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Abstract

We propose a new paradigm for universal in-
formation extraction (IE) that is compatible
with any schema format and applicable to a
list of IE tasks, such as named entity recogni-
tion, relation extraction, event extraction and
sentiment analysis. Our approach converts the
text-based IE tasks as the token-pair problem,
which uniformly disassembles all extraction tar-
gets into joint span detection, classification and
association problems with a unified extractive
framework, namely UniEX. UniEX can syn-
chronously encode schema-based prompt and
textual information, and collaboratively learn
the generalized knowledge from pre-defined
information using the auto-encoder language
models. We develop a traffine attention mech-
anism to integrate heterogeneous factors in-
cluding tasks, labels and inside tokens, and
obtain the extraction target via a scoring ma-
trix. Experiment results show that UniEX can
outperform generative universal IE models in
terms of performance and inference-speed on
14 benchmarks IE datasets with the supervised
setting. The state-of-the-art performance in
low-resource scenarios also verifies the trans-
ferability and effectiveness of UniEX.

1 Introduction

Information extraction (IE) aims at automatically
extracting structured information from unstruc-
tured textual sources, covering a wide range of
subtasks such as named entity recognition, relation
extraction, semantic role labeling, and sentiment
analysis (Muslea et al., 1999; Grishman, 2019).
However, the variety of subtasks build the isola-
tion zones between each other and form their own
dedicated models. Fig 1 (a) presents that the popu-
lar IE approaches handle structured extraction by
the addition of task-specific layers on top of pre-
trained language models (LMs) and a subsequent

“Equal Contribution.
fCorresponding Author.

(a) Task-specialized IE

Encoder + CRF

Task A —{ Encoder + SpanExtractor

(b) Generative Universal IE (TANL, UIE)

Extraction
Target A

Schema-based
prompt

Extraction
= Text Encoder |® [Decoder Text [~» Target A,
B, C .. B C

Unified Input Structured
Format T5, BART, ... Language

Decompose

(c) Extractive Universal IE (UniEX)

Schema-based
ema-ba Decode l
Extraction
Task A, Encoder + Triaffine Target A,
B C, .. B, C,

Unified Input BERT, ALBERT, ... Scoring

Format Matrix

Figure 1: (a) Task-specific IE methods: isolated struc-
tures and schemas. (b) Typical generative universal IE:
unified modeling via text or structure generation. (c)
Our extractive universal IE: unified modeling via traf-
fine attention mechanism and auto-encoder LMs.

fine-tuning of the conjoined model (Lample et al.,
2016; Luo et al., 2020; Wei et al., 2020; Ye et al.,
2022). The isolated architectures and chaotic situ-
ation prevents enhancements from one task from
being applied to another, which hinders the effec-
tive latent semantics sharing such as label names,
and suffer from inductive bias in transfer learn-
ing (Paolini et al., 2020).

With powerful capabilities in knowledge shar-
ing and semantic generalization, large-scale LMs
bring the opportunity to handle multiple IE tasks
using a single framework. As shown in Fig 1
(b), by developing sophisticated schema-based
prompt and structural generation specification, the
IE tasks can be transformed into text-to-text and
text-to-structure formats via large-scale generative
LMs (Dong et al., 2019; Paolini et al., 2020; Lu
etal., 2022) such as TS5 (Raffel et al., 2020a). More-
over, the universal IE frameworks can learn general
knowledge from multi-source prompts, which is
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beneficial for perceiving unseen content in low-
resource scenarios. Despite their success, these
generative frameworks suffer from their inherent
problems, which limit their potential and perfor-
mance in universal modeling. Firstly, the schema-
based prompt and contextual information are syn-
thetically encoded for generating the target struc-
ture, which is not conducive to directly leveraging
the position information among different tokens.
Secondly, the generative architecture utilizes the
token-wise decoder to obtain the target structure,
which is extremely time-consuming.

The aforementioned issues prompt us to rethink
the foundation of IE tasks. Fundamentally, we
discover that the extraction targets of different IE
tasks involve the determination of semantic roles
and semantic types, both of which can be converted
into span formats by the correlation of the inside
tokens in the passage. For instance, an entity type
is the boundary detection and label classification
of a semantic role, while a relation type can be
regarded as the semantic association between spe-
cific semantic roles. From this perspective, the
IE tasks can be decoded using a span-extractive
framework, which can be uniformly decomposed
as several atomic operations: i) Span Detection,
which locates the boundaries of the mentioned se-
mantic roles; ii) Span Classification, which rec-
ognizes the semantic types of the semantic roles;
iii) Span Association, which establishes and mea-
sures the correlation between semantic roles to de-
termine semantic types. According to the above
observation, we propose a new paradigm for univer-
sal IE, called Unified Extraction model (UniEX)
as Figure 1 (c). Specifically, we first introduce
a rule-based transformation to bridge various ex-
traction targets and unified input formats, which
leverages task-specific labels with identifiers as the
schema-based prompt to learn general IE knowl-
edge. Then, recent works (Liu et al., 2019a; Yang
et al., 2022) state that the auto-encoder LMs with
bidirectional context representations are more suit-
able for natural language understanding. Therefore,
We employ BERT-like LMs to construct an extrac-
tive architecture for underlying semantic encoding.
Finally, inspired by the successful application of
span-decoder and biaffine network to decode entity
and relation with a scoring matrix (Yu et al., 2020b;
Li et al., 2020; Yuan et al., 2022), we introduce a
triaffine attention mechanism for structural decod-
ing, which jointly considers high-order interactions

among multiple factors, including tasks, labels and
inside tokens. Each triaffine scoring matrix is as-
signed to a demand-specific prompt for obtaining
span-extractive objectives.

