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Abstract
Computational notebooks, such as Jupyter
notebooks, are interactive computing environ-
ments that are ubiquitous among data scien-
tists to perform data wrangling and analytic
tasks. To measure the performance of AI
pair programmers that automatically synthe-
size programs for those tasks given natural
language (NL) intents from users, we build
ARCADE, a benchmark of 1,078 code gener-
ation problems using the pandas data analy-
sis framework in data science notebooks. AR-
CADE features multiple rounds of NL-to-code
problems from the same notebook. It requires
a model to understand rich multi-modal con-
texts, such as existing notebook cells and their
execution states as well as previous turns of
interaction. To establish a strong baseline
on this challenging task, we develop PACH-
INCO, a 62B code language model (LM) for
Python computational notebooks, which sig-
nificantly outperforms public code LMs. Fi-
nally, we explore few-shot prompting strate-
gies to elicit better code with step-by-step de-
composition and NL explanations, showing
the potential to improve the diversity and ex-
plainability of model predictions. ARCADE
is publicly available at https://github.com/
google-research/arcade-nl2code/.

1 Introduction

Data science is the process of extracting insights
from data (Wang et al., 2021a), and has become
an integral part of decision making and knowl-
edge discovery (Donoho, 2017). Data scientists
and machine learning (ML) practitioners often use
computational notebooks, which are interactive en-
vironments such as Jupyter notebooks (Kluyver
et al., 2016) and Google Colab, in their work. Data
scientists spend a significant amount of time on
data wrangling tasks to process raw data into us-
able forms (illustrated in Fig. 1), as well as ex-
ploratory data analysis (EDA) to gain insights

∗Correspondence to pcyin@google.com

[1] import pandas as pd
df = pd.read_csv('dataset/Gamepass_Games_v1.csv')

[2]

def get_avg(x):
  try: return float(x[0]) , float(x[1])
  except: return 0, 0

df['min'], df['max'] = zip(*df['TIME'].str.replace(
    ' hours','').str.split("-").apply(get_avg))

Extract min and max hours as two columns

[3] df['ADDED'] = pd.to_datetime(
    df['ADDED'],format="%d %b %y",errors='coerce')

[4]

df['GAMERS']=df['GAMERS'].str.replace(
    ',',' ').astype(int)
added_year=df[df['GAMERS'].idxmax()]['ADDED'].year

In which year was the most played game added?

[5]

df[(df['ADDED'].dt.year== added_date.year) & 
(df['RATING']>4)].groupby(
    df["ADDED"].dt.month)['GAME'].count()

For each month in that year, how many games that 
has a rating of more than four?

[6]

fallout=df[df['GAME'].str.contains('Fallout')]
fallout.groupby(fallout['ADDED'].dt.year).get_group(
    2021)['max'].mean()

What is the average maximum completion time for 
all fallout games added in 2021?

[7]

pd.pivot_table(df, index=df['ADDED'].dt.year, ...,
    aggfunc=np.count_nonzero, 
    fill_value='0').rename_axis(
        index='Year', columns='Month')

What is the amount of games added in each year 
for each month? (show a table with index as years, 
columns as months and fill null values with 0)

Figure 1: An example of a computational notebook adapted
from our dataset, with examples of reading data (cell c1), data
wrangling (c2, c3), and exploratory data analysis (c4 ∼ c7).
Annotated NL intents (ui) are shown in green.

for decision making (Agashe et al., 2019; Wang
et al., 2022a). This has motivated research on au-
tomating and accelerating the data science work-
flow in general (Aggarwal et al., 2019; Wang et al.,
2021a,b), with particular interest in data wrangling
and EDA tasks (Bavishi et al., 2019; Jain et al.,
2021; Nazabal et al., 2020; Kandel et al., 2011).

