT. In addition, the gate learned from
APT could be served as a probing for the number
of necessary parameters in different layers, guiding
us to directly apply variable prefix to the origi-
nal prefix tuning. The probing experiment further
demonstrates the effectiveness of adaptive prefix.

1239

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1239-1248
July 9-14, 2023 ©2023 Association for Computational Linguistics

2 Related Works

Since fine-tuning the whole model is prohibitively
expensive, parameter-efficient language model fine-
tuning becomes a lightweight alternative that only
optimizes a small number of parameters while keep-
ing most pre-trained parameters frozen (He et al.,
2022). Adapter tuning (Houlsby et al., 2019) in-
serts two tunable task-specific modules after multi-
head attention and feed-forward network, achieving
comparable performance with only 2-4% of the pa-
rameters. Prompt tuning (Lester et al., 2021) and
Prefix-Tuning (Li and Liang, 2021) only train soft
prompts by adding prefix tokens to the input or
hidden states. Recently, Liu et al. (2022) extend
the prefix tuning to the natural language under-
standing tasks, which matches the performance of
fine-tuning with only 0.1%-3% tuned parameters.
Furthermore, with an overlap of our motivations
that each layer of the pre-trained language model
focuses on different aspects of feature for various
tasks (Jawahar et al., 2019; Clark et al., 2019b) and
extra parameters are probably not necessary for cer-
tain tasks (Houlsby et al., 2019; Fan et al., 2020;
Riicklé et al., 2021), Adaptable Adapters (Moosavi
et al., 2022) selects beneficial adapter layers and
learns task-specific activation function for down-
stream tasks to make adaptor dynamic for each
task and layer. In addition to different frameworks
(adapter versa prefix tuning), our key difference
from their work lies in that we aim to dynamically
filter required information at each layer in a soft
way, while they choose whether to add trainable
modules at the layer level in a hard manner.

3 Methodology
3.1 Prefix Tuning

As prefix tuning is an extension on Transformer
(Vaswani et al., 2017), we first recap the structure
of Transformer. Transformer is the block consist-
ing of multi-head attention concatenated by multi-
ple single self-attention functions and a fully con-
nected feed-forward network. Formally speaking,
the Transformer block is calculated as follows:

T

Attn(Q, K, V') = softmax(ng

V) M

Prefix tuning prepends pseudo prefix tokens
of length [to each layer of the language model,
which is implemented by concatenating inserted

keys and values matrix with original corresponding
items in each multi-head attention. Specifically, let
P, P, € R*? be the keys and values of the en-
gaged prefix separately, where [denotes the length
of prefix and d corresponds to the dimension, thus
self-attention function can be reformatted as:

QKT _,
-V 3

Vd) ®
where K' = [Py; K], V' = [Py; V]

Attn(Q, K', V') = softmax(

Here, [;] donates concatenation function.

3.2 Adaptive Prefix Tuning

The length of prefix is usually a manually set hyper-
parameter for each task and fixed in distinct layers
of the model. However, existing work demonstrates
each layer of the language model pays attention to
different aspects of the input feature. We assume
the prefix in fixed length is insufficient to tailor dif-
ferent layers and tasks. To dynamically customize
the prefix at each layer, APT performs a gate mech-
anism via fine-grained gated weight assignment
and coarse-grained scaled weight specification.

Specifically, to capture the diversity of informa-
tion utilization at different layers, we go deep into
the token level at the fine-grained granularity. The
token-level gate can inspire us on how many train-
able parameters (i.e. pseudo tokens in prefix tun-
ing) are required for this layer, which will be dis-
cussed in Section 4.4. Thus, APT yields the gated
weights of [pseudo tokens at each layer. We use
the hidden states to represent the information en-
coded in the layer and calculate the gated weights
a; = [ay1, a4, . . ., ayy] for i-th layer as:

a; = sigmoid(h;_1W;) 4)

Here, h;_q is the d-dimensional hidden states from
the previous layer, and W; € R?*! corresponds to
the parameters to be learned.

Besides, we also design a coarse-level gate to
balance the information brought from task-specific
prefix tokens and original input tokens by learning
a layer-level weight. A learnable scaled weight
A; is added to the representation of pseudo prefix
tokens at the ¢-th layer.