Through extensive experiments on several
challenging benchmarks of 4 main IE tasks
(entity/relation/event/sentiment extraction), we
demonstrate that compared with the state-of-the-art
universal IE models and task-specific low-resource
approaches, our UniEX achieves a substantial im-
provement in performance and efficiency with su-
pervised, few-shot and zero-shot settings.

Our main contributions are summarized as:

* We develop an efficient and effective universal
IE paradigm by converting all IE tasks into
joint span classification, detection and associ-
ation problem.

¢ We introduce UniEX, a new unified extractive
framework that utilizes the extractive struc-
tures to encode the underlying information
and control the schema-based span decoding
via the triaffine attention mechanism.

* We apply our approach in low-resource sce-
narios, and significant performance improve-
ments suggest that our approach is potential
for attaching label information to generalized
objects and transfer learning. Our code will
be made publicly available.

2 Related Work

Unified NLP Task Formats Since the prompt-
tuning can improve the ability of language mod-
els to learn common knowledge and fix the gap
across different NLP tasks, recent studies show
the necessity of unifying all NLP tasks in the for-
mat of a natural language response to natural lan-
guage input (Raffel et al., 2020b; Sanh et al., 2022;
Wei et al., 2021). Previous unified frameworks
usually cast parts of text problems as question
answering (McCann et al., 2018) or span extrac-
tion (Keskar et al., 2019) tasks. TANL (Paolini
et al., 2020) frames the structured prediction tasks
as a translation task between augmented natural
languages. By developing a text-to-text architec-
ture, TS (Raffel et al., 2020b) makes prompts to
effectively distinguish different tasks and provide
prior knowledge for multitask learning. UIE (Lu
et al., 2022) uniformly models IE tasks with a text-
to-structure framework, which encodes different
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extraction structures via a structured extraction lan-
guage, adaptively generates varying targets via a
structural schema instructor. Although effective,
such methods focus on generative styles and thus
cannot be adapted to the knowledge selection for
vast label-based models. It motivates us to de-
sign an efficient and effective universal IE method,
where we develop unified Extraction (EX) formats
and triaffine attention mechanism.

Label Information Label semantics is an im-
portant information source, which carries out the
related meaning induced from the data (Hou et al.,
2020; Ma et al., 2022a; Mueller et al., 2022). The L-
TapNet (Hou et al., 2020) introduces the collapsed
dependency transfer mechanism to leverage the se-
mantics of label names for few-shot tagging tasks.
LSAP (Mueller et al., 2022) improves the general-
ization and data efficiency of few-shot text classi-
fication by incorporating label semantics into the
pre-training and fine-tuning phases of generative
LMs. Together, these successful employments of
label knowledge in low-resource setting motivates
us to introduce label semantics into our unified
inputs to handle few-shot and zero-shot scenarios.

3 Approaches

Generally, there are two main challenges in uni-
versally modeling different IE tasks via the ex-
tractive architecture. Firstly, IE tasks are usually
demand-driven, indicating that each pre-defined
schema should correspond to the extraction of spe-
cific structural information. Secondly, due to the
diversity of IE tasks, we need to resolve appro-
priate structural formats from the output sequence
to accommodate different target structures, such
as entity, relation and event. In this section, we
outline how the UniEX exploits a shared underly-
ing semantic encoder to learn the prompt and text
knowledge jointly, and conduct various IE tasks
in a unified text-to-structure architecture via the
triaffine attention mechanism.

3.1 The UniEX Framework

3.1.1 Unified Input

Formally, given the task-specific pre-defined
schema and texts, the universal IE model needs
to adaptively capture the corresponding structural
information from the text indicated by the task-
relevant information. To achieve this, we formulate
a unified input format consisting of task-relevant
schema and text, as shown in Figure 2. To promote

the sharing of generalized knowledge across differ-
ent [E tasks, we choose to simply use the task-based
and label-based schemas as prompt rather than
elaborate questions, fill-in blanks or structural in-
dicators. To achieve proper prompt representation,
we introduce several special tokens [D-TOK],
[C-TOK] and [A-TOK] as identifiers, uniformly
replacing the corresponding schema representa-
tions in the input sentence. Here, [D-TOK] in-
herits the ability of [CLS] to capture the global
semantic information. [C-TOK] and [A-TOK]
inherit the ability of [SEP], thus remaining to
use token representation to symbolize the connota-
tion of subsequent schemas. Consider an input set
denoted as (s, x), includes the following: i) task-
based schema s for span detection, ii) label-based
schemas s, for span classification and s, for span
association, iii) one passage = = {z1,...,Zn, }.
The input sentence with Ng = Ngq + Nge + Ngq
schemas and N, inside tokens can be denoted as:

#inp = {[ D-TOK]' sd}N:j [1c-ToK]’ s}N:l N
{[ A-TOKJ’ sa}: [SEP] z [SEP].

3.1.2 Backbone Network

In our UniEX framework, we employ the BERT-
like LMs as the extractive backbone, such as
RoBERTa (Liu et al., 2019b) and ALBERT (Lan
et al., 2020), to integrate the bidirectional modeled
input x;,,,,. Note that the unified input contains mul-
tiple labels, resulting in undesired mutual influence
across different labels and leading to a misunder-
standing of the correspondence between the label
and its structural format during the decoding phase.
Meanwhile, in some tasks, the large number of la-
bels allows schemas to take up excessive locations,
squeezing the space for text. Referring to the em-
bedding methods in the UniMC (Yang et al., 2022),
we address these issues from several perspectives,
including position id and attention mask. Firstly,
to avoid the information interference caused by
the mutual interaction within label-based schemas,
we constantly update the position id pos to tell
apart intra-information in the label. In this way,
the position information of label-relevant tokens is
coequally treated based on their position embed-
ding, and the refreshed location information for the
first token of each label-based schema avoids the
natural increase of the location id. Then, as shown
in Figure 3, due to the detailed correlation among
schema-based prompts in the IE tasks, we further
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Figure 2: The overall architecture of UniEX. The sample text comes from CoNLL04 (Roth and Yih, 2004).
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introduce a schema-based attention mask matrix
M4 10 the self-attention calculation to control
the flow of labels, ensuring that unrelated labels
are invisible to each other. In particular, different
entity, relation and event types are invisible to each
other, while relation and event types can contact
their bound entity types.