Meanwhile, large language models (LLMs)
trained on code can assist developers by translat-
ing natural language (NL) intents into executable
programs (Chen et al., 2021a; Austin et al., 2021;
Chowdhery et al., 2022; Nijkamp et al., 2022;
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Fried et al., 2022), with promising applications
in synthesizing code for data wrangling and EDA
tasks (Jain et al., 2021; Rajkumar et al., 2022;
Cheng et al., 2022b). Computational notebooks
also present unique challenges to LLMs, as note-
books freely mix NL, code, graphics, and execution
results (Perkel, 2021), and because of their interac-
tivity, notebooks feature multiple interdependent
NL-to-code problems (Heyman et al., 2021).

Several benchmarks have been proposed to eval-
uate program synthesis of data science programs
from NL intents, but these datasets have several lim-
itations. First, some datasets derive from data sci-
ence tutorial notebooks (Agashe et al., 2019; Chan-
del et al., 2022), which tend to contain NL text (e.g.,
exercise questions) that is verbose and elaborate,
instead of the concise, ephemeral style that devel-
opers write when interacting with code LMs (Barke
et al., 2022, more in §3). Other datasets assume
that the developer provides extra information, such
as unit tests or input/output examples (Chandel
et al., 2022; Jain et al., 2022), but such systems
pose an extra burden to users who might not nor-
mally write such tests or examples during their
workflow (Pimentel et al., 2019). Finally, existing
datasets usually contain independent tasks with iso-
lated contexts (Lai et al., 2022), or a limited number
of contextually dependent problems (Huang et al.,
2022), rather than having multiple, related tasks
such as in Fig. 1. Therefore, there is a need for a
benchmark with realistic NL intents, rich notebook
context, and a series of interrelated problems, so as
to better reflect real-world usage by data scientists.

To fill this gap, we present ARCADE,1 a new
benchmark for code generation for data wrangling
and EDA tasks in computational notebooks (§3).
ARCADE consists of 1,078 problems spanning
across 136 notebooks based on 106 ML datasets. It
features a series of NL utterances written by profes-
sional data scientists with the intention of interact-
ing with an AI assistant (e.g., green texts in Fig. 1),
with high-quality code solutions using the pandas
library. To mitigate the risk of data leakage, 60%
of the problems are created from scratch, based on
recent ML datasets on Kaggle (e.g., the csv file in
c1, Fig. 1).2 ARCADE also challenges LLMs with
grounded language understanding, where a model
needs to leverage variable states (e.g., df['TIME']
in c2) to interpret NL semantics (e.g., “min and

1Answer Repository for Computational Analysis and Data
Engineering.

2https://www.kaggle.com/

max” in u1). Finally, problems in ARCADE are
challenging, involving richer data science API us-
age than existing benchmarks.

To demonstrate how ARCADE can motivate new
research on LLMs for data science, we develop
PACHINCO, a 62B code LM tailored for Python
computational notebooks, trained on a mixture of
NL, source code, and Jupyter notebooks data (§4).
PACHINCO significantly outperforms public code
LMs on ARCADE (§5.2). Even so, all models have
difficulty on our benchmark, showing that it is a
challenging task. Further, we explore few-shot
prompting strategies to alter the style of model pre-
dictions, such as decomposing code into step-by-
step structures and adding inline NL explanations.
Not only is code in this style potentially more un-
derstandable to novice data scientists, prompting
the model to explain its solutions also improves the
diversity of the model’s predictions (§5.3).

2 Problem Statement
A computational notebook is an interactive com-
puting environment that allows mixing code, text,
and graphics. A notebook consists of a sequence
of Markdown or source code cells. Given a partial
notebook context with n cells {ci}ni=1 and a user-
specified intent u for the next cell cn+1 (e.g., u1

in Fig. 1 for n = 1), we aim to generate code for
cn+1 that fulfills the user’s intent (Agashe et al.,
2019). We refer to the pair ({ci},u) as a problem.
This process could proceed sequentially with mul-
tiple rounds between the user and a system (Hey-
man et al., 2021), so a single notebook can contain
multiple problems. To satisfy subsequent intents
(e.g., u4), a system will leverage the updated note-
book context (e.g., {ci}5i=1) which includes previ-
ous problems (e.g., those involving u1 to u3).