With the above strategy, the keys-values pair
P; = [Py, Py,| derived from pseudo prefix tokens
in i-th layer is updated to P; as:

P, = \a; ® [Py, Py,)

1240

Model SuperGLUE NER
BoolQ COPA RTE WiC WSC Avg. CoNLLO3 CoNLL0O4 OntoNotes Avg.
FT 729 670 684 7L1 635 686 - - - -
ﬁﬁgﬁ;’a“ PT.2 725 614 713 695 654 692 893 82.6 87.1 86.3
APT 726 700 727 712 669 707 897 84.1 872 870
BERT-laree FT 777 690 704 749 683 721 928 85.6 892 892
o PT2 758 730 783 751 683 741 902 84.5 864 87.0
APT 760 790 794 751 702 759 907 85.8 886 884
RoBRETwlree FT 869 940 866 756 635 813 926 88.8 898 904
vy TS P2 sas 930 895 734 635 808 928 88.4 808 903
APT 848 940 899 746 683 823 927 89.0 898 905
FT - - - - - - 93.1 89.1 904 909
]()721(3)1541§Ta-xlarge PT.2 -)) ;]) 93.1 86.5 904 900
APT - -] -]] 93.0 89.1 905 908

Table 1: The results on SuperGLUE development set and NER test set in full data setting. The metric of SuperGLUE
is accuracy and other is micro-f1 score. Results for FT and PT-2 on BERT-large, RoBRETa-large and DeBERTa-
xlarge are token from (Liu et al., 2022). Results for FT on BERT-base are from (Liu et al., 2021). (FT: vanilla
fine-tuning; PT-2: P-Tuning v2; APT: Adaptive Prefix Tuning; bold: the best score; underline: the second best)

Setting Method BoolQ COPA RTE WiC WSC Avg.
FT 472+5 54065 49427 50323 46265 494
%‘fé{ﬁiﬁe PT.2 52470 54235 50851 482s5 485,53 508
APT 55765 574sr 53044 53790 55255 55.0
FT 57307 52024 495.7 50000 38722 495
Bﬁﬂﬁfﬁe PT.2 50357 58255 49954 49355 48140 512
APT 51755 60065 539.c 51.8:5 55405 54.6
FT 48.100s 52264 4957 49400 60455 519
B(I;:zR_TSﬁ’;;e PT.2 50.1ss 55030 53854 52041 5lS5.i6 525
APT 535.5 57600 565.6 54850 5466, 554
FT 476110 45056 48425 50000 473132 476
Bg‘;:ﬁf‘;g" PT.2 4555, S74so S1323 53321 46071 50.7
APT 499, 62050 55555 549,5 49.0,, 543

Table 2: The mean,;; experimental results within 5 random seeds on SuperGLUE development set in 16-shot and
32-shot setting where all metrics are accuracy. bold: the best score.

© is the element-wise multiplication. Accordingly,
the calculation of the self-attention function in APT
is similar to Eq.(3) without further elaboration.

4 Experiments

4.1 Experimental Setup

We conduct 5 NLU tasks on SuperGLUE (Wang
et al., 2019) benchmark including BoolQ (Clark
et al.,, 2019a), COPA (Roemmele et al., 2011),
RTE (Wang et al., 2018), WiC (Pilehvar and
Camacho-Collados, 2019) and WSC (Levesque
etal., 2012) as well as 3 Named Entity Recognition
(NER) tasks including CoNLLO03 (Tjong Kim Sang
and De Meulder, 2003), CoNLL04 (Carreras and
Marquez, 2004), and OntoNotes 5.0 (Weischedel
et al., 2013). With BERT-base / large (Devlin et al.,
2019) and RoBERTa-large (Liu et al., 2019) instan-
tiated by HuggingFace Transformers (Wolf et al.,

2020), we compare APT with vanilla fine-tuning
and P-Tuning v2 (Liu et al., 2022) which is an im-
plementation of the prefix tuning, configured with
hyper-parameters public in the released code'. We
also verify our method with DeBERTa-xlarge (He
et al., 2020) on NER tasks following P-Tuning v2.

