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Abstract

Document ranking aims at sorting a collection
of documents with their relevance to a query.
Contemporary methods explore more efficient
transformers or divide long documents into pas-
sages to handle the long input. However, inten-
sive query-irrelevant content may lead to harm-
ful distraction and high query latency. Some
recent works further propose cascade document
ranking models that extract relevant passages
with an efficient selector before ranking, how-
ever, their selection and ranking modules are
almost independently optimized and deployed,
leading to selecting error reinforcement and
sub-optimal performance. In fact, the docu-
ment ranker can provide fine-grained supervi-
sion to make the selector more generalizable
and compatible, and the selector built upon a
different structure can offer a distinct perspec-
tive to assist in document ranking. Inspired by
this, we propose a fine-grained attention align-
ment approach to jointly optimize a cascade
document ranking model. Specifically, we uti-
lize the attention activations over the passages
from the ranker as fine-grained attention feed-
back to optimize the selector. Meanwhile, we
fuse the relevance scores from the passage se-
lector into the ranker to assist in calculating the
cooperative matching representation. Experi-
ments on MS MARCO and TREC DL demon-
strate the effectiveness of our method.

1 Introduction

Document ranking aims at ranking the candidate
documents according to their relevance to an input
query, and it has been widely applied in many nat-
ural language processing (NLP) and information
retrieval tasks, such as search engines (Hofstätter
et al., 2021) and question answering (Chen and
Yih, 2020). Due to the powerful representation
ability of large-scale pre-trained language mod-
els (PLMs) (e.g., BERT (Devlin et al., 2019) and
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𝑝!: … Spiders are animals that have 8 legs and use their fangs 
to inject venom into other animals and sometimes humans …

𝑝": … Most species trap small insects and other spiders in their 
webs and eat them. A few large species of spiders prey …

𝑝#: … I caught him and now he lives in a small fish tank, I feed 
him 2 flies once a day.. He is a fast hunter…

𝑝$: … Thank you so much!Leave a Reply Your email address will 
not be published …

Query: do spiders eat other animals ?

…

Passages of document

Figure 1: The case of scope hypothesis. In this example,
p2 is strongly relevant to the query, and p3 is weakly
relevant where other passages focus on other topics
different from query.

RoBERTa (Liu et al., 2019)) that have achieved im-
pressive performance in a large number of NLP
tasks, several researchers have considered mak-
ing use of pre-trained models for document rank-
ing (MacAvaney et al., 2019; Li and Gaussier,
2021; Fu et al., 2022).

One major challenge in applying PLMs for neu-
ral document ranking is their difficulty in handling
long texts due to high computational complexity
and memory requirements, such as the 512 token
limit for BERT. In fact, documents typically con-
tain long text, for example, the mean length of
documents in 2019 TREC Deep Learning Track
Document Collection is 1600 (Hofstätter et al.,
2021). To address this issue, various studies have
been conducted to develop more efficient attention
mechanisms in transformers (Beltagy et al., 2020;
Hofstätter et al., 2020a), by simply truncating the
document to meet the requirement for the relevance
model (Boytsov et al., 2022), or by breaking down
the long document into smaller segments or pas-
sages that can be processed individually by the
pre-trained models (Dai and Callan, 2019; Rudra
and Anand, 2020; Li et al., 2020; Chen et al., 2022).

Actually, long documents often contain a vari-
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ety of subjects, as evidenced by the scope hypoth-
esis (Robertson et al., 2009) from traditional in-
formation retrieval. An illustration from the MS
MARCO dataset (Nguyen et al., 2016) is presented
in Figure 1, and it is noted that only a small part
of the document (e.g., p2 and p3) is relevant to the
given query and different parts may be unequally
informative to the query. Thus even though exist-
ing techniques for modeling long documents have
been demonstrated to be effective and efficient, uti-
lizing the entire document can result in high query
latency and intensive query-irrelevant content can
be a distraction and negatively impact performance.
Consequently, some recent studies propose cascade
document ranking models (Li et al., 2020; Hofstät-
ter et al., 2021; Li and Gaussier, 2021) that extract
relevant passages with an efficient selector before
performing the ranking. However, their selection
and ranking modules are almost independently op-
timized and deployed, leading to selecting error
reinforcement and sub-optimal performance. More-
over, these models do not differentiate between the
passages or segments taken from a document while
matching with the query.

