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Abstract

Self-training emerges as an important research
line on domain adaptation. By taking the
model’s prediction as the pseudo labels of
the unlabeled data, self-training bootstraps the
model with pseudo instances in the target
domain. However, the prediction errors of
pseudo labels (label noise) challenge the per-
formance of self-training. To address this
problem, previous approaches only use reli-
able pseudo instances, i.e., pseudo instances
with high prediction confidence, to retrain the
model. Although these strategies effectively
reduce the label noise, they are prone to miss
the hard examples. In this paper, we propose a
new self-training framework for domain adap-
tation, namely Domain adversarial learning en-
hanced Self-Training Framework (DaMSTF).
Firstly, DaMSTF involves meta-learning to es-
timate the importance of each pseudo instance,
so as to simultaneously reduce the label noise
and preserve hard examples. Secondly, we de-
sign a meta constructor for constructing the
meta validation set, which guarantees the ef-
fectiveness of the meta-learning module by im-
proving the quality of the meta validation set.
Thirdly, we find that the meta-learning mod-
ule suffers from the training guidance vanish-
ment and tends to converge to an inferior op-
timal. To this end, we employ domain ad-
versarial learning as a heuristic neural net-
work initialization method, which can help the
meta-learning module converge to a better op-
timal. Theoretically and experimentally, we
demonstrate the effectiveness of the proposed
DaMSTF. On the cross-domain sentiment clas-
sification task, DaMSTF improves the perfor-
mance of BERT with an average of nearly 4%.

1 Introduction

Domain adaptation, which aims to adapt the model
trained on the source domain to the target domain,

† contributed equally to this work
∗ corresponding author

attracts much attention in Natural Language Pro-
cessing (NLP) applications(Du et al., 2020; Chen
et al., 2021; Lu et al., 2022). Since domain adapta-
tion involves labeled data from the source domain
and unlabeled data from the target domain, it can
be regarded as a semi-supervised learning prob-
lem. From this perspective, self-training, a classi-
cal semi-supervised learning approach, emerges a
prospective research direction on domain adapta-
tion (Zou et al., 2019; Liu et al., 2021).

Self-training consists of a series of loops over
the pseudo labeling phase and model retraining
phase. In the pseudo labeling phase, self-training
takes the model’s prediction as the pseudo labels for
the unlabeled data from the target domain. Based
on these pseudo-labeled instances, self-training re-
trains the current model in the model retraining
phase. The trained model can be adapted to the
target domain by repeating these two phases. Due
to the prediction errors, there exists label noise in
pseudo instances, which challenges self-training
approaches (Zhang et al., 2017).

Previous self-training approaches usually in-
volve a data selection process to reduce the la-
bel noise, i.e., preserving the reliable pseudo in-
stances and discarding the remaining ones. In gen-
eral, higher prediction confidence implies higher
prediction correctness, so existing self-training ap-
proaches prefer the pseudo instances with high pre-
diction confidence (Zou et al., 2019; Shin et al.,
2020). However, fitting the model on these easy
pseudo instances cannot effectively improve the
model, as the model is already confident about its
prediction. On the contrary, pseudo instances with
low prediction confidence can provide more infor-
mation for improving the model, but contain more
label noise at the same time.

To simultaneously reduce the label noise and
preserve hard examples, we propose to involve in
meta-learning to reweight pseudo instances. Within
a learning-to-learn schema, the meta-learning mod-
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ule learns to estimate the importance of every
pseudo instance, and then, allocates different in-
stance weights to different pseudo instances. Ide-
ally, hard and correct pseudo instances will be as-
signed larger weights, while easy or error pseudo
instances will be assigned smaller weights. To
achieve this, the process in the meta-learning mod-
ule is formulated as a bi-level hyperparameters op-
timization problem (Franceschi et al., 2018), where
instance weights are taken as the hyperparameters
and determined by a series of meta-training steps
and meta-validation steps. In the meta-training
step, the model is virtually updated on the meta-
training set with respect to the current instance
weights. In the meta validation step, we validate
the virtually updated model with an unbiased meta
validation set, and optimize the instance weights
with the training guidance back-propagated from
the validation performance.

According to the analysis in (Ren et al., 2018),
a high-quality meta validation set, which is clean
and unbiased to the test set, is important for the ef-
fectiveness of the meta-learning algorithm. To this
end, we propose a meta constructor oriented to the
domain adaptation scenario. At each self-training
iteration, the meta constructor selects out the most
reliable pseudo instances and inserts them into the
meta validation set. Since the instances in the meta
validation set are all from the target domain and
vary along with the self-training iterations, the data
distribution in the constructed meta validation set
approximates the one in the target domain. Thus,
the meta constructor reduces the bias of the meta
validation set. On the other hand, selecting the
most reliable pseudo instances can reduce the label
noise, making the meta validation set cleaner.

Another challenge for the meta-learning module
is the training guidance vanishment, referring to
the gradient vanishment on hyperparameters. With
a theoretical analysis, we attribute this problem
to the gradient vanishment on the meta validation
set. To this end, we introduce a domain adversarial
learning module to perturb the model’s parameters,
thereby increasing the model’s gradients on the
meta validation set. In DaMSTF, we also interpret
the domain adversarial learning module as a heuris-
tic neural network initialization method. Before
the model retraining phase, the domain adversarial
learning module first initializes the model’s param-
eters by aligning the model’s feature space. For
domain adaptation, the global optimal refers to the

state where the model’s parameters are agnostic
to the domain information but discriminative to
the task information. Thus, the training process in
the domain adversarial learning module makes the
model’s parameters closer to the global optimal,
serving as a heuristic neural network initialization.

Our contributions can be summarized as follows:

• We propose a new self-training framework
to realize domain adaptation, named Domain
adversarial learning enhanced Meta Self
Training Framework (DaMSTF), which involves
meta-learning to simultaneously reduce the label
noise and preserve hard examples.

• We propose a meta constructor to construct the
meta validation set, which guarantees the effec-
tiveness of the meta-learning module.

• We theoretically point out the training guidance
vanishment problem in the meta-learning mod-
ule and propose to address this problem with a
domain adversarial learning module.

• Theoretically, We analyze the effectiveness of
the DaMSTF in achieving domain adaptation.
Experimentally, we validate the DaMSTF on two
popular models, i.e., BERT for the sentiment
analysis task and BiGCN for the rumor detection
task, with four benchmark datasets.

2 Problem Formulation

We denote the set that involves all instances in
the source domain as DS , and denote the set that
contains all instances in the target domain as DT .
From DS , we can obtain a labeled dataset for train-
ing, i.e., DS = {(xi, yi)}Ni=1. In text classification
tasks, the input xi is a text from the input space
X , the corresponding label yi is a C-dimensional
one-hot label vector, i.e., yi ∈ {0, 1}C , where C
is the number of classes. Based on DS , we learn
a hypothesis, h : X → {0, 1}C . Since DS comes
from DS (i.e., DS ⊆ DS), the learned hypothesis
h usually performs well on DS . When we transfer
the hypothesis h from DS to DT , h may perform
poorly due to the domain shift. The goal of domain
adaptation is to adapt the hypothesis h to DT .