Furthermore, we take the encoded hidden vector
from the last Transformer-based layer, where we
combine the special tokens part as the schema rep-
resentations H, € R™s*? and the passage tokens
part as the text representations H, € RN+*4 with
hidden size d.

Hs, H, = Encoder (frinzn pos, Mmask) @)

3.1.3 Triaffine Attention for Span
Representation

After obtaining the schema representations and text
representations from the auto-encoder LM, the fol-
lowing challenge is how to construct a unified de-
coding format that is compatible with different IE
structures, with the goal of adaptively exploiting
schemas to control various extraction targets. Take
the example in Figure 4, for the event extraction
system, we locate the start and end indices of the
words boundary “Dariues”, “Ferguson” and “injure”
as the semantic roles, categorized as the Agent, Vic-
tim and Trigger semantic types (entity/trigger) re-
spectively, and collectively to the Injure semantic
type (event). For the relation extraction system,
we associate the semantic roles “Betsy Ross” and
“Philadelphia” by attaching their intersecting in-
formation to the Live in semantic type (relation).
In conjunction with the discussions in the Intro-
duction, we consider two elements for universally
modeling IE tasks as joint span detection, classifica-
tion and association: I) Different extraction targets
are presented in the form of span, relying on uni-
fied information carriers to accommodate various
semantic roles and semantic types. 1I) The span-
extractive architecture is necessary for establishing
schema-to-text information interaction, which can
adaptively extract schema-related semantic infor-
mation from text.

For the first proposal, we introduce two informa-
tion carriers for decoding heterogeneous IE struc-
tures in a unified span format:

1. Structural Table indicates a rank-2 scoring
matrix corresponding to a particular schema, which
accommodates the semantic information required
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Figure 4: Uniformly modeling different extraction tar-
gets as joint span detection, classification and associa-
tion with sampling from selected datasets.

for span-extractive parsing.

2. Spotting Designator indicates the location of
spans in the preceding structural table, which rep-
resent extraction targets corresponding to the par-
ticular schema.

For the second proposal, we attempt to explore
the internal interaction of the inside tokens by con-
verting the text representation into span representa-
tion. Then, we apply two separate FFNs to cre-
ate different representations (H; / HS) for the
start/end positions of the inside tokens. To fur-
ther interact such multiple heterogeneous factors
simultaneously, we define the deep triaffine trans-
formation with weighted matrix W € R#xdxd
which apply the triaffine attention to aggregate the
schema-wise span representations by considering
schema as queries as well as start/end of the in-
side tokens as keys and values. In this process, the
triaffine transformation injects each schema infor-
mation into the span representations and resolves
the corresponding extraction targets. It creates a
Ng x N, x N, scoring tensor S by calculating
continuous matrix multiplication as following:

H = FFN, (H,),
HE = FFN, (H.,), 3)
S =o(W x1 Hy xo HS x3 HY),

where X is the matrix multiplication between in-
put tensor and dimension-k of W. o(x) denotes
the Sigmoid activation function.

At this point, the tensor S provides a mapping
score from the schema to internal spans of the text,

where each rank-2 scoring matrix corresponding to
a specific schema is the structural table. For the r-th
structural table, the affine score of each span (p, q)
that starts with p and ends with ¢ can be denoted as
Sr.pq € [0, 1], while the affine score of a valid span
in the structural table is the spotting designator. We
divide all NV, structural tables into three parts ac-
cording to the distribution of the schemas, among
them, N4 for span detection, N, for span classifi-
cation, and N, for span association. For different
schemas, we develop their spotting designators by
following strategies:

Span Detection: In particular, we usually use the
structural table derived from the task-based schema
representation for span detection, which can be
obtained from the hidden state of the special to-
ken [CLS]. Since the [CLS] token is mutually
visible to other schemas, the task-based schema
representation can capture the span-related seman-
tic information of the semantic roles from the task
and label names. The spotting designators identify
the start and end indices of the i-th semantic roles
as (s;, e;) using the axes.

Span Classification: The label-based schema rep-
resentations for entity/argument/trigger/event types
are used for span classification. The spotting desig-
nators are identical with the span positions of the
semantic roles, indicating that the semantic type
of the i-th span can be identified by attaching to
the (s;, e;) position in the corresponding structural
table.

Span Association: The label-based schema rep-
resentations for relation/sentiment types are used
for span association. In this process, we model
the potentially related semantic roles and correlate
them to corresponding semantic types. The spot-
ting designators locate at two interleaved positions
associated with the semantic roles of the semantic
type, that is, for the i-th and j-th spans, the extrac-
tion target is transformed to the identification of the
(si, sj) and (e;, ;) positions in the corresponding
structural table.

Note that all span values in the structural table
for label-based schemas are masked except for the
spotting designators, because we only need to ob-
serve the semantic types and semantic association
among the detected spans. Specifically, the spot-
ting designators for span detection are the spans
with ¢ > p, and the spotting designators for span
classification and association are defined by the po-
sition consistency and interleaving of valid spans
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with S;.,, ; = 1 in span detection.