As in Fig. 1, problems within a notebook of-
ten have interesting dependency structures. They
may share execution context (e.g., DataFrame df),
form semantically coherent turns (e.g., c4 and c5),
or exhibit non-trivial long range data dependencies
(e.g., from c6 to c2, or c7 to c3). These dependency
structures are more diverse than existing multi-turn
code generation tasks with sequentially dependent
problems (Nijkamp et al., 2022).

3 ARCADE: A Benchmark of pandas
Data Science Code Generation

3.1 Constructing ARCADE

ARCADE consists of 1,078 NL-to-code problems
from 131 notebooks based on 106 unique ML
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datasets, sourced from existing data science note-
books on GitHub (Existing Tasks split) and new
ones created from scratch (New Tasks split). The
problems are annotated by professional data sci-
ence freelancers. This section outlines the dataset
creation process. See Appendix A for more details.
Repurposing Existing Notebooks To build the
Existing Tasks split, we identify candidate code
cells performing data wrangling and EDA tasks
from existing high-quality notebooks, and then
manually annotate these cells with NL intents.
Specifically, we perform static analysis to iden-
tify notebooks with rich code cells related to data
wrangling and EDA tasks (e.g., by identifying cells
using pandas functions) from public notebook cor-
pora such as JuICe (Agashe et al., 2019) and BIG-
QUERY. We then select 63 notebooks with the
greatest number of candidate code cells for anno-
tation, covering 36 ML datasets from a variety of
domains. Annotation consists of judging the qual-
ity of candidate cells, fixing errors, and creating
intents summarizing the code (described below).
Creating Notebooks for Novel ML Datasets
The Existing Tasks split captures realistic problems
and notebook contexts, but may result in artificially
high evaluation accuracies due to potential leak-
age of evaluation notebooks in the training data of
LLMs, which is a common issue in LLM evalua-
tion (Brown et al., 2020).3 To prevent contamina-
tion, we additionally build the New Tasks split with
660 problems in notebooks created from scratch.
Specifically, we create notebooks with wrangling
and EDA tasks for 70 tabular ML datasets that
appeared on Kaggle since February 2022 and are
manually verified to differ from existing datasets
on the Web. For each Kaggle dataset, we instructed
the annotators to create a notebook with tasks that
would provide insights for building an ML model
for the dataset. To make the problems more chal-
lenging, we also encouraged them to make tasks
that require at least 5 pandas API calls to solve.
Annotating NL Intents When creating NL in-
tents for a problem,4 annotators are instructed to
phrase their intents in the way they prefer when in-
teracting with an AI system to help them implement
the existing code solution, while keeping the intents
natural and concise, without redundant elaboration
such as line-by-line explanation. In addition, to

3JuICe and BigQuery primarily contain source files from
2019 or earlier, which exacerbates this issue.

4For New Tasks, intents are created before the solutions.

make the intents more challenging, we encourage
annotators to refer to entities and variables in the
intents using semantic rewrites without introducing
ambiguity (e.g., use “convert all binary columns to
bool” instead of listing columns verbatim), remi-
niscent of synonym substitution for labeling utter-
ances in text-to-SQL (Gan et al., 2021).
Mitigating Ambiguity in NL Intents Creating
succinct NL intents without ambiguity could be
non-trivial in this open-domain code generation
setting, especially when there could be multiple
plausible interpretations of an intent. For exam-
ple, without the underlined part of u5 (Fig. 1), a
programmer or a system may propose alternative
solutions using different table schema. Therefore,
for such open-ended problems where there could be
multiple alternative ways to present the answer, we
ask annotators to provide extra specification in their
intents about the desired output (e.g., schema of
the output DataFrame, such as the underlined part
in u5). Even with these additional semantic con-
straints, empirically we observe that about 50% of
intents are still underspecified, making ARCADE a
challenging benchmark for handling realistic NL
intents with uncertainty. We present more analysis
in §3.2 and introduce a robust evaluation metric
that mitigates this issue in §3.3.
Annotation Guideline Besides mitigating ambi-
guity in intents, there are many other aspects to
consider during annotation, such as notebook style
(e.g., removing background material and hints in
tutorial notebooks in Existing Tasks to avoid so-
lution leakage), task diversity, and quality control,
which we discuss in a 35-page annotation guideline
provided to annotators, outlined in Appendix B.