In general, unlabeled text in the target domain
is available (Gururangan et al., 2020). We de-
note the unlabeled target domain dataset as Du

T =
{(xm)}Um=1, where xm ∈ X is a text input. In
some cases, we can even access an in-domain
dataset, i.e., a small set of labeled data in the target
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Algorithm 1 DaMSTF
Require: labeled source dataset DS , unlabeled target dataset

Du
T , in-domain dataset Dl

T

1: Pretrain θ on DS , DM ← Dl
T

2: while the termination criteria is not met do
3: Compute pseudo label ŶT on Du

T

4: H = −ŶT ∗ log(ŶT )
5: Sort theDp

T with respect toH in ascending order, and
denote the first K data as DE , the remaining data as Dtr

T

6: DM = Dl
T ∪DE

7: DOMAINADVERSARIAL(DS ∪Du
T , θF , ϑ)

8: METALEARNING(DS ∪Dtr
T , θ, w)

9: end while
10: function METALEARNING(D, θ, w)
11: for training batch B in D do
12: for t=1→ TM do
13: Compute θ̂(wt) via Eq. (3)
14: Compute weight wt+1 via Eq. (6)
15: end for
16: w∗ ← wTM , update θ with Eq. (7)
17: end for
18: return θ, w
19: end function
20: function DOMAINADVERSARIAL(D, θF , ϑ)
21: for training batch B in D do
22: for t=1→ TD do
23: ϑ = ϑ− η1OϑLDA(θF , ϑ,B)
24: end for
25: for t=1→ TG do
26: θF = θF + η2OθLDA(θF , ϑ,B)
27: end for
28: end for
29: return θ, ϑ
30: end function

domain, which is denoted as Dl
T = {(xj , yj)}Lj=1

(xi ∈ X and yi ∈ {0, 1}C). When Dl
T = ∅,

the task is a case of unsupervised domain adap-
tation (Wilson and Cook, 2020). Otherwise, the
task is a case of semi-supervised domain adapta-
tion (Saito et al., 2019).

3 Methodology

3.1 Model Overview

DaMSTF inherits the basic framework of self-
training, which consists of iterations over the
“Pseudo Labeling” phase and the “Model Retrain-
ing” phase. To achieve domain adaptation, self-
training simultaneously optimizes the model’s pa-
rameters and the pseudo labels with Eq. (1).

min
θ,ŶT

Lst(θ, ŶT )=
∑

(xk,yk)∈DS

E(Φ(xk; θ), yk)+

∑

xi∈Du
T

E(Φ(xi; θ), ŷ(xi)) (1)

where ŶT = [ŷ1, ŷ2, . . . , ŷ|DuT |]
T denotes the

pseudo label set of the unlabeled target domain

data, Φθ denotes the model under the hypothesis
(h), and θ denotes the model’s parameters.

In the pseudo labeling phase, DaMSTF predicts
the unlabeled data in the target domain, and the
predictions are taken as pseudo labels. Then, these
pseudo instances are sent to the meta construc-
tor. For the instances with high prediction con-
fidence, the meta constructor uses them to expand
the meta validation set. For the remaining ones,
the meta constructor uses them to construct the
meta-training set.

In the model retraining phase, DaMSTF first
trains the model in the domain adversarial training
module to align the feature space. Then, the model
is trained in the meta-learning module. Afterward,
DaMSTF backs to the pseudo labeling phase to
start another self-training iteration.

Fig. 1 shows the structure of DaMSTF, and Al-
gorithm 1 presents the corresponding pseudo-code.

3.2 Meta-Learning Module

As described in Fig. 1, the meta-learning module
involves a series of loops over the “Meta Training”
step and “Meta Validation” step to optimize the
hyper-parameters and the model parameters.
Meta Training. The training batch in the meta
training phase, i.e., B = {(x1, y1), (x2, y2), . . .},
merges the labeled data from the source domain
with the pseudo labeled data from the target do-
main. The supervision on the pseudo instances is
the pseudo-label, and the supervision on the labeled
instances is the ground-truth label. We compute
the risk loss on the training batch with Eq. (2):

LT (θ,wt,B) =
1

|B|
∑

xi,yi∈B
σ(wt

i)E(Φ(xi; θ), yi)(2)

where |B| is the size of B, E is the loss func-
tion. Φθ denotes the model under the hypoth-
esis (h), and θ denotes the model’s parameters.
w1,w2, . . . ,w|B| are the extra hyperparameters in-
troduced in the meta-learning module, i.e., a set
of instance weights indicating the importance of
each training example. σ represents the sigmoid
function, which scales the instance weights into
[0, 1]. In the meta training step, we derive a virtual
update on the model with Eq. (3):

θ̂(wt) = θ − ηOθLT (θ,wt,B) (3)

where η is the learning rate.
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Figure 1: An overview of the DaMSTF. Red arrows indicate the training process of the model, while blue and
green arrows indicate the data flow.

Meta Validation After being virtually updated in
the meta training phase, the model is validated on
the meta validation set DM with Eq. (4):

LM (θ̂(wt)) =
1

|DM |
·

∑

xj ,yj∈DM

E(Φ(xj ; θ̂(w
t)), yj) (4)

where E is the loss function, |DM | is the size of
the meta validation set. By backpropagating the
performance on the meta validation set, we derive
the training guidance for updating the instance
weights on the training batch as below:

∂LM (θ̂(w))

∂w
=

∂LM (θ̂(w))

∂θ̂(w)
· ∂θ̂(w)

∂w
(5)

To reduce the computation cost, we use the ap-
proximation technique in (Chen et al., 2021) to
compute the training guidance (i.e., ∂LM (θ̂(w))

∂w ).
Based on the computed training guidance, we

obtain the optimal instance weights (marked as
w∗) with gradient descent algorithm, as described
in Eq. (6). Further, we update θ with Eq. (7):

wt+1 = wt − γ · ∂LM (θ̂(w))
∂w

(6)

θt+1 = θt − ηOθLT (θ,w∗,B) (7)

After the above process is completed on the train-
ing batch B, another training batch will be selected

to start the meta-learning phase again, as shown in
lines 15-21 in Algorithm 1.

3.3 Meta Constructor
In previous studies, the meta validation set is con-
structed by collecting a set of labeled data that
have the same distribution as the test set (Ren et al.,
2018; Shu et al., 2019). However, such practice is
not acceptable in domain adaptation, as we are not
aware of the data distribution of the target domain
during the training phase.

To this end, we propose a meta constructor to
construct a meta validation set that approximates
the target domain. Specifically, we select the reli-
able instances from the pseudo-labeled data as the
instances in the meta validation set. To evaluate
the reliability of each of the pseudo instances, we
compute their prediction entropy via Eq. (8):

H(xi) = −
C∑

c=1

(Φ(c|xi; θ) · log(Φ(c|xi; θ))) (8)

where Φ(c|xi; θ) is the probability of the instance
xi belongs to the cth category.