3.2 EX Training Procedure

Given the input sentence Z;,;,, We uniformly re-
format different output targets as a rank-3 matrix
Y, sharing the same spotting designators as the
triaffine scoring matrix. Similarly, we denote the
value of each valid span as Y, , , € {0,1}, with
Y, ».q = 1 denoting the desirable span for a ground-
truth and Y;. , , = 0 denoting the meaningless span
for semantic role or semantic type. Hence it is a
binary classification problem and we optimize our
models with binary cross-entropy:

BCE(y,9) = —(y - log(9) + (1 —y) - log(1 = 9)), 4

Ns Ny Ng

L=>"S"S"BCE (Y .4, Srp.a)- )

r=1p=1q¢=1
4 Experiments

To verify the effectiveness of our UniEX, we con-
duct extensive experiments on different IE tasks
with supervised (high-resource), few-shot and zero-
shot (low-resource) scenarios.

4.1 Experimental Setup

For the supervised setting, we follow the prepara-
tion in TANL (Paolini et al., 2020) and UIE (Lu
et al., 2022) to collect 14 publicly available
IE benchmark datasets and cluster the well-
representative IE tasks into 4 groups, including
entity, relation, event and structured sentiment ex-
traction. In particular, for each group, we design
a corresponding conversion regulation to translate
raw data into the unified EX format.

Then, for the few-shot setting, we adopt the pop-
ular datasets FewNERD (Ding et al., 2021) and
Cross-Dataset (Hou et al., 2020) in few-shot en-
tity extraction and domain partition as (Ma et al.,
2022b). For the zero-shot setting, we use the com-
mon zero-shot relation extraction datasets Wiki-
ZSL (Chen and Li, 2021) and FewRel (Han et al.,
2018) and follow the same process of data and label
splitting as (Chia et al., 2022). Following the same
evaluation metrics as all previous methods, we use
span-based offset Micro-F1 with strict match crite-
ria as the primary metric for performance compari-
son. Please refer to Appendix A for more details
on dataset descriptions, unified EX input formats,
metrics and training implementation.

4.2 Experiments on Supervised Settings

In our experiment, under the high-resource sce-
nario, we compare our approach with the state-of-
the-art generative universal IE architectures that
provide a universal backbone for IE tasks based on
TS5 (Raffel et al., 2020a), including TANL (Paolini
et al., 2020) and UIE (Lu et al., 2022). For a fair
comparison, We only consider results without ex-
ploiting large-scale contexts and external knowl-
edge beyond the dataset-specific information, and
present the average outcomes if the baseline is con-
ducted in multiple runs. The main results of UniEX
and other baselines on 14 IE datasets are shown in
Table 1. We can observe that: 1) By modeling IE as
joint span detection, classification and association,
and encoding the schema-based prompt and input
texts with the triaffine attention mechanism, UniEX
provides an effective universal extractive backbone
for all IE tasks. The UniEX outperforms the uni-
versal IE models with approximate backbone sizes,
achieving new state-of-the-art performance on al-
most all tasks and datasets. 2) The introduction of
label-based schema facilitates the model learning
task-relevant knowledge, while the triaffine scor-
ing matrix establishes the correspondence between
each schema and extraction targets. Obviously, the
UniEX can better capture and share label semantics
than using generative structures to encode underly-
ing information. Meanwhile, triaffine transforma-
tion is a unified and cross-task adaptive operation,
precisely controlling where to detect and which to
associate in all IE tasks. Compared with the TANL
and UIE, our approach achieves significant perfor-
mance improvement on most datasets, with nearly
1.36% and 1.52% F1 on average, respectively.

4.3 Experiments on Low-resource Scenarios

To verify the generalization and transferability of
UniEX in low-resource scenarios, we evaluate mod-
els under few-shot and zero-shot settings, respec-
tively. In order to reduce the influence of noise
caused by random sampling on the experiment re-
sults, we repeat the data/label selection processes
for five different random seeds and report the av-
eraged experiment results as previous works (Hou
et al., 2020; Chia et al., 2022). We use the BERT-
base (Devlin et al., 2019) as the UniEX backbone
to align with other low-resource results.

Firstly, we compare the UniEX with the compet-
itive few-shot entity extraction models. For FewN-
ERD, we compare the proposed approach to De-
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. . TANL UniEX UIE UniEX
Task Dataset Domain Metric 220M 132M 770M  372M
ACEO4 News, Speech Entity F1 - - 86.52 87.12
Entity ACEQ5-Ent  News, Speech Entity F1 84.90 85.96 85.52 87.02
Extraction =~ CoNLLO3 News Entity F1 91.70 92.13 92.17 92.65
GENIA Biology Entity F1 76.40 76.69 - -
ACEO5-Rel  News, Speech Relation Strict F1 63.70 63.64 64.68 66.06
Relation CoNLL04 News Relation Strict F1 71.40 71.79 73.07 73.40
Extraction SciERC Scientific Relation Strict F1 - - 33.36 38.00
ADE Medicine Relation Strict F1 80.60 83.81 - -
Event Trigger F1 68.40 70.86 72.63 74.08
Event ~ ACEOS-Evt  News,Speech  pyent Argument F1 | 47.60  50.67 | 54.67  53.92
Extraction . Event Trigger F1 - - 68.98 71.46
CASIE  Cybersecurity  pyent Argument F1 - - 60.37  62.91
14-res Review Sentiment Triplet F1 - - 73.78 74.77
Sentiment 14-lap Review Sentiment Triplet F1 - - 63.15 65.23
Extraction 15-res Review Sentiment Triplet F1 - - 66.10 68.58
16-res Review Sentiment Triplet F1 - - 73.87 76.02

Table 1: Overall results of universal IE approaches on different datasets for entity/relation/event/sentiment extraction
tasks. Base refers to TANL and UniEX respectively using T5-base and RoBERTa-base as the backbone. Large
refers to UIE and UniEX respectively using T5-large and RoBERTa-large as the backbone.