In fact, the document ranker can provide fine-
grained supervision to enhance the generalizabil-
ity and compatibility of the selector. Conversely,
the selector, built upon a heterogeneous structure,
can offer a distinct perspective to assist in docu-
ment ranking. Taking inspiration from this, we
propose a Fine-grained Attention Alignment ap-
proach (FAA) to jointly optimize a cascade doc-
ument ranking model. Specifically, we initialize
the passage selector as an efficient dual encoder
and the document ranker with an effective cross-
encoder. To better optimize and make use of both
worlds, we leverage the attention activations over
the passages from the ranker as fine-grained atten-
tion feedback to optimize the selector. Simultane-
ously, we incorporate the relevance scores from
the passage selector into the ranker to assist in
calculating the final cooperative matching repre-
sentation. We conduct experiments on three public
benchmarks: MS MARCO (Nguyen et al., 2016),
TREC-DL 2019 (Craswell et al., 2020), and TREC-
DL 2020. The evaluation results show that our
proposed model is better than several competitive
baselines and our FAA can bring significant im-
provement to the cascade model. To sum up, our
contribution is three-fold:

• We propose a Fine-grained Attention

Alignment approach to jointly optimize a
cascade document ranking model.

• We explore fusing the passage-level relevance
scores into the document ranker to produce
the cooperative matching representation.

• We conduct extensive experiments and anal-
ysis on three benchmarks and the evaluation
results show the effectiveness of our model.

2 Related Works

Neural models for document ranking In
the early stages, traditional algorithms like
BM25 (Robertson et al., 2009) and TF-IDF were
commonly employed for ranking documents in
information retrieval. With the development of
neural network technology (Cho et al., 2014; Gu
et al., 2018), some neural-based ranking models
have been proposed (Huang et al., 2013; Guo et al.,
2016; Hui et al., 2017, 2018; MacAvaney et al.,
2020). Xiong et al. (2017) proposed a kernel-
based neural ranking model (K-NRM) which used
a kernel-pooling layer to combine word pair simi-
larities with distributed representations. Dai et al.
(2018) extended K-NRM to Conv-KNRM which
used Convolutional Neural Networks to model n-
gram embedding. Hofstätter et al. (2020b) pro-
posed a Transformer-Kernel model which used a
small number of transformer layers to contextual-
ize query and document sequences independently
and distilled the interactions between terms. Com-
pared to traditional methods, neural ranking mod-
els produce a dense representation of the queries
and documents which improves the ranking perfor-
mance.

Pre-trained models for document ranking Re-
cently a large number of transformer-based pre-
trained models have been proposed (Devlin et al.,
2019; Lewis et al., 2020; Radford et al., 2019; Raf-
fel et al., 2020) and shown their effectiveness in
natural language processing tasks. Therefore many
works have utilized pre-trained models in docu-
ment ranking tasks. Nogueira et al. (2019) used a
sequence-to-sequence transformer model with doc-
ument terms as input and produced the possible
questions that the document might answer to ex-
pand document for document retrieval. Finally this
work used BERT to re-rank these retrieved docu-
ments. Yan et al. (2019) used a pre-trained BERT
model to classify sentences into three categories
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and then fine-tuned the model using a point-wise
ranking method for ranking documents.