In general, a lower prediction entropy indicates a
higher prediction correctness (Nguyen et al., 2020).
Thus, we first sort the Dp

T (pseudo labeled dataset)
in ascending order according to their prediction
entropy. Then, the top-rankedK instances, denoted
as DE , are selected as the validation instances, and
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the remaining pseudo samples, denoted as Dtr
T , are

preserved in the meta training set.
In the semi-supervised domain adaptation, we

take the in-domain dataset to initialize the meta
validation dataset and use DE to expand the meta
validation set along with the self-training iterations.
In the unsupervised domain adaptation, where the
in-domain dataset is empty, we directly take DE

as the meta validation set. The above process is
detailed in lines 2-8 of Algorithm 1.

Here, meta constructor is an important knot that
combines meta-learning and self-training. On the
one hand, traditional machine learning approaches
cannot exploit the pseudo instances with high pre-
diction entropy, due to the inherent label noise. In
this case, the meta constructor uses them to con-
struct the meta training set, as the meta-learning
module is tolerant to the label noise in the meta-
training set. On the other hand, pseudo instances
with low prediction entropy cannot provide extra
information for improving the model but contain
less label noise. In this case, the meta constructor
uses them to validate the model, i.e., uses them to
construct or expand the meta validation set, which
can improve the quality of the meta validation set.

3.4 Domain Adversarial Learning

As theoretically explained in § 4.1, the training
guidance would not be indicative if the model’s
gradient on the validation instance is negligible.
The presence of domain adversarial learning can
prevent the gradient vanishment on the meta valida-
tion set, thereby preventing the training guidance
vanishment. On the other hand, domain adversarial
learning can explicitly align the feature space along
with the self-training iterations.

To present the details in the domain adversarial
learning module, we divide the model Φ(•; θ) into
two parts: the feature extraction layer ΦF (•; θF )
and the task-specific layer Φc(•; θc). Usually, θc
is the parameters of the last layer in the model,
whose output is the prediction probability of each
category. The prediction process in the model is:

Φ(xi; θ) = Φc(ΦF (xi; θF ); θc) (9)

Following Ganin et al. (2016), we introduce an
extra domain discriminator to discriminate the in-
stances’ domains, i.e., ϕ(•;ϑ), where ϑ is the pa-
rameters. On a training batch B, the risk loss for
domain adversarial learning is:

LDA(θF , ϑ,B) =
1

|B|
∑

xi,di∈B
E(ϕ(ΦF (xi; θF );ϑ), di) (10)

where di is a one-hot vector representing the do-
main of xi, E is the cross-entropy function. The
specific training process of the proposed domain
adversarial learning module is depicted in Algo-
rithm 1, lines 25-35.

4 Theoretical Analysis

This section first introduces the training guidance
vanishment problem and then explains the effec-
tiveness of DaMSTF in achieving domain adapta-
tion. The proofs are detailed in Appendix. A and
Appendix. B.

4.1 Training Guidance Vanishment

Theorem 1. Let wi be the weight of the training
instance i, denoted as (xi, yi), in B, the gradient
of wi on LM can be represented by the similarity
between the gradients on training instance i and
the gradients on the meta validation set:

∂LM (θ̂(w))

∂wi
= − η

|B| ·[
1

|DM |

|DM |∑

j=1

~gθ̂(xj , yj)
T ]·~gθ(xi, yi)

where 1
|DM |

∑|DM |
j=1 ~gθ̂(xj , yj)

T is the gradients of

θ̂ on DM , ~giθ(xi, yi) is the gradients of θ on the
training instance i, η is the learning rate in Eq. (3)

According to Theorem 1, ∂LM (θ̂(w))
∂wi

is not
indicative for every training instance if the
model’s gradient on the meta validation set (i.e.,

1
|DM |

∑|DM |
j=1 ~gθ̂(xj , yj)) is very small, which we

named as the training guidance vanishment prob-
lem. In DaMSTF, the meta-learning module is
challenged by the training guidance vanishment
problem from the following aspects.

Firstly, the meta validation set is much smaller
than the meta training set, so the model converges
faster on the meta validation set than that on the
meta training set. Considering the optimization on
neural networks is non-convex, the model can con-
verge to an inferior optimal if it converges too early
on the meta validation set. In this case, the model’s
gradient on the meta validation set is very small,
which results in the training guidance vanishment.

Secondly, the instances in DE are the ones with
small prediction entropy. Since the supervision for
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the pseudo instances is exactly the model’s predic-
tions, lower prediction entropy results in lower risk
loss. Then, the gradients back-propagated from the
risk loss are negligible, which also results in the
training guidance vanishment.

4.2 Theoretical Explanation of DaMSTF
The disagreement and H∆H-distance were first
proposed in Ben-David et al. (2010) and have been
widely applied to analyze the effectiveness of do-
main adaptation approaches (Saito et al., 2019; Du
et al., 2020). For any two different hypotheses h1

and h2, disagreement εD(h1, h2) quantifies the dis-
crepancy of their different predictions on a specific
dataset D. When h2 is an ideal hypothesis that can
correctly map all instances in D, εD(h1, h2) also
represents the error rate of the hypothesis h1 on
dataset D, abbreviated as εD(h1). H∆H-distance
is a metric for evaluating the divergence of the data
distribution between two datasets, which is only
relevant to the input space of the datasets.

Theorem 2. Assume there exists an ideal hypoth-
esis, denoted as h∗, which correctly maps all in-
stances in the target domain to their groud-truth
labels. In the self-training iteration t, let εDlT (ht)

and εDE (ht) be the error rate of the hypothesis ht

on Dl
T and DE , respectively. Then, the error rate

of the hypothesis ht on the target domain is upper
bounded by:

εDT (ht) ≤ εDl
T
∪DE

(ht) +
1

2
dH∆H(DT , Dl

T ∪DE)

+ρ · εDE (h∗, ht−1)

where ρ = |DE |
|DlT |+|DE |

is a coefficient related to the

size of Dl
T and DE , εDlT∪DE (ht) is the error rate

of the hypothesis ht on the union of Dl
T and DE .

Theorem 3. Assume there exists three datasets,
D1, D2, D3, and let X1, X2, X3 denotes the set
of input cases in these three datasets, i.e., X1 =
{xi|(xi, yi) ∈ D1}, X2 = {xi|(xi, yi) ∈ D2},
X3 = {xi|(xi, yi) ∈ D3}. If X1 ⊆ X2 ⊆ X3,
then

dH∆H(D2, D3) ≤ dH∆H(D1, D3)

holds

Based on Theorem 2, we demonstrate the effec-
tiveness of DaMSTF from the following aspects.