Intra

Inter

Models 1~2-shot

5~10-shot

1~2-shot 5~10-shot

5 way 10 way 5 way

10 way

5 way 10 way 5 way 10 way

ProtoBERTT 23.45+0.92 19.76+059 41.93+0.55 34.61+059 44.44+0.11 39.09+0.87 58.80+1.42 53.97+0.38

NNShot!
ESD

31.01+1.21 21.88+0.23 35.74+2.36 27.67+1.06 54.29+0.40 46.98+1.96 50.56+3.33 50.00+0.36
41.44+1.16 32.29+1.10 50.68+0.94 42.92+0.75 66.46+0.49 59.95+0.69 74.14+0.80 67.91+1.41

DecomMeta 52.04+0.44 43.50+0.59 63.23+0.45 56.84+0.14 68.77+0.24 63.26+0.40 71.62+0.16 68.32+0.10

UniEX

53.92+0.39 45.67+0.53 63.26+0.14 56.65+0.27 69.37+0.19 64.53+0.05 73.79+0.32 69.63+0.45

Table 2: F1 scores with standard deviations on FewNERD. T denotes the results reported from Ding et al. (2021).

comMeta (Ma et al., 2022b), ESD (Wang et al.,
2022), and methods from (Ding et al., 2021), e.g.,
ProtoBERT, NNShot. For Cross-Dataset, we com-
pare the UniEX to DecomMeta (Ma et al., 2022b)
and baselines reported by (Hou et al., 2020), e.g.,
TransferBERT, Matching Network, ProtoBERT
and L-TapNet+CDT.

Table 2 and 3 illustrates the main results on
FewNERD and Cross-Dataset of our approach
alongside those reported by previous methods. It
can be seen that UniEX achieves the best perfor-
mance under different type granularity and domain
divisions, and outperforms the prior methods with a
large margin. Compare with DecomMeta on Cross-
Dataset, UniEX achieves a performance improve-
ment up to 6.94% and 5.63% F1 scores on aver-
age in 1-shot and 5-shot, which demonstrates the
effectiveness of our approach in learning general
IE knowledge. It indicates that even without pre-

training on large-scale corpus, our approach can
still sufficiently excavate the semantic information
related with objective entities from label names,
which enhances the understanding of task-specific
information when data is extremely scarce.

Secondly, we compare UniEX with the latest
baselines TableSequence (Wang and Lu, 2020) and
RelationPrompt (Chia et al., 2022) on zero-shot
relation triplet extraction task for Wiki-ZSL and
Few-Rel datasets in Table 4. In both single-triplet
and multi-triplet evaluation, UniEX consistently
outperforms the baseline models in terms of Ac-
curacy and overall F1 score respectively, which
demonstrates the ability of our approach to handle
unseen labels. Although we observe a lack of ad-
vantage in recall score for multi-triplet evaluation,
the significant improvement in precision allowed
our approach to achieve a balanced precision-recall
ratio. The reason for such difference is probably
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1-shot 5-shot

Models News Wiki Social Mixed News ‘Wiki Social Mixed

TransferBERT? 4.75+1.42 0.57+032 2.7120.72 3.46+0.54 15.36+2.81 3.62+0.57 11.08+0.57 35.49+7.60
Matching Network? 19.50£0.35 4.73:0.16 17.2322.75 15.06:1.61 19.850.74 5.58+0.23 6.611.75 8.08+0.47
ProtoBERTH 32.49+2.01 3.89+0.24 10.68+1.40 6.67+0.46 50.06+1.57 9.54+0.44 17.26+2.65 13.59+1.61
L—TapNet+CDT9t 44.30+3.15 12.04+0.65 20.80+1.06 15.17+1.25 45.35+2.67 11.65+2.34 23.30+2.80 20.95+2.81
DecomMeta 46.09+0.44 17.54+0.98 25.14+0.24 34.13+0.92 58.18+0.87 31.36+0.91 31.02+1.28 45.55+0.90
UniEX 58.51+0.14 18.20+0.45 34.67+0.25 39.28+0.55 66.08+0.42 29.68+0.32 38.64+1.29 54.25+0.35

Table 3: F1 scores with standard deviations on Cross-Dataset. ¥ denotes the results reported from Hou et al. (2020).

Single-Triplet =~ Multi-Triplet

Dataset Model
Acc. P R. Fl
TableSequence 14.47 43.68 3.51 6.29
Wiki-ZSL RelationPrompt 16.64 29.11 31.00 30.01
UniEX 26.84 58.22 25.85 34.94
TableSequence 11.82 15.23 191 3.40
FewRel RelationPrompt 22.27 20.80 24.32 22.34
UniEX 27.30 44.46 15.72 23.13

Table 4: Result for zero-shot relation triplet extraction
under the setting of unseen label set size m = 5. We use
the Micro-F1, Precision (P.) and Recall (R.) to evaluate
the multiple triplet extraction. Evaluating single triplet
extraction involves only one possible triplet for each
sentence, hence we only use the Accuracy (Acc.) metric.