Passage-level document ranking Since the high
demand for memory space and computing re-
sources, pre-trained models usually have a limit on
the input length, and the length of actual long docu-
ments is always beyond this limitation. To this end,
some works proposed to split the long documents
into multiple passages which satisfy the limitation
of the input length of the pre-trained models (Li
et al., 2020; Hofstätter et al., 2020a; Yang et al.,
2019). The studies applied pre-trained models to
each passage individually and then combined the
relevance scores at the passage level to generate
the relevance scores for the entire document. For
example, Dai and Callan (2019) determined the
relevance score of the document by utilizing the
score of the first passage, the top-performing pas-
sage, and the summation of all passages, respec-
tively. Fu et al. (2022) proposed a Multi-view inter-
passage Interaction based Ranking model (MIR)
with intra-passage attention and inter-passage at-
tention, and used a multi-view aggregation layer to
produce the document-level representation across
multiple granularities. These works took all pas-
sages into document ranking which may introduce
noise from the query-irrelevant passages and in-
crease the query latency. To address this problem,
some works proposed to pre-select query-relevant
passages from all passages before aggregating. In
this work, we propose a cooperative distillation
and representation cascade ranking model which
uses an efficient model as a passage selector to
calculate passage-level relevance scores and select
top-k passages, while uses an effective model as the
document ranker to calculate the document-level
relevance scores with the selected passages.

3 Methodology

In this section we first formalize the document rank-
ing task, then we introduce the model architecture
and the proposed Fine-grained Attention Align-
ment (FAA) approach for model optimization.

Task Formalization Given a query q and a set of
candidate documents C = {d1, d2, ..., dm} includ-
ing both the ground-truth document and negative
documents, where m is the number of the candi-
date documents, the task is to train a document
ranking model R(q, d) with the training data D.
When provided with a new query and its corre-

sponding candidate documents, the ranking model
assesses the relevance between the query and each
candidate document by computing relevance scores.
Subsequently, it can arrange the documents in order
based on these scores.

Model Overview Inspired by previous work on
passage-level evidence for document ranking (Hof-
stätter et al., 2021; Li and Gaussier, 2021), in this
paper we adopt the efficient and effective cascade
document ranking paradigm which first extracts rel-
evant passages with an efficient selector and then
performs the ranking with a smart document ranker
based on the pruned content. To better optimize
and make use of both worlds, we propose a fine-
grained attention alignment approach to jointly op-
timize a cascade document ranking model. Specifi-
cally, we utilize the attention activations over the
passages from the ranker as fine-grained attention
feedback to optimize the selector. Additionally, in
the process of document ranking, the passage-level
relevance scores in the selector are fused in the doc-
ument ranker to produce the cooperative matching
representation for calculating the final matching
score. By this means, the document ranker can
provide fine-grained supervision to make the se-
lector more generalizable and compatible, and the
selector built upon a heterogeneous structure can
conversely offer a distinct view to help the ranker.
Figure 2 presents the high-level architecture of the
proposed method.

3.1 Passage Selector
To satisfy the input length limit of the pre-trained
models, the candidate documents are first split into
multiple passages with a sliding window in the size
of l words and a stride in the size of s words. The
set of passages of document d can be formalized as

P = {d0: l, ds: s+l, d2∗s: 2∗s+l, ...} (1)

In the phase of passage selection, the passage
selector identifies and extracts a subset of pas-
sages that are highly relevant to the given query.
We adopt the simple and efficient dual-encoder
structure built on a small pre-trained model as
the passages selector which has a lower query la-
tency. Given the query q and the set of passages
P = {p1, p2, · · · , pw} where w is the number of
passages, q and each pi ∈ P are fed into the pas-
sage selector and encoded as d-dimensional vec-
tors respectively which are denoted as Encpsg(q)
and Encpsg(pi). With the representative vectors of
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Figure 2: Overall architecture of our model (FAA). The selector encodes the query and passages with sharing
parameters.

query and passages, the passage selector calculates
the dot product between Encpsg(q) and Encpsg(pi):

Rpsg(q, pi) =
Encpsg(q)

T Encpsg(pi)√
d

(2)

The passage-level relevance scores are scaled by
dividing by

√
d. Next, the passage selector selects

the k passages with the highest relevance score to
form P̄, which is formalized as:

P̄ = argmax
P̄⊂P, ∥P̄∥=k

∑

pi∈P̄
Rpsg(q, pi) (3)

Passages in P̄ contain informative content for query
and are used for document ranking. By selecting
the most relevant top-k passages P̄ from all the
passages, the passage selector filters out a large
number of irrelevant passages for document rank-
ing processes, which can reduce the query latency
and avoid the noise caused by irrelevant passages.