First of all, expanding the meta validation set
can decrease the second term in Theorem 2, i.e.,

1
2dH∆H(DT , Dl

T ∪ DE). According to Theo-
rem 3, dH∆H(DT , Dl

T ∪ DE) is smaller than
dH∆H(DT , Dl

T ), as the input cases in DE and Dl
T

are all belong to the input cases in the DT . Thus,
expanding the meta validation set can reduce the
upper bound of εDT (ht)

What’s more, as DE varies in each self-training
iteration, the DaMSTF can leverage the diversity
of the unlabeled data in the target domain. Thus,
dH∆H(DT , Dl

T ∪DE) is close to dH∆H(DT , Du
T )

in the whole training process.
Last but not least, by selecting examples that

have the lowest prediction entropy, the error rate
on DE is much lower than that of the expected
error rates on Dp

T , formally, εDE (h∗, ht−1) <
εDpT

(h∗, ht−1). In other words, the data selection
process in the meta constructor reduces the third
term in Theorem 2,i.e., ρ · εDE (h∗, ht−1).

5 Experiments

We provide the experiment settings in § 5.1 and
compare DaMSTF with previous domain adapta-
tion approaches in § 5.2. In § 5.3, we analyze the
effectiveness of the meta constructor and the do-
main adversarial learning module with an ablation
study. § 5.4 validate that exposing more unlabeled
data to DaMSTF can improve the domain adapta-
tion performance (Theorem 3). Appendix E pro-
vides extra experiments of the domain adversarial
learning module in preventing the training guid-
ance vanishment problem, and the meta-learning
module in highlighting the hard and correct pseudo
instances.

5.1 Experiment Settings

Dataset On the rumor detection task, we con-
duct experiments with the public dataset TWIT-
TER (Zubiaga et al., 2016). As the instances in the
TWITTER dataset are collected with five topics,
we categorized the instances into five domains. On
the sentiment classification task, we conduct exper-
iments withs the public dataset Amazon (Blitzer
et al., 2007). We follow the method in (He et al.,
2018) to preprocess the Amazon dataset, and the
resultant dataset consists of 8,000 instances from
four domains: books, dvd, electronics, and kitchen.
More statistics about the TWITTER dataset and
the Amazon dataset can be found in Appendix D.

Implementation Details The base model on the
rumor detection task is BiGCN (Bian et al., 2020),
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while the base model on the sentiment classifica-
tion task is BERT (Devlin et al., 2019). On the
benchmark datasets, we conduct domain adapta-
tion experiments on every domain. When one do-
main is taken as the target domain for evaluation,
the rest domains are merged as the source domain.
More impelementation details are provided in Ap-
pendix C.

Comparing Methods Since the DaMSTF can
be customized to both semi-supervised and
unsupervised domain adaptation scenarios, the
baselines contain both unsupervised and semi-
supervised domain adaptation approaches. For the
unsupervised domain adaptation, Out (Chen et al.,
2021), DANN (Ganin et al., 2016) and CRST (Zou
et al., 2019) are selected as the baselines, while
In+Out (Chen et al., 2021), MME (Saito et al.,
2019), BiAT (Jiang et al., 2020), and Wind (Chen
et al., 2021) are selected as the baselines for the
semi-supervised domain adaptation. Out and
In+Out are two straightforward ways for realizing
unsupervised and semi-supervised domain adapta-
tion, where Out means the base model is trained on
the out-of-domain data (i.e., labeled source domain
data) and In+Out means the base model is trained
on both the in-domain and the out-of-domain
data. The core of DANN is an adversarial learning
algorithm that takes the domain classification loss
as an auxiliary loss. CRST is also a self-training
method that uses a label regularization technique
to reduce the label noise from mislabeled data.
WIND is a meta-learning-based domain adaptation
approach that optimizes the weights of different
training instances. The difference between the
WIND and DaMSTF lies in that, (i) WIND only
use the labeled source data to construct the meta
training set, while the meta training set in the
DaMSTF contains both the labeled data from
the source domain and the pseudo data from the
target domain. (ii) WIND does not consider the
training guidance vanishment problem and the bias
between the test set (i.e., target domain) and the
meta validation set.

5.2 Results

To validate the effectiveness of the meta self-
training, we conduct unsupervised and semi-
supervised domain adaptation experiments on two
benchmark datasets, i.e., BiGCN on TWITTER,
and BERT on Amazon. Since the rumor detec-

tion task focuses more on the ‘rumor’ category,
we evaluate different models by their F1 score in
classifying the ‘rumor’ category. On the sentiment
classification task, the prediction accuracy of dif-
ferent classes is equally important, so we take the
macro-F1 score to evaluate different models. For
semi-supervised domain adaptation, 100 labeled
instances in the target domain are taken as the in-
domain dataset. The experiment results are listed
in Tab. 1, Tab. 2.

As shown in Tab. 1, Tab. 2, DaMSTF outper-
forms all baseline approaches on all benchmark
datasets. On the rumor detection task, DaMSTF
surpasses the best baseline approaches (CRST for
unsupervised domain adaptation, WIND for semi-
supervised domain adaptation) by nearly 5% on
average. For the “Fer.” domain, where most ap-
proaches perform worse than the Out and In+Out,
DaMSTF still achieves an F1 value of 0.629, which
is 40% higher than that of the In+Out. On the
sentiment classification task, DaMSTF also outper-
forms other approaches. Under the unsupervised
domain adaptation scenario, DaMSTF surpasses
the best baseline approach (DANN on the Amazon
dataset) by nearly 2% on average. Under the semi-
supervised domain adaptation scenario, DaMSTF
surpasses Wind, the best baseline approach on the
Amazon dataset, by nearly 3% on average.

5.3 Ablation Study

This subsection presents an ablation study to un-
derstand the effectiveness of the DaMSTF. As illus-
trated in § 3 and § 4.2, DaMSTF combines meta-
learning and self-training via two strategies: (i)
expanding the meta validation set with a meta con-
structor; (ii) preventing the training guidance van-
ishment problem with a domain adversarial module.
Thus, we separately remove the above strategies
from the DaMSTF, yielding three different variants,
namely DaMSTF - w/o E, DaMSTF - w/o D, and
DaMSTF - w/o D, E. Compared with DaMSTF,
DaMSTF - w/o E does not select examples to
expand the meta validation set, which means all
pseudo instances are preserved to the meta training
set. DaMSTF - w/o D removes the domain adver-
sarial module from the DaMSTF. DaMSTF - w/o D,
E removes both two strategies. Other experiment
settings are the same as § 5.2. We summarize the
results in Tab. 3, Tab. 4.