4.2 Results

We report the main results in Table 1. For BERT-
base, we can observe that APT achieves 1.5% and
0.7% improvements over P-Tuning v2 on Super-
GLUE and NER tasks, respectively. For BERT-
large, APT outperforms P-Tuning v2 by 1.8% on
SuperGLUE tasks and 1.4% on NER tasks. For
RoBERTa-large, APT surpasses P-Tuning v2 by
1.5% on SuperGLUE tasks and 0.2% on NER tasks.
On NER tasks with DeBERTa-xlarge, APT is supe-

1https: //github.com/THUDM/P-tuning-v2

1241

https://github.com/THUDM/P-tuning-v2

Setting SuperGLUE NER

BoolQ COPA RTE WiC WSC Avg. CoNLLO3 CoNLLO4 OntoNotes Avg.
APT 72.6 700 727 712 669 70.7 89.7 84.1 87.2 87.0
w/o token-level o 72.6 69.0 699 70.8 658 69.6 89.5 83.7 87.2 86.8
w/o layer-level A 72.1 674 713 69.6 654 69.1 89.0 82.6 86.9 86.2
w/o hidden states b~ 72.0 688 687 702 646 689 89.1 83.6 87.1 86.6

Table 3: Ablation study on BERT-base for two different level gate mechanisms and the hidden states from the

previous layer. bold: the best score.

Model SuperGLUE NER

BoolQ COPA RTE WiC WSC Avg. CoNLLO3 CoNLLO4 OntoNotes Avg.
PT-2 72.5 674 713 695 654 692 89.3 82.6 87.1 86.3
PT-2* 72.6 688 719 70.0 658 698 89.3 83.0 87.2 86.5
PT-2+ 72.8 654 69.1 71.1 658 6838 89.4 83.2 87.1 86.6
APT 72.6 70.0 727 712 669 70.7 89.7 84.1 87.2 87.0

Table 4: Comparison between PT-2 and PT-2*, PT-2" and APT on BERT-base. (PT-2: P-Tuning v2; PT-2*: PT-2

with variable prefix; PT-27: PT-2 with enlarged prefix)

rior to P-Tuning v2 by an average of 0.8%. Com-
pared with vanilla fine-tuning, APT is comparable
or even better on part of tasks. In addition, we
explore the experimental performance under low
resource settings on SuperGLUE benchmark. As
shown in Table 2, APT is a better few-shot learner
than P-Tuning v2, which exceeds 4.2%, 3.4% in
16-shot setting, and 2.9%, 3.6% in 32-shot setting
for BERT-base and BERT-large, respectively.

4.3 Ablation Study

We conduct an ablation study in order to explore
the separate effect of token-level gated weight c,
layer-level scaled weight A and the hidden states h
from the previous layer which is used to calculate
token-level gated weight ¢ in Eq.(4). As shown in
Table 3, it can be found that removing any strategy
hurts the performance to varying degrees, demon-
strating that they are all advantageous. Specifically,
the beneficial effect of A for APT is slightly greater
than o overall. Besides, it is effective and meaning-
ful to introduce the context (i.e. the hidden states h
from the previous layer) when obtaining the gated
weight, especially for SuperGLUE tasks.

4.4 Discussion

What is prefix weight distribution learned by
APT? The gate mechanism for prefix serves as
the key strategy of the proposed APT, where the
learned prefix weight distribution turns out to be a
critical point. Figure 2 illustrates the gate weights
of the pseudo prefix token for COPA and CoNLL04,

- o
08
06

0 2 4 6 8 10 12 14
Pseudo Prefix Token Index

(a) COPA

Model Layer
Model Layer
11109 8 7 6 54 3 210

22201816141210 8 6 4 2 0

LI J:i' b

02

-G)

1 N us o i oo

4 30 60 90
Pseudo Prefix Token Index

(b) CoNLLO4

Figure 2: Visualization of the learned weights of the
prefix token for SuperGLUE task COPA on BERT-large
and NER task CoNLL04 on BERT-base, with darker
colors indicating higher weights.

respectively. It can be found that CoONLL04 is con-
cerned with bottom layers in the language model
which are regarded as phrase-level features, while
COPA pays more attention to the higher layers, in-
dicating semantic information. The observation is
consistent with the characteristics of corresponding
tasks. NER is a token-level task while COPA is a
causal reasoning task sensitive to the semantics of
sentences, which reminds us that it is worth placing
various prefix tokens on specific layers according
to the task properties.