3.2 Document Ranker
We adopt a cross-encoder based on pre-trained
models as the document ranker to calculate the
document-level relevance score with P̄. The archi-
tecture performs full attention across the query and
the extracted passages and has been proven to be
effective for ranking (Hofstätter et al., 2021). For-
mally, all selected passages in P̄ are first spliced
together as P̂ = {p̄1; p̄2; · · · ; p̄k}, and then we con-
catenate query and the spliced passages P̂ as the
input of the document ranker with [CLS] and [SEP]
tokens, which is denoted as u:

u = {[CLS]; q; [SEP]; P̂; [SEP]} (4)

The document ranker performs semantic inter-
action through multi-layer attention blocks and

outputs a sequence of contextualized representa-
tions. Typically, the output representation of the
first token [CLS] is adpoted the encoded vector of
u, namely Encdoc(u) = E[CLS]. Then the vector is
fed to a multilayer perceptron (MLP) to calculate
the document-level relevance score:

Rdoc(q, d) = MLP(Encdoc(u)) (5)

Since the dataset provides the positive document
for each query, the loss function we use to optimize
the document ranker is defined below following the
previous works (Wu et al., 2018; Oord et al., 2018):

Lrank = −
∑

q∈D
log

exp(Rdoc(q, d
+))∑

d∈C exp(Rdoc(q, d))
(6)

where d+ is the ground-truth document for the
query q and C is a set of document candidates (in-
cluding both the ground-truth document and nega-
tive documents) for q.

3.3 Cooperative Matching Representation
Considering the passage selector is based on hetero-
geneous dual-encoder architecture, we think that
the selector can offer a distinct view to help docu-
ment ranking. Therefore, different from traditional
encoding which only uses the encoded vector of
the first token [CLS] as the representation of se-
quence, we propose to fuse the selected passage-
level relevance scores from the passage selector
to produce the cooperative matching representa-
tion Encdoc(u) of input sequence u. Specifically,
we denote the embedding vector of [CLS] as E[CLS]

and denote the embedding vector of tokens in P̂ as
{E1

1 , E
2
1 , · · · , Ej

i , · · · }, where Ej
i represents the

embedding vector of the j-th token in the i-th se-
lected passage p̄i. To produce Encdoc(u), we first
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calculate the average embedding vector of each
selected passage:

MeanPool(p̄i) =
∑l

z=1E
z
i /l (7)

where l is the length of p̄i. We then calculate the
product of the passage-level relevance scores from
the selector and the average vector of the passage
in the ranker, and take the summation of the re-
sults as the passage-selector guided vector EPGV,
formalized as:

EPGV =
k∑

t=1

MeanPool(p̄i) · Rpsg(q, p̄i) (8)

Finally we fuse the passage-selector guided
vector EPGV with E[CLS] to get the cooperative
document-level matching representation:

Encdoc(u) = E[CLS] + λ · EPGV (9)

where λ is a parameter to control the weight of
EPGV. Then we can feed the above Encdoc(u)
into a multi-layer perceptron to calculate the fi-
nal document-level relevance score, as formalized
in Equation 5. We can find that the more relevant a
passage is, the greater its proportion in the fusion,
which causes the document ranker to pay more
attention to it.

3.4 Fine-grained Attention Alignement
As mentioned above, the passage selector is ini-
tialized by dual-encoder architecture which is effi-
cient but performance sub-optimal compared with
cross-encoder. It is not so compatible in ranking
model and need to be tuned. Besides, there are
no passage-level labels in most document ranking
tasks. Inspired by knowledge distillation (Hinton
et al., 2015; Wang et al., 2020), we use the compli-
cated and effective document ranker as the teacher
model to provide fine-grained supervision for op-
timizing the passage selector which is regarded as
a student model to make the selector more gen-
eralizable and compatible. To be specific, with
the self-attention mechanism in the transformer-
based model, we use fine-grained attention activa-
tion scores over the passage as the pseudo labels
of passages for optimization. We consider that if
one passage is more informative to query, the query
will provide more attention to it when document
ranking which results in a higher attention score
for this passage.