As shown in Tab. 3 and Tab. 4, both strategies
are indispensable for the effectiveness of DaMSTF,
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Target
Domain

Unsupervised domain adaptation Semi-Supervised domain adaptation
Out DANN CRST DaMSTF In+Out MME BiAT Wind DaMSTF

Cha. 0.561 0.501 0.563 0.635 0.586 0.601 0.547 0.552 0.649
Fer. 0.190 0.387 0.446 0.524 0.200 0.081 0.256 0.291 0.629
Ott. 0.575 0.544 0.709 0.753 0.599 0.612 0.614 0.633 0.843
Syd. 0.438 0.461 0.673 0.717 0.424 0.677 0.661 0.628 0.731
Mean 0.441 0.473 0.598 0.657 0.452 0.493 0.520 0.526 0.714

Table 1: F1 score on the TWITTER

Target
Domain

Unsupervised Domain Adaptation Semi-Supervised Domain Adaptation
Out DANN CRST DaMSTF In+Out MME BiAT Wind DaMSTF

books 0.882 0.887 0.878 0.931 0.890 0.896 0.891 0.890 0.947
dvd 0.831 0.864 0.845 0.917 0.882 0.893 0.888 0.904 0.935
electronics 0.871 0.914 0.877 0.925 0.918 0.906 0.926 0.917 0.941
kitchen 0.863 0.922 0.868 0.927 0.925 0.93 0.934 0.933 0.947
Mean 0.862 0.897 0.867 0.925 0.904 0.906 0.910 0.911 0.942

Table 2: Macro-F1 score on the Amazon dataset

Cha. Fer. Ott. Syd. Mean
DaMSTF 0.649 0.629 0.843 0.731 0.713
- w/o D 0.585 0.401 0.782 0.724 0.623
- w/o E 0.600 0.542 0.694 0.685 0.630

- w/o D, E 0.569 0.352 0.633 0.631 0.547

Table 3: Ablation Study on TWITTER

books dvd electronics kitchen Mean
DaMSTF 0.947 0.935 0.941 0.947 0.942
- w/o D 0.899 0.917 0.924 0.935 0.918
- w/o E 0.917 0.929 0.934 0.945 0.931

- w/o D, E 0.887 0.896 0.919 0.931 0.908

Table 4: Ablation Study on the Amazon dataset

and removing either strategy can result in perfor-
mance degeneration. Removing the domain adver-
sarial learning module (DaMSTF - w/o D) leads
to an average decrease from 0.713 to 0.623 on the
TWITTER dataset and from 0.942 to 0.918 on the
Amazon dataset. Without expanding the meta vali-
dation set, DaMSTF - w/o E performs worse than
DaMSTF on both the TWITTER dataset (0.630 vs.
0.731 on average) and the Amazon dataset(0.931 vs.
0.942 on average). After removing both strategies,
DaMSTF suffers a severe performance deteriora-
tion on both benchmark datasets.

5.4 Effect of the unlabeled dataset size

As illustrated in § 4.2, the second term
dH∆H(DT , Dl

T ∪DE) is close to dH∆H(DT , Du
T )

in the whole training process. From this perspec-
tive, increasing the size of the unlabeled dataset can
improve the performance. To validate this, we sepa-
rately expose 0%, 5%, 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%, 100% of the unlabeled data
during the training. These new unlabeled dataset

are denote as Du
T (0%), Du

T (5%), . . . , Du
T (100%)

respectively. The experiments are conducted on
"Ott." Domain of TWITTER and the results are
presented in Fig. 2.
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Figure 2: The impact of the size of Du
T .

From Fig. 2, we observe that the model performs
poorly when using a small proportion of the un-
labeled data in the training process. For example,
exposing Du

T (5%) to the DaMSTF only achieves
an F1 score of 0.701, which is 14.2% lower than the
0.843 achieved by exposing the Du

T (100%). From
0% to 50%, increasing the exposure ratio consis-
tently improves the F1 score. The improvements
saturate after more than 50% of the unlabeled data
are exposed, which can be explained by the law of
large numbers in the statistic theory (Kraaikamp
and Meester, 2005). An exposure ratio of 50%
can be regarded as a large number for approach-
ing the unlabeled dataset. Thus, Du

T (50%) is close
to Du

T (100%) and dH∆H(DT , Du
T (50%)) approxi-

mates dH∆H(DT , Du
T (100%)), which leads to the

performance saturation.
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6 Related Work

6.1 Domain Adaptation
Inspired by the taxonomy in Ramponi and Plank
(2020), we categorize the domain adaptation ap-
proaches into two categories: Feature-Alignment
approaches and Data-Centric approaches. Feature-
Alignment approaches (Tzeng et al., 2014; Ganin
et al., 2016; Saito et al., 2019) focus on align-
ing the feature space across domains. The
most well-known feature-alignment approach is
DANN (Ganin et al., 2016), which aligns the fea-
ture space by min-max the domain classification
loss. With similar efforts, MME (Saito et al.,
2019) min-max the conditional entropy on the un-
labeled data. VAT (Miyato et al., 2018), as well as
BiAT (Jiang et al., 2020), propose to decouple the
min-max optimization process, which first imposes
a gradient-based perturbation on the input space to
maximize the risk loss and then minimize the final
objective on the perturbed input cases. In contrast,
Data-Centric approaches exploit the unlabeled data
in the target domain or select the relevant data from
the source domain. To select relevant data, (Moore
and Lewis, 2010; Plank and van Noord, 2011) de-
sign a technique based on topic models for mea-
suring the domain similarity. To exploit the unla-
beled data, pseudo labeling approaches, including
self-training (Zou et al., 2019), co-training (Chen
et al., 2011), and tri-training (Saito et al., 2017), are
widely applied and become an important direction.
In the research of self-training for domain adapta-
tion, many efforts are put into reducing the label
noise of pseudo instances (Zou et al., 2019, 2018;
Liu et al., 2021). Among them, CRST (Zou et al.,
2019) proposes a label regularization technique to
reduce label noise while CST (Liu et al., 2021)
takes Tsallis-entropy as a confidence-friendly reg-
ularize. In this paper, we propose to adopt meta-
learning to automatically reduce label noise.

6.2 Meta-Learning
Meta-learning is an emerging new branch in ma-
chine learning that focuses on providing better hy-
perparameters for model training, including but
not limited to better initial model parameters, e.g.,
MAML (Finn et al., 2017), better learning rates,
e.g., MetaSGD (Li et al., 2017), and better neural
network architect, e.g., DARTs (Liu et al., 2018).
Recent studies revealed the prospect of providing
better instance weights (Ren et al., 2018; Shu et al.,
2019; Kye et al., 2020). When using prototypi-

cal learning on the few-shot image classification
task, MCT (Kye et al., 2020) involves a reweigh-
ing process to obtain a more accurate class pro-
totype. Oriented to natural language processing
tasks, (Li et al., 2020; Chen et al., 2021) use the
optimization-based meta-reweighting algorithm to
refine the training set. Similar to DaMSTF, Wang
et al. (2021) also proposes to combine the meta-
learning algorithm and the self-training approach,
but their method focuses on the neural sequence
labeling task rather than the domain adaptation
task. Also, they do not consider the bias between
the meta-validation set and the test set, whereas
reducing such bias is an important contribution
of the DaMSTF. WIND (Chen et al., 2021) is a
meta-learning-based domain adaptation approach,
the differences between WIND and DaMSTF are
discussed in § 5.1.