3.2 Dataset Analysis
We first present some analysis on ARCADE and
then compare it to existing datasets in Tab. 1.
NL Intents are often Underspecified ARCADE

aims to evaluate code LMs in the real-world sce-
nario where data scientists provide succinct NL
intents without extra specification (e.g., I/O exam-
ples). As a result, the intents we collected are often
underspecified and may not contain sufficient infor-
mation to generate a solution that executes to the
exact reference output. To understand the patterns
of semantic ambiguity in user-issued intents, we ex-
amined 100 random samples. Around 50% of them
are precise and sufficient to infer the target outputs.
Those intents are often numerical queries with lim-

128



Dataset Src. Exec? Evaluation # N.B. # P. P. / N.B. Intents Type Intent AST Size?
# API4Method Length All / pandas

JuICe (Agashe et al., 2019) GH Surface Match 1,457 3,946 2.7 Markdown 60.2 21.2 / 24.3‡ 2.5
DSP (Chandel et al., 2022) GH Unit Tests 305 1,096 3.6 Markd.+Tests 54.3 28.7 / 34.8‡ 3.1
ExeDS (Huang et al., 2022)◦ GH Output Match 277 534 1.9 Annotated NL 20.0 9.0 / 10.7 2.4
NLGP (Heyman et al., 2021) GH Surface Match 150 201 1.3 Annotated NL 7.7 13.5 / 15.1 2.1
DS-1000 (Lai et al., 2022)� SO Tests+Constraints N/A 1,000 N/A Annotated NL 166.5 27.3 / 41.6‡ 5.0
This Work: ARCADE
xExisting Tasks† GH Fuzzy Output Match

(§3.3)
61 417 6.8 Annotated NL 15.6 17.7 4.3

xNew Tasks New 70 661 9.4 18.4 27.2 5.8

Table 1: Summary statistics of ARCADE and existing datasets (evaluation splits). Source: GitHub (GH) or StackOverflow
(SO). Exec?: executability. N.B.: notebooks. P.: problems. P./N.B.: problems per notebook. ?Metrics are averaged over all
examples and (/) those using pandas. ‡AST sizes are for reference only because some programs contain boilerplate code (e.g.,
function/class sketches) which is not part of solution. 4Number of pandas API calls on the subset using pandas. ◦ExeDS is
concurrent work, consisting of executable examples in JuICe with annotated intents and evaluation based on output matching.
�DS-1000 derived StackOverflow problems without notebook contexts and is not directly comparable to other work in this table.
†Existing Tasks also has extra 59 plotting problems in our release (excluded here), which are not used in this paper (§9).

ited variety in output type (e.g., u2, u3, Fig. 1),
or contain sufficient output specifications (§3.1).
The remaining half are underspecified: (a) only
10% of the ambiguous intents lack descriptions
of target columns in output DataFrames; more in-
terestingly, (b) 42% imply entity sets as outputs
(e.g., Where are the top 10 customers receiving the
highest

:::::::
incomes located?), answerable either us-

ing container types with entity names only (e.g.,
a List or Series of locations), or DataFrames
with entities and additional columns (e.g.