For the input u, the representation output by the
previous layer is denoted as H ∈ Rlu×d where lu is

the length of u. The self-attention module produces
queries Q, keys K, and values V matrices through
linear transformations (Vaswani et al., 2017), and
then the attention map can be calculated as:

M = softmax(
QKT

√
d

) (10)

where d is the dimension of vectors in Q. We de-
note αi→j = Mi,j as the attention score from i-th
token to j-th token in u. Following the calculation
of the attention score from one token to another
token, we calculate the attention activation score
of each selected passage p̄i (∈ P̄) as the maximal
attention score from all tokens in query q and all
tokens in the p̄i:

αq→p̄i = MaxPool(M̃),

M̃ = Mx:x+lq ,y:y+lpi

(11)

where x, y is the starting token of q and pi, and
lq, lpi is the length of q and pi respectively. M̃ is
the attention map between q and pi, where M̃i,j

is the attention score from i-th token in q to j-th
token in pi. We also experimented with the mean-
pooling operation to calculate attention scores and
found that it performed worse than max-pooling.
Following previous knowledge distillation methods
based on pre-trained language models (Wang et al.,
2020), we also calculate the attention score of p̄i in
the last self-attention layer of the document ranker.
Taking into account the multi-head attention mech-
anism in the transformer-based model, we select
the maximal attention score through all attention
heads as the final scores.

We use KL-divergence between the relevance
scores of passages output by the passage selector
and the attention scores as the loss function of the
passage selector:

Lalign =
∑

q∈D
KL-Div(Hpsg(q, P̄),Adoc(q, P̄))

(12)
where Hpsg(q, P̄) is the output distribution over
the relevance scores of passages in P̄ from the se-
lector, Adoc(q, P̄) is the distribution of the aggre-
gated attention scores in ranker. Hpsg(q, p̄k) and
Adoc(q, p̄k) are the k-th item in Hpsg and Adoc re-
spectively, which can be calculated as below:

Hpsg(q, p̄k) =
exp(Rpsg(q, p̄k)/τ)∑
p̄∈P̄ exp(Rpsg(q, p̄)/τ)

(13)
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Algorithm 1 The proposed FAA
Require: Training set D, selector parameters ϕpsg,

ranker parameters ϕdoc

Initialize parameters ϕpsg, ϕdoc

repeat
Sample a batch B from D
Compute passage relevance scores by Eq (2)
Select top-k relevant passages P̄ by Eq (3)
Compute document relevance scores with P̄

Compute Lrank on B and optimize ϕdoc

Compute attention score Patt(p̄i) by Eq (14)
Compute Lalign on B and optimize ϕpsg

until Convergence
Return ϕpsg, ϕdoc

Adoc(q, p̄k) =
exp(αq→p̄k/τ)∑
p̄∈P̄ exp(αq→p̄/τ)

(14)

where τ is the temperature hyper-parameter.
Above all, in our overall ranking model, the loss

function can be described as the combination of
the loss for the document ranker and the attention
alignment loss:

Lfinal = Lalign + Lrank (15)

In this work, we tried to jointly train the pas-
sage selector and document ranker. Particularly,
we update the ranker with only Lrank, and the gra-
dient from Lalign is stopped. Algorithm 1 gives a
pseudo-code of our training process.

4 Experiments

In this section, we first introduce the datasets we
use, the evaluation metrics, the baselines, and the
implementation details of our experiment. Then we
introduce the evaluation results and further analysis
of our method.

4.1 Datasets and Evaluation
In line with previous studies on this task (Hof-
stätter et al., 2021; Li and Gaussier, 2021), we
conduct an evaluation of our proposed model on
three publicly available document ranking datasets:
MSMARCO (Nguyen et al., 2016), TREC-DL
2019 (Craswell et al., 2020), and TREC-DL 2020.
The MS-MARCO dataset comprises 3.2 million
documents and 367,013 training queries, sourced
from web pages. For evaluation, we utilize the MS-
MARCO DEV set, which consists of 5,193 queries.