7 Conclusion

This paper proposes an improved self-training
framework for domain adaptation, named DaMSTF.
DaMSTF extends the basic framework for self-
training approaches by involving a meta-learning
module, which alleviates the label noise problem in
self-training. To guarantee the effectiveness of the
meta-learning module, we propose a meta construc-
tor to improve the quality of the meta validation
set, and propose a domain adversarial module to
prevent the training guidance vanishment. Also,
the domain adversarial learning module can align
the feature space along with the self-training itera-
tions. Extensive experiments on two popular mod-
els, BiGCN and BERT, verify the effectiveness of
DaMSTF. The ablation studies demonstrate that the
meta-learning module, the meta constructor, and
the domain adversarial module are indispensable
for the effectiveness of the DaMSTF. The limita-
tion, ethical considerations, and social impacts of
this paper are in Appendix F and G.
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A Proof For Theorem 1

Theorem 1. Let wi be the weight of the training
instance i, denoted as (xi, yi), in B, the gradient
of wi on LM can be represented by the similarity
between the gradients on training instance i and
the gradients on the meta validation set:

∂LM (θ̂(w))

∂wi
= − η

|B| ·[
1

|DM |

|DM |∑

j=1

~gθ̂(xj , yj)
T ]·~gθ(xi, yi)

where 1
|DM |

∑|DM |
j=1 ~gθ̂(xj , yj)

T is the gradients of

θ̂ on DM , ~giθ(xi, yi) is the gradients of θ on the
training instance i, η is the learning rate in Eq. (3)

Proof. Based on Eq. (2) and Eq. (3) in § 3.2, we
conclude the pseudo updated parameters θ̂(w) as:

θ̂(w) = θ−η · 1

|B| ·
∑

xi,yi∈B
σ(wi) · ∂E(Φ(xi; θ), yi)

∂θ
(11)

We then take the gradient of wi on θ̂(w) as:

∂θ̂(w)

∂σ(wi)
= − η

|B| ·
∂E(Φ(xi; θ), yi)

∂θ
(12)

Based on Eq. (12), we derivate the gradient of wi
on LM as:

∂LM (θ̂(w))

∂wi
= [

∂LM (θ̂(w))

∂θ̂(w)
]T · [ ∂θ̂(w)

∂σ(wi)
] · [∂σ(w)

∂w
]

= [
1

|DM |
·
|DM |∑

j=1

∂E(Φ(xj ; θ̂(w)), yj)

∂θ̂(w)
]T ·

[− η

|B| ·
∂E(Φ(xi; θ), yi)

∂θ
] ·

[σ(wi)(1− σ(wi))]

= −ησ(wi)(1− σ(wi))

|B| ·

[
1

|DM |

|DM |∑

j=1

~gθ̂(xj , yj)
T ] ·

~gθ(xi, yi) (13)

where the second line is obtained by substituting
LM and θ̂ with Eq. (4) and Eq. (11). Substitute

~gθ̂(xj , yj) =
∂E(Φ(xj ;θ̂(w)),yj)

∂θ̂(w)
and ~gθ(xi, yi) =

∂E(Φ(xi;θ),yi)
∂θ and rearrange the terms, we obtain

the third line. The proof of Theorem 1 is completed.

B Proof For Theorem 2 and Theorem 3
Definition 1. disagreement is a measure to quan-
tify the different performances of two different hy-
potheses on a specific dataset. Denote the two
hypotheses as h1 and h2, and denote the specific
dataset as D, then the disagreement of h1 and h2
on D is formulated as:

εD(h1, h2) =
1

|D|

|D|∑

i=1

[
1

C
∗ ||h1(x)− h2(x)||1] (14)

where C is the number of classes, h1(x) and h2(x)
are one-hot vectors representing the models’ pre-
dictions.
Definition 2. H∆H-distance is a metric for eval-
uating the divergence of the data distribution be-
tween two datasets. Formally, H∆H-distance is
computed as:

dH∆H(D1, D2) = 2 sup
h1,h2∈H

|εD1(h1, h2)− εD2(h1, h2)|
(15)

where H is the hypothesis space and sup denotes
the supremum.

The concepts disagreement and H∆H-distance
are introduced in Definition 1 and Definition 2, re-
spectively. Based on the disagreement and H∆H-
distance, the proof for Theorem 2 is presented as
below.

Lemma 1. Assume there exists two dataset, i.e.,
D1, D2. Let X1 = {xi|(xi, yi) ∈ D1} and X2 =
{xi|(xi, yi) ∈ D2} denotes the set of input case
from D1 and D2. If X1 ⊆ X2, then

dH∆H(D1, D2) = 2 · |D2| − |D1|
|D2|

holds.

Proof. Let Ik(h1, h2) = 1
C ∗ ||h1(xk)− h2(xk)||1

denote the difference of two hypothesis h1 and h2

on instance xk, then the disagreement of h1 and h2

on the dataset D can be rewritten as:

εD(h1, h2) =
1

|D|

|D|∑

i=1

Ii(h1, h2)

Based on the Definition 2, the H∆H distance be-
tween D1 and D2 is as below:

dH∆H(D1, D2) = 2 sup
h1,h2∈H

|εD1(h1, h2)− εD1(h1, h2)|
(16)

Expanding the item εD1(h1, h2) and
εD1(h1, h2), we can obtain:
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|εD2(h1, h2)− εD1(h1, h2)|

= | 1

|X2|
∑

xi∈X2

Ii(h1, h2)− 1

|X1|
∑

xi∈X1

Ii(h1, h2)|

= | |X1|
|X2|

∗ 1

|X1|
∑

xi∈X1

Ii(h1, h2)

+
|X̄1|
|X2|

∗ 1

|X̄1|
∑

xk∈X̄1

Ii(h1, h2)

− 1

|X1|
∑

xi∈X1

Ii(h1, h2)|

= | 1

|X2|
∑

xk∈X̄1

Ik(h1, h2)

−|X2| − |X1|
|X2|

· 1

|X1|
∑

xi∈X1

Ii(h1, h2)|

=
1

|X2|
|

∑

xk∈X̄1

Ik(h1, h2)

−|X̄1|
|X1|

·
∑

xi∈X1

Ii(h1, h2)|

=
|X̄1|
|X2|
|εD̄1

(h1, h2)− εD1(h1, h2)| (17)

where X̄1 is the complement set of X1 in X2,
i.e, X̄1 = X2 − X1. Correspondingly, D̄1 =
{(xi, yi)|(xi, yi) ∈ D2 and xi ∈ X̄}, and thus
|X̄1| = |D̄1| holds.

As 0 ≤ εD̄1
(h1, h2) ≤ 1 and 0 ≤

εD1(h1, h2) ≤ 1 , we conclude the inequation be-
low:

|εD̄1
(h1, h2)− εD1(h1, h2)| ≤ 1 (18)

Since D1 and D̄1 do not overlap, εD̄1
(h1, h2) is

independent of εD1(h1, h2). Thus, we can maxi-
mize the left term in inequation (18) by finding two
hypotheses ĥ1 and ĥ2, which make εD̄1

(ĥ1, ĥ2) =

1 and εD1(ĥ1, ĥ2) = 0. Thus,

dH∆H(D1, D2)

= 2 sup
h1,h2∈H

|εD2(h1, h2)− εD1(h1, h2)|

= 2 · |X̄1|
|X2|

sup
h1,h2∈H

|εD̄1
(h1, h2)− εD1(h1, h2)|

= 2 · |D̄1|
|D2|

sup
h1,h2∈H

|εD̄1
(h1, h2)− εD1(h1, h2)|

= 2 · |D̄1|
|D2|
|εD̄1

(ĥ1, ĥ2)− εD1(ĥ1, ĥ2)|

= 2 · |D̄1|
|D2|

= 2 · |D2| − |D1|
|D2|

The proof of Lemma 1 is completed.