:::::::
incomes)

mentioned in the intents; (c) 23% imply output with
complex schema, such as a nested row index or ta-
ble header (e.g., Show the time of the day and the
fare price for each airline) which is difficult to in-
fer without extra information, and (d) 20% require
outputs with more complex structures (e.g., multi-
ple variables) or imply additional post-processing
steps such as data imputation, while (e) the remain-
ing 5% have complex intents that are difficult to
understand without additional clarifications.
Notebook Context Helps Disambiguate Intents
Notably, while half of the intents are underspeci-
fied, 25% of those cases can be disambiguated by
referring to prior rounds of problems in the context
with similar query/output patterns. These are of-
ten follow-up queries (e.g., Which of them are . . .)
of a prior turn (e.g., Show me all . . .), analogous
to similar thematic relation patterns in contextual
semantic parsing (Yu et al., 2019b).
Comparing Existing and New Tasks Compar-
ing the Existing Tasks and New Tasks splits, the
latter is more challenging, as measured by the num-
ber of pandas API invocations and the AST size of
reference solutions (Tab. 1, Bottom). Fig. 2 plots a
histogram of the number of API calls per problem,
where 67% of problems in New Tasks require at
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Figure 2: Histogram of the number of pandas API calls.

least 5 API calls to solve. As discussed in §5, with
more complex held-out problems targeting recent
ML datasets, the New Tasks split is a more robust
benchmark and more challenging for code LLMs.
Comparing with Existing Datasets Tab. 1 com-
pares ARCADE with existing data science code
generation datasets. We remark that ARCADE is
the only benchmark that satisfies all the follow-
ing criteria: First, . . . . . . . . . .ARCADE. . . . . . . . . . .features . . . . . . . . . .succinct
. . . .and. . . . . . . . . .realistic . . . . . . . .intents. . .as. . . . . . . . . .problem.. . . . . . . . . . . . . . . .specifications (“In-
tents Type” column, Tab. 1), which are significantly
shorter (“Intent Length” column) than the verbose
Markdown problem definitions found in tutorial
or assignment notebooks (c.f. JuICe, DSP). AR-
CADE also does not rely on extra specifications
such as unit tests (c.f. DSP), which better capture
the real-world scenario where developers prompt
LMs using ephemeral comments for code com-
pletion (Barke et al., 2022). Most of these in-
tents are often underspecified (mentioned earlier
in §3.2), requiring a more robust evaluation met-
ric to consider alternative answers (discussed in
§3.3), while motivating future research on improv-
ing prediction diversity to cover plausible problem
interpretations (explored in §5.1) or explicit model-
ing of intent uncertainty (Lin et al., 2022). Second,

. . . . . . . . . . .ARCADE . . . . . . . . . .contains. . . . . . .more. . . . . . . . .related . . . . . . . . . . . .problems . . .in . .a
. . . . . . .single . . . . . . . . . . .notebook (“P./N.B.” column) with diverse
dependency patterns (e.g., Fig. 1), capturing the
essence of interactive computing. This makes our
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dataset useful in testing an LLM’s ability to under-
stand rich contexts, including existing user-written
cells, as well as preceding problems and their so-
lutions (§2). Third, . . . . . . . . . .ARCADE. . . . . . . . . . . . .challenges. . . . . . . .LLMs
. . . . .with. . . . . . . . . . . .grounded . . . . . . . . . . .language . . . . . . . . . . . . . . . . .understanding, where the
model needs to ground semantic concepts in the
intents (e.g., “max and min” in u1, Fig. 1) to the
corresponding variable execution states in the con-
text (e.g., the TIME column in df). The need
for understanding semi-structured data and per-
forming necessary transformations (Pasupat and
Liang, 2015) using an open-domain programming
language (PL, Python) makes language ground-
ing in ARCADE more difficult than in existing
EDA tasks using domain-specific PLs, such as se-
mantic parsing over databases (Yu et al., 2019b).
Fourth, . . . . . . . . . . .ARCADE . . . .has. . . . . . .more. . . . . . . . . . .complex. . . . . . . . . . . .problems
. . . . .with. . . . . . . .richer . . . . . . .usage . . .of. . . . . . . . . . . . .real-world . . . . .data. . . . . . . . .science. . . . . . .APIs.
The number of pandas APIs used in each problem
(“# API” in Tab. 1) is on par with DS-1000 and
significantly higher than other datasets.5 Finally,
besides problem complexity, . . . . .60%. . . .of . . . . . . . . . . .problems
. .in. . . . . . . . . . . .ARCADE . . . .are. . . . . . . . . .created . . . . . .from.. . . . . . . .scratch. . . .to . . . . . . . . . .mitigate
. . . . . . . . . . . .evaluation . . . . .data. . . . . . . . . .leakage. These data science prob-
lems also target recent tabular ML datasets, making
ARCADE a reliable benchmark to test the general-
ization ability of LLMs in semi-structured knowl-
edge understanding (Lee et al., 2021).