The evaluation metrics employed are NDCG@10,
MAP, and MRR@10. Both the TREC-DL 2019
and TREC-DL 2020 datasets share the same doc-
ument collection as MS-MARCO and include 43
and 45 queries, respectively. For both TREC-DL
datasets, we employ NDCG@10 and MAP as the
evaluation metrics. Across all datasets, we per-
form document re-ranking based on the top 100
documents retrieved by BM25.

4.2 Baselines

We compare our model with traditional and neural
document ranking models:

• BM25 (Robertson et al., 2009) is a widely-
used unsupervised text-retrieval algorithm
based on IDF-weighted counting.

• BERT-MaxP (Dai and Callan, 2019) uses
BERT to encode passages split from the doc-
ument to calculate the relevance score and
choose the best passage-level score as the
document-level score.

• Sparse-Transformer (Child et al., 2019) in-
troduces several sparse factorizations of the
attention matrix.

• LongFormer-QA (Beltagy et al., 2020) ex-
tends Sparse-Transformer by attaching two
global attention tokens to the query and the
document as their settings for QA.

• Transformer Kernel Long (Hofstätter et al.,
2020a) proposes a local self-attention mecha-
nism with the kernel-pooling strategy.

• Transformer-XH (Zhao et al., 2020) intro-
duces an extra hop attention layer that can
produce a more global representation of each
piece of text.

• QDS-Transformer (Jiang et al., 2020) pro-
poses a query-directed sparse transformer-
based ranking model which uses sparse local
attention to obtain high efficiency.

• KeyBLD (Li and Gaussier, 2021) proposes
using local query-block pre-ranking to choose
key blocks of a long document and aggregates
blocks to form a short document which is fur-
ther processed by BERT.
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Models
MSMARCO DEV TREC DL 2019 TREC DL 2020

NDCG@10 MAP MRR@10 NDCG@10 MAP NDCG@10 MAP

BM25 (Robertson et al., 2009) 0.311 0.265 0.252 0.488 0.234 - -

BERT-MaxP (Dai and Callan, 2019) - - - 0.642 0.257 0.630 0.420
Sparse-Transformer (Child et al., 2019) - - - 0.634 0.257 - -
LongFormer-QA (Beltagy et al., 2020) - - - 0.627 0.255 - -
Transformer Kernel Long (Hofstätter et al., 2020a) 0.403 0.345 0.338 0.644 0.277 0.585 0.381
Transformer-XH (Zhao et al., 2020) - - - 0.646 0.256 - -
QDS-Transformer (Jiang et al., 2020) - - - 0.667 0.278 - -

PARADEMax-Pool (Li et al., 2020) 0.445 - - 0.679 0.287 0.613 0.420
PARADETF (Li et al., 2020) 0.446 0.387 0.382 0.650 0.274 0.601 0.404
KeyBLD (Li and Gaussier, 2021) - - - 0.707 0.281 0.618 0.415
IDCM (Hofstätter et al., 2021) 0.446 0.387 0.380 0.679 0.273 - -

FAA 0.453 0.397 0.390 0.685 0.275 0.647 0.424

Table 1: Performance of different methods on the document ranking task in MSMARCO DEV and TREC-DL
dataset. The best results are in underlined fonts.

• PARADE (Li et al., 2020) truncates a long
document into multiple passages and uses dif-
ferent strategies to aggregate the passage-level
relevance scores. PARADEMax-Pool uses max-
pooling to obtain document-level relevance
scores and PARADETF uses a transformer
encoder for passages aggregation.

• IDCM (Hofstätter et al., 2021) uses a fast
model (ESM) for passage selection and a ef-
fective model (ETM) for document ranking,
where optimizes the ESM with the knowledge
distillation from ETM to ESM.