Theorem 2. Assume there exists an ideal hypoth-
esis, denoted as h∗, which correctly map all in-
stances in the target domain to their groud-truth
labels. In the self-training iteration t, let εDlT (ht)

and εDE (ht) be the error rate of the hypothesis ht

on Dl
T and DE , respectively. Then, the error rate

of the hypothesis ht on the target domain is upper
bounded by:

εDT (ht) ≤ εDl
T
∪DE

(ht) +
1

2
dH∆H(DT , Dl

T ∪DE)

+ρ · εDE (h∗, ht−1) (19)

where ρ = |DE |
|DlT |+|DE |

is a coefficient related to the

size of Dl
T and DE , εDlT∪DE (ht) is the error rate

of the hypothesis ht on the union of Dl
T and DE .

Proof. In the meta-learning module, the final ob-
jective is to minimize the risk loss on the meta
validation set Dl

T ∪ DE . Thus, according to the
learning theory (Ben-David et al., 2010), the upper
bound of the error rate on the test set (i.e., the target
domain) is:

εDT (ht) ≤ εDl
T
∪DE

(ht) +
1

2
dH∆H(DT , Dl

T ∪DE)

+εDT (h∗) + εDl
T
∪DE

(h∗) (20)

Because h∗ is an ideal hypothesis on the target
domain, εDT (h∗) = 0 holds true.

Expanding εDlT∪DE (h∗) with the definition in
Eq. (14),

εDl
T
∪DE

(h∗)

=
1

|Dl
T |+ |DE |

∑

(x,y)∈Dl
T
∪DE

[
1

C
∗ ||h∗(x)− y||1]

=
1

|Dl
T |+ |DE |

{
∑

(x,y)∈Dl
T

[
1

C
∗ ||h∗(x)− y||1]

+
∑

(x,y)∈DE

[
1

C
∗ ||h∗(x)− y||1]}

=
1

|Dl
T |+ |DE |

{|Dl
T | · εDl

T
(h∗) + |DE | · εDE (h∗)}

(21)

Substituting Eq. (21) into Eq. (20), we have:

εDT (ht)

≤ εDl
T
∪DE

(ht) +
1

2
dH∆H(DT , Dl

T ∪DE) + εDT (h∗)

+
1

|Dl
T |+ |DE |

{|Dl
T | · εDl

T
(h∗) + |DE | · εDE (h∗)}

(22)

1662



For any instance (x, y) ∈ DE , y is the pseudo label,
i.e., the prediction of hypothesis ht−1. Thus, we
have:

εDE (h∗)

=
1

|DE |
∑

(x,y)∈DE

[
1

C
∗ ||h∗(x)− y||1]

=
1

|DE |
∑

(x,y)∈DE

[
1

C
∗ ||h∗(x)− ht−1(x)||1]

= εDE (h∗, ht−1) (23)

Since Dl
T is a subset of DT , εDlT

(h∗) =

0 holds true. By eliminating εDT (h∗) and
εDlT

(h∗) in Eq.(22), and substituting εDE (h∗) with
εDE (h∗, ht−1), we have:

εDT (ht) ≤ εDl
T
∪DE

(ht) +
1

2
dH∆H(DT , Dl

T ∪DE)

+
|DE |

|Dl
T |+ |DE |

· εDE (h∗, ht−1)}

The proof of Theorem 2 is completed.

Theorem 3. Assume there exists three datasets,
D1, D2, D3, and let X1, X2, X3 denotes the set
of input cases in these three datasets, i.e., X1 =
{xi|(xi, yi) ∈ D1}, X2 = {xi|(xi, yi) ∈ D2},
X3 = {xi|(xi, yi) ∈ D3}. If X1 ⊆ X2 ⊆ X3,
then

dH∆H(D2, D3) ≤ dH∆H(D1, D3)

holds

Proof. According to Lemma 1,

dH∆H(D2, D3) = 2 · |D3| − |D2|
|D3|

dH∆H(D1, D3) = 2 · |D3| − |D1|
|D3|

Since X1 ⊆ X2, |D1| ≤ |D2| holds. Thus,

dH∆H(D2, D3) < dH∆H(D1, D3)

holds.
The proof of Theorem 3 is completed.

C Implementation Details

The base model on the rumor detection task is
BiGCN (Bian et al., 2020), while the base model
on the sentiment classification task is BERT (De-
vlin et al., 2019). On the benchmark datasets, we
conduct domain adaptation experiments on every
domain. When one domain is taken as the target do-
main for evaluation, the rest domains are merged as
the source domain. For example, when the “books”
domain in the Amazon dataset is taken as the tar-
get domain, the “dvd”, “electronics” and “kitchen”
domains are merged as the source domain.

The unlabeled data from the target domain are
used for training the model, and the labeled data
from the target domain are used for testing and
validating the model (with a ratio of 7:3). Notes
that the TWITTER dataset does not contain extra
unlabeled data, we take 70% of the labeled data on
the target domain as the unlabeled data for training,
and the rest will be preserved for testing and validat-
ing. The experiments on TWITTER are conducted
on “Cha.”, “Fer.”, “Ott.”, and “Syd.”1.

The implementation of BiGCN to realize the
rumor detection task is provided in (Bian et al.,
2020), and we follow the description in (Bian et al.,
2020) to train the BiGCN model with the TWIT-
TER dataset. The implementation of BERT to
realize the sentiment analysis task can be found
in (Devlin et al., 2019). We download the pre-
trained BERT from https://huggingface.
co/bert-base-uncased2 and fit the BERT
on the Amazon dataset with the instruction in (De-
vlin et al., 2019). Since DANN, FixMatch, CST,
MME, WIND, and BiAT are model agnostic,
we implement them according to the cited refer-
ences (Ganin et al., 2016; Sohn et al., 2020; Liu
et al., 2021; Saito et al., 2019; Chen et al., 2021;
Wang and Zhang, 2019). For the symbols in Algo-
rithm 1, we set TM as 5, TD as 5, TG as 1. We set
η1 and η2 in Algorithm 1 as 5e− 4 and 5e− 3 for
the BiGCN model, and as 5e − 6 and 2e − 5 for
the BERT model. We set η in Eq. (3) as 5e− 5 for
the BERT model, and 5e− 3 for the BiGCN model.
We set γ in Eq. (6) as 0.1 for both the BERT and
the BiGCN model. We conduct all experiments the
GeForce RTX 3090 GPU with 24GB memory.

1The labeled data in “Ger.” domain is too scare to provide
extra unlabeled data.

2under the license apache-2.0
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Figure 3: Distribution of activated weights (σ(wt))) over different kinds of pseudo instances.