3.3 Evaluation by Fuzzy Output Matching
We aim to synthesize programs in notebooks us-
ing only cell contexts and NL intents without extra
specification such as unit tests (§2). As in §3.2,
those intents are often underspecified and have mul-
tiple alternative solutions. We therefore approxi-
mately match the execution output of a predicted
program with the annotated reference to determine
if they are functionally equivalent primarily based
on two categories of heuristics.6 First, we canoni-
calize variables with different container data types.
Second, we allow for partial matching between
complex DataFrames. Specifically, for a reference
frame v with a set of column vectors {vi}, each
representing the cell values for the i-th column, a
prediction v̂ is considered equivalent with v iff for
any vi ∈ v, vi ∈ v̂. Intuitively, we consider a
predicted program correct if its output DataFrame
contains all the columns (and cell entries) in the

5Calculated by counting function names in a predefined
list of functions from pandas, numpy, and similar libraries.

6For code that in-place modifies a variable (e.g., df in c2),
we treat the modified variable as the output.

reference frame, since a user could easily create
a more compact view of the frame by selecting a
subset of target columns. Empirically, we find our
evaluation metric is reliable in identifying solutions
with alternative output structures, with a relatively
low false-negative rate (Appendix J).

4 PACHINCO: Adapting Code LMs to
Computational Notebooks

We introduce PACHINCO, an LM for notebooks.
Base LM PACHINCO is based on PALM, a fam-
ily of decoder-only LMs for NL tasks (Chowdhery
et al., 2022). Specifically, we use the 62B PALM
model trained on 1.3T tokens with a mixture of
conversational, webpages and code data (Section F,
Chowdhery et al. (2022)). Starting with this base
LM, we first fine-tune on Python source code and
then fine-tune further on Jupyter notebooks.
Fine-tuning on Python Code We first fine-tune
the base LM on a corpus of near-deduplicated,
permissively-licensed Python source code files
from GitHub, with 64B tokens in total. We finetune
PALM for 1 epoch following the hyper parameters
setup in Chowdhery et al. (2022). This model is
already a strong code LM, even outperforming the
larger code LM PALM-Coder 540B on existing
program synthesis benchmarks (§5.2).
Fine-tuning on Notebooks We then perform a
second stage of fine-tuning on a large collection
of 3.8M Jupyter notebooks from GitHub (9.6B to-
kens). Since our evaluation notebooks in the Ex-
isting Tasks split are also from GitHub, we also
perform near-deduplication to remove any training
notebooks with one cell similiar to any cells in the
notebooks in Existing Tasks to prevent data contam-
ination. We use nbconvert to linearize notebooks
into Python code. Refer to Appendix D for details
and Appendix K for a data card.

5 Experiments
Models We evaluate PACHINCO and state-of-
the-art public code LLMs, namely CODEGEN (Ni-
jkamp et al., 2022) and INCODER (Fried et al.,
2022). We test both the monolingual (Python-only)
and the multilingual version of CODEGEN. IN-
CODER may be a more appealing comparison since
it is trained on 5GB of Jupyter notebooks.
Inference and Metrics We convert each prob-
lem into a prompt (§5.1) and draw samples using
nucleus sampling. Following Chen et al. (2021a),
we report pass@k metric, defined as the fraction
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[1]

[2] # Schema of Dataframes:
# Columns in df with example values:
# Stu_Name (Mike),Engineering (90),English (89),Math (92)