Dataset CoNLL03 CoNLL04 CASIE 16-res
F1 Ent Rel-S  Evt-Tri Evt-Arg Rel-S
W/O SAM  28.47 0 4.03 0 0
W/O TriA  58.58 49.40 6.97 1.51  29.77
W/O Label  92.59 7094  71.18 6229 74.64
UniEX 92.65 7340 7146 6291 76.02

Table 5: Experiment results of UniEX with differ-
ent ablation strategies on the test set of four down-
stream datasets: CoNLLO3 (entity), CoNLLO04 (rela-
tion), CASIE (event) and 16-res (sentiment).

because the directional matching in the triaffine
transformation will tend to guide the model to pre-
dict more credible targets.

4.4 Ablation Study

In this section, we intend to verify the necessity of
key components of the UniEX, including the flow
controlling and triaffine transformation. Table 5
shows ablation experiment results of UniEX on
four downstream tasks.

W/O SAM: removing the schema-based attention
mask matrix that controls the flowing of labels. We
find that model performance is almost zero on many

Model CoNLL03 CoNLL04 CASIE 16-res
(sent/s) (sent/s) (sent/s) (sent/s)
UIE 2.1(x1.0)  1.0(x1.0) 1.1(x1.0) 1.4(x1.0)
UniEX 16.5(x7.9) 16.6(x16.6) 14.9(x13.5) 19.7(x14.1)

Table 6: The efficiency comparison of UIE and UniEX
with batch_size=1. (x k) is the relative inference-speed.

tasks, which demonstrates the importance of elimi-
nating intra-information of labels. AMM makes the
labels unreachable to each other, effectively avoid-
ing the mutual interference of label semantics.
W/O TriA: replacing the triaffine transformation
with the multi-head selection network, which mul-
tiplies the schema and the head-to-tail span of the
text respectively, and then replicates and adds them
to get the scoring matrix. The significant perfor-
mance decline demonstrates the important role of
triaffine attention mechanism in establishing dense
correspondence between schemas and text spans.
W/O Label: replacing the label names with the
special token [unused n], which eliminates la-
bel semantics while allowing the model to still
distinguish between different labels. We find a
slight degradation of model performance in small
datasets CoNLLO3 and 16-res, indicating that the
prior knowledge provided by label names can ef-
fectively compensate for the deficiency of train-
ing data. As the correspondence between schema
and extraction targets is not affected, model perfor-
mance in large datasets tends to stabilize.

4.5 Efficiency Analysis

To verify the computation efficiency of our ap-
proach on universal IE, we compare inference-
speed with UIE (Lu et al., 2022) on the four stan-
dard datasets mentioned in section 4.4. As shown
in Table 6, we can find that since generating the tar-
get structure is a token-wise process, the inference-
speed of UIE is slow and limited by the length of
the target structure. On the contrary, UniEX can
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decode all the target structures at once from the
scoring matrices obtained by triaffine transforma-
tion, with an average speedup ratio of 13.3 to UIE.

5 Conclusion

In this paper, we introduce a new paradigm for uni-
versal IE by converting all IE tasks into joint span
detection, classification and association problems
with a unified extractive framework. UniEX col-
laboratively learns the generalized knowledge from
schema-based prompts and controls the correspon-
dence between schema and extraction targets via
the triaffine attention mechanism. Experiments on
both supervised setting and low-resource scenarios
verify the transferability and effectiveness of our
approaches.

Limitations

In this paper, our main contribution is an effective
and efficient framework for universal IE. We aim
to introduce a new unified IE paradigm with extrac-
tive structures and triaffine attention mechanism,
which can achieve better performance in a variety
of tasks and scenarios with more efficient inference-
speed. However, it is non-trivial to decide whether
a sophisticated and artificial prompt is required for
complex datasets and large label sets. In addition,
we only compare with limited baselines with spe-
cific datasets configurations when analyzing the
performance of the UniEX in supervised, few-shot
and zero-shot settings. In experiments, we imple-
ment only a few comparative experiments between
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019b) due to the limit of computational
resources.

Ethical Considerations

As an important domain of natural language pro-
cessing, information extraction is a common tech-
nology in our society. It is necessary to discuss the
ethical influence when using the extraction mod-
els (Leidner and Plachouras, 2017). In this work,
We develop a new universal IE framework, which
enhances the generalization ability in various sce-
narios. As discussed (Schramowski et al., 2019,
2022; Blodgett et al., 2020), pre-trained LMs might
contain human-made biases, which might be em-
bedded in both the parameters and outputs of the
open-source models. In addition, we note the poten-
tial abuse of universal IE models, as these models
achieve excellent performance in various domains

and settings after adapting to pre-training on large-
scale IE datasets, which allows the models to be
integrated into applications often without justifica-
tion. We encourage open debating on its utilization,
such as the task selection and the deployment, hop-
ing to reduce the chance of any misconduct.
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A Experiment Details

This section describes the details of experiments,
including the dataset descriptions, unified EX input
formats, metrics and training implementation.

A.1 Details of Downstream Tasks
A.1.1 Supervised Setting

For the supervised setting, We conduct downstream
tasks on 4 IE tasks, 14 datasets, and the detailed
statistic of each dataset is shown in Table 7.

Entity We conduct entity extraction experi-
ments on four datasets, including the flat entity
dataset extraction dataset CONLLO3 (Sang and
De Meulder, 2003), and nested entity extractions
datasets ACE04 (Doddington et al., 2004), ACEQ5-
Ent (Walker et al., 2006) and GENIA (Ohta et al.,
2002). For the CONLLO03, ACE04 and ACEO5-
Ent, We use the same processing and splits as (Li
et al., 2020). For the GENIA, we follow the pre-
processing steps and data split as (Finkel and Man-
ning, 2009).

Relation We conduct relation extraction exper-
iments on five joint entity-relation extraction
datasets across several languages and domains, in-
cluding CONLLO04 (Roth and Yih, 2004), ACEO5-
Rel (Walker et al., 2006), NYT (Riedel et al., 2010),
SciERC (Luan et al., 2018) and ADE (Gurulin-
gappa et al., 2012). We follow the pre-processing
versions and data split of previous works (Gupta
et al., 2016; Yu et al., 2020a; Luan et al., 2019).