Does variable prefix work better than fixed one?
To verify the effectiveness of adaptive prefix under
the proposed architecture, we wonder if the learned
ratio at each layer can be directly transferred to
P-Tuning v2. Taking the gate as a probing indica-
tor, we reset the prefix length of P-Tuning v2 from
fixed to variable in different layers based on the ob-

1242

servation of the learned ratio (e.g. the distribution
shown in Figure 2). From the comparison between
PT-2 and PT-2* in Table 4, we demonstrate that
the variable prefix with less trainable parameters
surprisingly outperforms the original implementa-
tion in fixed prefix. Nonetheless, it is also worth
noting that there is still a gap between P-Tuning
v2 with variable prefix and APT, where the latter
continuously adjusts the weight of prefix during
the training phase while the former only initializes
with a one-time mask probing.

Whether the adaptive structure benefits the fine-
tuning? Compared to P-Tuning v2, APT learns
extra gated and scaled weights. To figure it out
whether the improvement of APT is brought from
more trainable parameters or the adaptive model
structure, we adjust the hyper-parameter, i.e., en-
large the prefix length of P-Tuning v2 by 1.5 times
to align the number of parameters with our APT. As
shown in the comparison between PT-2" and APT
of Table 4, we observe that APT still outperforms
enlarged P-Tuning v2 with 1.9%, 0.4% on aver-
age for SuperGLUE and NER tasks respectively,
validating the superiority of the gate mechanism.

5 Conclusion

In this paper, we investigate prefix tuning and as-
sume that adaptive prefix is probably more efficient
and effective than fixed prefix. Firstly, we propose
APT that leverages the token-level and the layer-
level gate mechanism which achieves an improve-
ment of performance over original prefix tuning.
Then, we illustrate the weight distribution learned
by APT and take it as a probe, which validates the
variable prefix can work better than the fixed one.
The above experiments and analysis demonstrate
that the adaptive prefix can be served as a promis-
ing strategy for parameter-efficient fine-tuning.

Limitations

The proposed approach in this paper also suffers
from certain limitations, i.e. we adapt APT on the
encoder model and lack design for the other archi-
tectures such as decoder-only and encoder-decoder.
In addition, it is better to generalize the key idea to
other parameter-efficient learning approaches. A
unified solution for existing work may be worth
exploring in the future.

References

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1-9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Xavier Carreras and Lluis Marquez. 2004. Introduction
to the CoNLL-2004 shared task: Semantic role la-
beling. In Proceedings of the Eighth Conference on
Computational Natural Language Learning (CoNLL-
2004) at HLT-NAACL 2004, pages 89-97, Boston,
Massachusetts, USA. Association for Computational
Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume I (Long and
Short Papers), pages 2924-2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019b. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276-286, Florence, Italy. Association for Com-
putational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884-4896, Online. Association for Computational
Linguistics.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

1243

https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://aclanthology.org/W04-2412
https://aclanthology.org/W04-2412
https://aclanthology.org/W04-2412
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651-3657, Florence, Italy. Association for
Computational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045-3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61-68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Nafise Sadat Moosavi, Quentin Delfosse, Kristian Kerst-
ing, and Iryna Gurevych. 2022. Adaptable Adapters.
In Proceedings of the 2022 Annual Conference of

the North American Chapter of the Association for
Computational Linguistics, Seattle, WA, USA. Asso-
ciation for Computational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the word-in-context dataset for evalu-
ating context-sensitive meaning representations. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1267-1273,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90-95.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 79307946, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142—
147.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

1244

https://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
http://arxiv.org/abs/2205.01549
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/N19-1128
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/P19-1452
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes Release 5.0.
Abacus Data Network.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

A Experimental Details

Datasets In the full data setting, all train-dev-test
splits follow P-Tuning v2 (Liu et al., 2022). For low
resources setting, to generate k-shot (k = 16, 32)
datasets on SuperGLUE, the fixed set of random
seed [11,21,42,87,100] is utilized to sample in-
stances in training and development set, while the
entire development set is treated as test set, where
the average performance is reported in Table 2.