Domain Rumours Non-Rumours Total
Charlie Hebdo# 458 (22%) 1,621 (78%) 2,079
Ferguson# 284 (24.8%) 859 (75.2%) 1,143
Germanwings Crash 238 (50.7%) 231 (49.3%) 469
Ottawa Shooting 470 (52.8%) 420 (47.2%) 890
Sydney Siege 522 (42.8%) 699 (57.2%) 1,221
Total 1,921 (34.0%) 3,830 (66.0%) 5,802

Table 5: Statistics of the TWITTER dataset.

Domains positive negative unlabeled
books 1000 (50%) 1000(50%) 6001
dvd 1000 (50%) 1000 (50%) 34,742
electronics 1000 (50%) 1000 (50%) 13,154
kitchen 1000 (50%) 1000 (50%) 16,786

Table 6: Statistics of the Amazon dataset

D Statistics of the Datasets

TWITTER dataset is provided in the site3 under a
CC-BY license. Amazon dataset is accessed from
https://github.com/ruidan/DAS. The statistics of
the TWITTER dataset and the Amazon dataset is
listed in Table 5 and Table 6.

E Extra Experiments

E.1 Instance Reweighting

To investigate the effectiveness of the meta-
learning module, we conduct an experiment to vi-
sualize the optimized instance weights on different
pseudo instances. In detail, the experiments are
conducted on the ’Cha.’ domain of the TWITTER

3https://figshare.com/ndownloader/articles/6392078/

dataset. Since the unlabeled data in the TWITTER
dataset is constructed with the labeled data in the
target domain (illustrated in § 5), we are aware of
the pseudo labels’ correctness. Thus, we can vi-
sualize the relevance among the instance weights,
pseudo labels’ correctness, and pseudo labels’ con-
fidence, the experiment results are shown in Fig. 3.

Fig. 3 is a violin plot in a horizontal direction,
where each curve represents a distribution of the
instance weights. The height of the curve repre-
sents the probability density. In each confidence
interval, the yellow curve is the distribution over
the correct pseudo instances while the blue curve
is the distribution over the wrong pseudo instances.
It should be noted that the probability density is
normalized in each confidence interval. Thus, the
area of the two kinds curves is equal to 1.0 in each
confidence interval. From Fig. 3, we can obtain the
following observations.

Firstly, the meta-learning module is effective in
reducing label noise. In different confidence inter-
vals, especially in [0.5-0.6] and [0.6-0.7], the peak
of the blue curve is smaller than 0.2, meaning that
the wrong pseudo instances are mainly allocated
low instance weights. Thus, the adverse impact
from the wrong pseudo instances is reduced.

Secondly, larger instance weights are allocated
to the correct pseudo instances with low confi-
dence. In specific, large instance weights (i.e.,
>0.5) mainly appears in the bottom two sub-graph,
so the large instance weights are mainly allocated
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to the correct pseudo instances whose confidence
is lower than 0.7. Thus, the meta-learning module
is also effective in mining hard pseudo examples.

E.2 Error rates on the expansion examples
According to Theorem 2 in § 4, the performance
of the DaMSTF is limited by the error rate of the
expansion examples, i.e., εDE (h∗, ht−1). By select-
ing the examples with the lowest prediction entropy
as the expansion example, the meta constructor can
reduce εDE (h∗, ht−1), thereby can improve the per-
formance of the DaMSTF. In this subsection, we
examine the reliability of the meta constructor, i.e.,
visualizing the relationship between the prediction
entropy and the prediction correctness. Specifically,
we first compute and sort the prediction entropy on
the “Syd.” domain. We then select the top 5%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%,
100% of the pseudo instances to compute the er-
ror rate between the selected predictions and their
ground-truth labels. We summarize the experiment
results in Fig. 4.

E.3 Risk loss on the expansion examples
As discussed in § 4.1, expanding the meta vali-
dation set is challenged by the training guidance
vanishment problem, since the model’s risk loss,
as well as the model’s gradient, on the expansion
examples is negligible. As a complementary, we
design a domain adversarial learning module to
perturb the model’s parameters, thereby increasing
the model’s gradients on the expansion examples.
Here, we provide an intuitive explanation for the ne-
cessity of introducing domain adversarial learning.
Specifically, we exhibit the relationship between
the predictive entropy and the risk loss, and present
the changes of the risk loss before and after the
parameters perturbation. The experimental settings
are the same as § E.2, and we summarize the results
in Fig. 5.
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Figure 4: Error rate on the examples with different pre-
diction entropy.
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Figure 5: Risk loss on the examples with different pre-
diction entropy.

From Fig. 5, we observe that the mean risk loss
decreases along with the decrease of the selection
rate, and the risk loss on the examples with small
predictive entropy is negligible. On the examples
with the lowest 10% predictive entropy (i.e., ex-
pansion examples in our setting), the mean risk
loss is only 0.015. Considering that the gradient
is back-propagated from the risk loss, these expan-
sion examples cannot produce acceptable gradients.
Accordingly, these expansion examples cannot pro-
vide indicative training guidance. After perturbing
the model parameters with the domain adversar-
ial learning module, the risk loss on the expansion
examples (Selection Ratio=0.1) sharply increases
from 0.015 to 0.288. Thus, the domain adversarial
learning module is an indispensable complement
to the meta constructor.

F Limitation

Although our approach produces promising results
on two datasets, there are certain limitations. In the
future, we will continue to dig into these concerns.

Firstly, we evaluate the DaMSTF on two classi-
fication tasks. We do not conduct experiments on
other NLP tasks, such as machine translation (Yang
et al., 2018) or named entity recognition (Jia et al.,
2019). Nonetheless, as text classification is a fun-
damental task, other NLP applications can be speci-
fied as a case of classification. For example, named
entity recognition can be formulated as a word-
word relation classification task (Li et al., 2022).

Secondly, the meta-learning module carries out
extra computation overhead. As the bi-level hyper-
parameters optimization involves a second-order
derivate on the model’s parameters, their computa-
tion overhead is quadratic to the model’s parame-
ters. In DaMSTF, we use the approximation tech-
niques in WIND to compute the derivate, which is
linear to the model’s parameters. In the future, we
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will investigate other techniques to accelerate the
DaMSTF.

G Ethical considerations and social
impacts

This paper involves the use of existing artifact(s),
including two benchmark datasets and the pre-
trained BERT model. Their intention for providing
the artifacts is to inspire the following research, our
use is consistent with their intended use.

Rumor, as well as rumor detection, is very sensi-
tive for the social order. In this paper, we conduct
experiments on a rumor detection task and prepare
to release the code in the future. Since the model’s
prediction is not that reliable, it may lead to social
harm when the model’s error prediction is used
with malicious intentions. For example, people
may use the model’s error prediction as support
evidence, so as to deny a correct claim or to ap-
prove a rumor claim. Here, we seriously declare
that the model’s prediction cannot be taken as the
support evidence. In the released code, we will
constrain the input format of the model, making
unprofessional individuals unable to directly use
the model.
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