4.3 Implementation Details

Our proposed model is implemented by the trans-
former library provided by hugging face1. We use
DistilBERT (Sanh et al., 2019) to initialize our
passage selector which is more efficient and has
comparable performance with BERT-base. For doc-
ument ranking, we use the publicly trained model2

to initialize our document ranker. We set the length
of the sliding window and stride as 72. The query
length is set as 30 and the number of selected pas-
sages is set as 3. We use Adam optimizer (Kingma
and Ba, 2015) to train our model with batch size
set as 4. The initial learning rate of the passage
selector and document ranker are set as 5e-7 and
7e-6 respectively. We vary λ (Equation (9)) in {0.1,
0.2, 0.5, 1.0} and find that 0.2 is the best choice. τ
in Equation (13) and Equation (14) is set as 0.2.

1https://huggingface.co/docs/transformers/
2https://huggingface.co/cross-encoder/

ms-marco-MiniLM-L-6-v2

4.4 Evaluation Results

The evaluation results of our proposed model and
all baselines on MS MARCO, TREC-DL 2019
and TREC-DL 2020 are reported in Table 1. First,
compared with the models with more efficient at-
tention mechanisms in transformer (e.g. Sparse-
Transformer, Transformer-XH, QDS-Transformer,
and Transformer Kernel Long), our method and
other cascade document ranking models (e.g. Key-
BLD and IDCM) can achieve better performance
on almost all metrics. The phenomenon indicates
the superiority of the cascade document ranking
paradigm. Second, compared with two previous
cascade methods3 (e.g. IDCM) that select passage
before ranking, our model has better performance
than them on MS-MARCO and TREC DL 2020,
and shows comparable performance on TREC DL
2019. Different from these baselines which opti-
mize the selector and ranker independently, our
model jointly optimizes the selector and ranker
with fine-grained attention alignment. Meanwhile,
we utilize the passage-level relevance scores in doc-
ument ranking to obtain cooperative fusion repre-
sentation. The evaluation results demonstrate the
effectiveness of our proposed methods.

4.5 Discussions

Ablation study Table 2 presents the findings
from our ablation study, where we systematically
remove specific components to assess their impact
on performance. Firstly, we eliminate the fine-
grained attention alignment for the passage selec-

3As of now, a direct comparison with KeyBLD is not fea-
sible due to the lack of reported results on the MS-MARCO
DEV dataset and the unavailability of the source code.
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Models NDCG@10 MAP MRR@10

FAA 0.453 0.397 0.390

w/o. Lalign 0.361 0.313 0.290
w/o. EPGV 0.449 0.393 0.385
w/o. {Lalign & EPGV} 0.358 0.312 0.288
Rpsg(q, p̄i) = 1/k 0.449 0.394 0.386

αq→p̄i = MeanPool(M̃) 0.436 0.380 0.352

Table 2: Ablation Study.
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Figure 3: The impact of length of the split passage on
MS-MARCO Dev.

tor, denoted as "w/o. Lalign". Next, we remove
the passage-level multi-vector fusion during doc-
ument ranking, denoted as "w/o. EPGV". The re-
sults reveal that removing either Lalign or EPGV

leads to a drop in performance, indicating the ef-
fectiveness of our fine-grained attention alignment
approach and the importance of utilizing coopera-
tive fusion representation to enhance the ranker’s
capabilities. Notably, removing both components
simultaneously results in an even greater perfor-
mance decrease. Furthermore, we examine the
use of average pooling in representation fusion,
denoted as "Rpsg(q, p̄i) = 1/k," which replaces
Rpsg in Eq. 8 with 1

k . Our findings indicate that
simply incorporating average pooling of passage
representations does not yield substantial gains, as
it only achieves comparable performance to the
model without EPGV. Notably, the performance of
"Rpsg(q, p̄i) = 1/k" and the model without EPGV

are inferior to that of our model, illustrating the
utility and superiority of cooperative fusion of rele-
vance scores from selectors over independent rep-
resentation fusion. Lastly, we explore the use of
mean-pooling operation for calculating attention
scores and observe that it performs worse than max-
pooling.