Experimental Setting We grid search the learn-
ing rate over [5e-3, 7e-3, 1e-2, 1e-4], training epoch
over [20, 40, 60, 80, 100, 120], batch size over [8,
16, 32], and random seeds over [11, 21, 42, 87,
100]. For a fair comparison, the prefix length uti-
lized by APT is consistent with P-Tuning v2. In
low resources setting, the batch size we used is 2.
In Eq.(4), we take the hidden states of the first input
token as representation in previous layer.

Experimental Computation We use the pre-
trained model BERT-base with 110M parameters,
BERT-large with 335M parameters, RoOBERTa-
large with 355M parameters and DeBERTa-xlarge
with 750M parameters. We conduct experiments
on NVIDIA V100 or A100 GPUs for each task.

B Further Ablation Results

We demonstrate further ablation results on BERT-
large and RoBERTa-large as shown in Table 5. It
can be found that the beneficial impact of the three
strategies and the observation is consistent with
BERT-base in Section 4.3 in general.

-

~/

nnnnnnnnnnn

(a) COPA (b) WSC

Figure 3: The performance of APT and PT-2 on COPA
and WSC in a range of prefix length on BERT-1arge.

C Prefix Length

The prefix length is an important hyper-parameter
for prefix tuning and APT. Figure 3 illustrates the
performance of APT and P-Tuning v2 with differ-
ent prefix lengths over a range. It can be observed
that APT is superior to P-Tuning v2 in most prefix
length settings, indicating that APT has a relatively
wider range of prefix length to achieve better per-
formance.

D Scientific Artifacts

We use datasets involving SuperGLUE (Wang
et al., 2019) benchmark including BoolQ (Clark
et al., 2019a), COPA (Roemmele et al., 2011),
RTE (Wang et al., 2018), WiC (Pilehvar and
Camacho-Collados, 2019) and WSC (Levesque
et al., 2012) as well as 3 Named Entity Recognition
(NER) tasks including CoNLLO3 (Tjong Kim Sang
and De Meulder, 2003), CoNLLO04 (Carreras and
Marquez, 2004), and OntoNotes 5.0 (Weischedel
et al., 2013). The pre-trained model we used are
BERT-base / large (Devlin et al., 2019), RoBERTa-
large (Liu et al., 2019) and DeBERTa-xlarge (He
et al., 2020). We use HuggingFace Transformers
(Wolf et al., 2020) and P-Tuning v2 (Liu et al.,
2022) as the codebase implemented by PyTorch
2. They are all open-source and we only use for
academic research which is consistent with their
intended use.

Zhttps://pytorch.org/

1245

https://doi.org/11272.1/AB2/MKJJ2R
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

SuperGLUE NER

Model Setting
BoolQ COPA RTE WiC WSC Avg. CoNLLO3 CoNLL04 OntoNotes Avg.
APT 76.0 790 794 751 702 759 90.7 85.8 88.6 88.4
BERT-large w/o token-level o 75.8 770 773 748 683 74.6 91.1 84.4 88.5 88.0
w/o layer-level A 75.4 740 769 746 683 738 90.7 83.7 88.4 87.6
w/o hidden states h ~ 74.7 760 758 746 683 739 91.2 84.0 88.6 87.9
APT 84.8 94.0 899 746 683 823 92.7 89.0 89.8 90.5
RoBERTa-large ~ W/o token-level o 84.3 88.0 881 73.0 654 79.8 92.2 88.7 89.5 90.1
w/o layer-level A 84.7 88.0 863 721 644 79.1 92.0 88.7 89.8 90.2
w/o hidden states h ~ 83.9 91.0 870 729 644 798 92.2 88.7 89.4 90.1

Table 5: Ablation experiments on BERT-large and RoBERTa-large for two different level gate mechanisms and the
hidden states from the previous layer. bold: the best score.

1246

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
section limitations

[0 A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
section abstract and section 1 introduction

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

section 4.1

¥/ B1. Did you cite the creators of artifacts you used?
section 4.1

v B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
section D Scientific Artifacts

v B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
section D Scientific Artifacts

B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

We use open-source datasets and do not change datasets for a fair comparison.

[l B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

It can be found in the cited paper.

C ¥ Did you run computational experiments?
section 4 Experiments
¥ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Table 1 and section appendix A Experimental Computation

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

1247

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
section appendix A Experimental Details

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

Table 2 report the mean and std results.

C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

We follow the existing work and keep consistent with them.

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1248