Event For ACEO5-Evt, we follow the same types,
data splits, and pre-processing steps as (Lin et al.,
2020). For CASIE (Satyapanich et al., 2020), we re-
move three incomplete annotated documents, then
split the remaining documents into three sets as (Lu
etal., 2022).

Sentiment We conduct sentiment extraction ex-
periments on the sentiment triplet extraction (Xu
et al., 2020) of SemEval 14/15/16 aspect sentiment
analysis datasets. We employ the pre-processing
datasets of the previous work (Yan et al., 2021).

A.1.2 Few-shot Setting

For the few-shot setting, we conduct downstream
tasks on 2 few-shot named entity recognition
datasets:

Few-NERD (Ding et al., 2021). It is anno-
tated with a hierarchy of 8 coarse-grained and

[Entl [Rell |Evtl | #Train #Val #Test
ACE04 7 - - 6,202 745 812
ACEQ05-Ent 7 - - 7,299 971 1,060
CoNLLO03 4 - - 14,041 3,250 3,453
GENIA 5 - 14,824 1,855 1,854
ACEQ05-Rel 7 6 - 10,051 2,420 2,050
CoNLL04 4 5 - 922 231 288
NYT 3 24 - 56,196 5,000 5,000
SciERC 6 7 - 1,861 275 551
ADE 2 - 3417 427 428
ACEO5-Evt - - 33 | 19,216 901 676
CASIE 21 - 5 11,189 1,778 3,208
14res 2 3 - 1,266 310 492
14lap 2 3 - 906 219 328
15res 2 3 - 605 148 322
16res 2 3 - 857 210 326

Table 7: Detailed datasets statistics. I*| indicates the
number of categories, and # is the number of sentences
in the specific subset. We take sentiment types as special
relation type: positive, negative, and neutral; and each
sentiment triplet holds a aspect and a opinion.

66 finegrained entity types. Two tasks are con-
sidered on this dataset: i) Intra, where all en-
tities in train/dev/test splits belong to different
coarsegrained types. ii) Inter, where train/dev/test
splits may share coarse-grained types while keep-
ing the fine-grained entity types mutually disjoint.

Cross-Dataset (Hou et al., 2020). Four
datasets focusing on four domains are used here:
CoNLL2003 (Sang and De Meulder, 2003) (news),
GUM (Zeldes, 2017) (Wiki) , WNUT-2017 (Der-
czynski et al., 2017) (social), and Ontonotes (Prad-
han et al., 2013) (mixed). Among them, we take
two domains for training, one for validation, and
the remaining for test.

A.1.3 Zero-shot Setting

For the zero-shot setting, we conduct downstream
tasks on 2 zero-shot named entity recognition
datasets:

FewRel (Han et al., 2018) is hand-annotated for
few-shot relation extraction, we further made it suit-
able for the zero-shot setting after data splitting into
disjoint relation label sets for training, validation
and testing as (Chia et al., 2022).

Wiki-ZSL  (Chen and Li, 2021) is constructed
through distant supervision over Wikipedia articles
and the Wikidata knowledge base.

To partition the data into seen and unseen label
sets, we follow the same process as (Chia et al.,
2022) to be consistent. For each dataset, a fixed
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Backbone RoBERTa-large/RoBERTa-base BERT-base
Task Entity Relation Event Sentiment Cross Dataset Wiki-ZSL FewRel
Phase finetuning finetuning finetuning finetuning | pretraining finetuning pretraining pretraining

Learning Rate 2E-5 2E-5 2E-5 2E-5 2E-5 2E-5 2E-05 2E-5

Batch Size 32 32 32 32 32 2 32 32
Schedule linear linear linear linear linear linear linear linear
Warmup Rate 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Epoch 200 400 200 200 100 100 4 4

Table 8: Hyper-parameters for UniEX-base and UniEX-large on different tasks and datasets.
Hyper-parameter UniEX-base UniEX-large UIE UniEX
Task Dataset 770M  372M
Backbone Roberta-large  Roberta-base
Layers of Encoder 12 24 . ACEO04 1.23 18.29
Hidden Dimension 768 1,024 - Entity  \CE05-Ent | 1.62 1816
FF hidden size 3072 4096 Xtraction —~ 1103 2.06 16.45
Layer Normalize € le-5 le-5

Attention head 12 16 Relation ACEO05-Rel 1.64 18.69
Extraction CoNLL04 1.00 16.60
Table 9: Model architectures. SciERC 1.02 17.09
Event ACEOQ5-Evt 1.55 12.93
number of labels are randomly selected as unseen Extraction CASIE 1.55 12.93
labels while the remaining labels are treated as seen 14-res 1.45 18.60
labels during training. The unseen label set size is Sentiment 14-lap 1.49 19.78
set to m=5 in our experiments. In order to reduce Extraction 15-res 1.41 18.37
16-res 1.38 19.71

the effect of experimental noise, the label selection
process is repeated for five different random seeds
to produce different data folds. For each data fold,
the test set consists of the sentences containing un-
seen labels. Five validation labels from the seen
labels are used to select sentences for early stop-
ping and hyperparameter tuning. The remaining
sentences are treated as the train set. Hence, the
zero-shot setting ensures that train, validation and
test sentences belong to disjoint label sets.

A.2 Evaluation Metric

We use span-based offset Micro-F1 as the primary
metric to evaluate the model as (Lu et al., 2022)

» Entity: an entity mention is correct if its offsets
and type match a reference entity.