The impact of passage length When construct-
ing the training data, the length of the split passage
plays a vital role as it also indirectly controls the

# PSG NDCG@10 MAP MRR@10

1 0.389 0.340 0.331
2 0.440 0.384 0.377
3 0.453 0.397 0.390
4 0.451 0.390 0.387

Table 3: The performance across different numbers of
selected passages on MS-MARCO Dev.

Query: how many mm is a nickel coin

PID Content Rank / Rpsg

0 ... Nickel United States Value 0.05
U. S. dollar Mass 5.000 g, Diameter
21.21 mm (0.835 in)...

1 / 0.954

2 ... Its diameter is .835 inches (21.21
mm) and its thickness is .077 inches
(1.95 mm)...

2 / 0.934

1 ...War Nickels" (mid-1942 to 1945):
56% copper, 35% silver, 9% man-
ganese Silver 1942 to 1945 Wartime
Nickels only...

3 / 0.759

11 ...The half dime was originally
struck from 1794 until 1805, though
none were dated 1798, 1799, or
1804....

20 / 0.468

Table 4: A case study from MS-MARCO dataset. The
term "PID" refers to the position number of a passage
that has been split from the test document. Rpsg denotes
relevance scores provided by the passage selector while
"Rank" signifies the rank of the passage based on these
relevance scores.

number of passage candidates for each document.
To investigate the impact of the passage length, we
test the performance of our method across differ-
ent passage lengths and the results are shown in
Figure 3. We can find that the performance of our
model improves until the passage length reaches
72, and then drops when the passage length keeps
increasing. The reason might be that the selec-
tor needs to rank fewer candidates as the passage
length increases at first and it could select more
accurate passages that are relevant to the query for
matching, but when the length of the passage be-
comes larger enough, the noise will be brought to
matching as some content in each passage could be
irrelevant to the query.

The impact of the number of selected passages
We are also curious about the impact of the num-
ber of selected passages. We test the performance
of our method with different numbers of selected
passages and the evaluation results are illustrated
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in Table 3. We can observe that when the perfor-
mance of our model was significantly improved as
the number of selected passages increased at the
beginning (≤ 3), and then began to drop when the
number kept increasing. The results are rational be-
cause more passage entries can provide more useful
information for response matching, but when the
passage becomes enough, query-irrelevant noise
will be brought to matching.

Case study To verify the effectiveness of our cas-
cade model in document ranking, we show a ranker
example from MS-MARCO dataset in Table 4. For
the input query how many mm is a nickel coin, our
FAA ranks the positive document at first and it is
split into 24 passages. We show the top-3 passages
selected by our passage selector and a random pas-
sage that is not selected. We can find that the top
2 passages harbor a significant amount of valuable
query-relevant information, encompassing terms
like "nickel" and "diameter." Conversely, the fi-
nal passage, which displays lesser relevance to the
query, receives a lower relevance score as deter-
mined by the passage selector. This case serves
as an illustration of our model’s proficiency in se-
lecting pertinent content within the document and
ranking it based on query relevance.

5 Conclusion

In this work, we propose FAA, a cascade ranking
model with a fine-grained attention alignment and
cooperative matching representation. Our model
utilizes the fine-grained attention alignment ap-
proach to train the passage selector and fuses the
passage-level relevance scores into document rank-
ing to produce cooperative matching representation.
The evaluation results on MS MARCO and TREC
DL demonstrate the effectiveness of FAA.

6 Limitations

While our approach effectively mitigates query la-
tency through a cascade ranking paradigm, it neces-
sitates additional computational resources during
training due to the need for attention score calcu-
lation and alignment in the optimization process.
Additionally, our model incorporates passage-level
relevance scores into the ranker, generating a coop-
erative matching representation during document
ranking, which could marginally augment the in-
ference time. In our future endeavors, we aim to
explore more efficient methodologies that can fur-
ther improve ranking efficiency. Furthermore, it

is worth noting that our approach has been tested
using specific backbone models. To fully evaluate
the effectiveness of our method, it is essential to
conduct experiments with a diverse range of back-
bone models, which remains an avenue for further
exploration.
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