Relation Strict: relation with strict match, a
relation is correct if its relation type is correct
and the offsets and entity types of the related
entity mentions are correct.

Relation Triplet: relation with boundary match,
a relation is correct if its relation type is correct
and the string of the subject/object are correct.
Event Trigger: an event trigger is correct if its
offsets and event type matches a reference trigger.
Event Argument: an event argument is correct
if its offsets, role type, and event type match a
reference argument mention.

1

Table 10: The average number of sentences generated
per second by UIE and UniEX in the decoding phase.

* Sentiment Triplet: a correct triplet requires the
offsets boundary of the target, the offsets bound-
ary of the opinion span, and the target sentiment
polarity to be all correct at the same time.

A.3 Training Implementation

To make a fair comparison, we first initialize
UniEX-base and UniEX-large with RoOBERTa-base
and RoBERTa-large checkpoints (Liu et al., 2019b)
for the supervised setting, and use the BERT-base
checkpoint (Devlin et al., 2019) as the backbone for
the few-shot and zero-shot settings. The model ar-
chitectures are shown in Table 9. We employ Adam
optimizer (Kingma and Ba, 2015) as the optimizer
with le-8 weight decay. Table 8 shows the de-
tailed hyper-parameters for downstream tasks. We
truncate the concatenated overall length of schema-
based prompt s and raw text = to 512 during train-

ing.

A.4 Unified Input

Inspired by template examples in UIE (Lu et al.,
2022), we design a simple rule to transform the
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original text to a unified EX format. In addition,
we present four examples for different tasks:

An example of CONLLO3 (Entity Extraction):
Raw text: {z: “Arafat goes to Nablus ahead of
cabinet meeting .”, entity type: [Location, Organi-
zation, Person, Miscellaneous], extraction target:
[(Arafat, 1, 1, Person), (Nablus, 4, 4, Location)]}
Transformed Input: [CLS] Entity Extrac-
tion [R-LEP]! Location [R-LEP]?2 Organiza-
tion [R-LEP ]2 Person [R-LEP ]* Miscellaneous
[SEP] Arafat goes to Nablus ahead of cabinet
meeting . [SEP]

An example of CONLLO04 (Relation Extraction):

Raw text: {x: “In 1752, flagmaker Betsy Ross was
born in Philadelphia .”, entity-relation type: [(Or-
ganization, organization based in, Location), (Lo-
cation, location in, Location), (Person, live in, Lo-
cation), (Person, work for, Organization), (Person,
kill, Person)], extraction target: [(Betsy Ross, 5, 6,
Person), (Philadelphia, 10, 10, Location), (Betsy
Ross, live in, Philadelphia)]}
Transformed Input: [CLS] Relation Extrac-
tion [R-LEP]! Location [R-LEP]2 Organiza-
tion [R-LEP ]2 Person [R-LEP ] * Miscellaneous
[R-LEP]® work for [R-LEP]6 organization
based in [R-LEP]7 location in [R-LEP]® live in
[R-LEP]?kill [SEP] In 1752, flagmaker Betsy
Ross was born in Philadelphia . [SEP ]

An example of ACEO5-Evt (Event Extraction):
Raw text: {z: “Sergeant Chuck Hagel was seri-
ously wounded twice in Vietnam .”, event-trigger-
argument type: [(Born, Trigger, Person, Place),
(Injure, Trigger, Victim, Agent, Place, Instrument),
(Convict, Trigger, Defendant, Adjudicator, Place),
...], extraction target: [(Chuck Hagel, 2, 3, Victim),
(wounded, 6, 6, Trigger), (Vietnam, 9, 9, Place),
(Injure, wounded, Chuck Hagel, Vietnam)] }
[CLS] Event Extrac-
[R-LEP]2 Per-

Transformed Input:
tion [R-LEP]! Trigger
son [R-LEP]® Place ... [R-LEP]? Born
[R-LEP]t! Injure ... [R-LEP]™ Trigger-
Argument [SEP] Sergeant Chuck Hagel was
seriously wounded twice in Vietnam . [ SEP ]

An example of 16-res (Sentiment Extraction):
Raw text: {z: “I had the duck breast special on my
last visit and it was incredible ., entity-relation-
entity type: [(Aspect, Positive, Opinion), (Aspect,
Negative, Opinion), (Aspect, Neutral, Opinion)],
extraction target: [(duck breast special, 4, 6, As-
pect), (incredible, 14, 14, Opinion), (Positive, duck
breast special, incredible)] }

Transformed Input: [CLS] Sentiment Ex-
traction [R-LEP]!' Aspect [R-LEP]? Opin-
ion [R-LEP]? Positive [R-LEP]% Negative
[R-LEP]° Neutral [SEP] I had the duck breast
special on my last visit and it was incredible .
[SEP]

A.5 Unified Decoding

As shown in Figure 5, in order to depict the training
and inference processes in more detail, we show
the structural tables and spotting designators of
the examples in figure 4 in the entity/relation/event
extraction tasks.

A.6 Decoding Efficiency

As shown in Figure 10, to explicitly compare the
structural decoding efficiency of different universal
IE models, we illustrate the average number of
sentences generated per second by UIE and UniEX
during the decoding phase.
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Entity Extraction: Arafat goes to Nablus ahead of cabinet meeting .
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Relation Extraction: In 1752, flagmaker Betsy Ross was born in Philadelphia .
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Figure 5: The decoding process of the UniEX. Each schema corresponds to a structural table, and each rectangle
in the structural table represents an internal span, the gray spans are the invalid spans that and do not participate
in model training. Other spans are spotting designators, among them, water-blue spans for span detection, viridis
spans for span classification and atrovirens spans for span association.
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