[3] Get the students with an average score above 90 
for science subjects

[3a]

df['Science_Avg'] = (df['Engineering']+df['Math'])/2
df[df['Science_Avg'] > 90][['Stu_Name','Science_Avg']]

▸ Vanilla Prediction (no exemplars):

[3b] ▸ Step-by-Step Prompting (with exemplars):

df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2

df_score_above_90 = df[df['Science_Avg'] > 90]

result = df_score_above_90[['Stu_Name', 'Science_Avg']]

# Solution: Let's solve this problem step-by-step. preamble

# Step 1: Create a new column with the average score of

# engineering and math explanation

# Step 2: Get the rows whose average score is above 90

# Step 3: Return the student name and average scores

import pandas as pd

df = pd.read_csv('stores.csv')

[1]

Which countries host at least two Olympic games?

count_df = df['Country'].value_counts()

filtered_df = count_df[count_df >= 2]

filtered_df.index.tolist()

# Solution: Let's solve this problem step-by-step.

# Step 1: Get the counts each country hosted Olympics

# Step 2: Get the rows whose average score is above 90

# Step 3: Get the country names as a list

P
r
o
m
p
t
 
P
r
e
f
i
x
 
(
E
x
e
m
p
l
a
r
s
)

preamble

explanation

Figure 3: An example problem. Cells 1-2 (c1, c2) are the
notebook context, and Cell 3 (c3) contains the intent. Cells 3a
and 3b show two example completions of c3.

of problems with at least one correct sample given
a sample size k. To reduce variance, we estimate
pass@k (k ≤ 30) by drawing 50 samples for each
problem (Chen et al., 2021a). Decoding tempera-
ture t is 0.2 for k = 1 and 0.8 for k > 1. Refer to
Appendix E for inference details.

5.1 LM Prompting Strategies
We explore two prompting strategies: prompting
using the notebook context of a problem (§5.2),
and few-shot prompting with extra exemplars as a
prompt prefix before the notebook context (§5.3) to
impose more control on the predicted code’s style.
Prompting with Notebook Contexts Fig. 3 de-
picts an example problem at c3 for prompting,
where the prompt is the notebook context (preced-
ing cells c1 and c2) and the current intent. The con-
text also includes NL descriptions of the imported
DataFrame schema (c2), such as its columns and
example cell values, crucial for grounded under-
standing of structured knowledge (Xie et al., 2022).
Completion 3a shows an example prediction. For
the following problems after c3 (not shown), we
use annotated reference solutions to previous turns
in their contexts, reminiscent of multi-turn task-
oriented dialogue evaluation (Andreas et al., 2020).
Using Extra Few-shot Exemplars Besides the
basic setting, we also explore prompting using four

pass@k
Existing Tasks New Tasks
1 5 30 1 5 30

Existing Models
INCODER 1B 20.8 30.9 47.0 2.3 4.0 9.9
INCODER 6B 28.2 40.6 56.2 3.5 7.1 15.8
CODEGENmulti 350M 9.0 13.6 21.3 0.8 0.9 2.6
CODEGENmulti 2B 18.7 25.9 39.3 1.5 2.6 6.8
CODEGENmulti 6B 20.0 28.5 42.8 1.7 3.4 8.9
CODEGENmulti 16B 20.9 31.4 47.1 2.5 4.8 12.4

CODEGENmono 350M 11.3 18.5 32.8 1.5 1.9 5.1
CODEGENmono 2B 24.7 35.5 52.9 3.1 6.3 16.0
CODEGENmono 6B 28.7 42.2 60.9 4.0 8.6 20.4
CODEGENmono 16B 32.6 46.2 63.9 6.1 12.1 25.2

CODE-cushman-001 38.1 50.4 68.8 8.9 14.5 31.0
CODE-davinci-002 53.0 66.3 81.5 23.4 36.0 54.7

Our Models
Base PALM 62B 35.7 49.4 67.8 7.2 12.7 26.4
+ Python f.t. 43.6 58.8 75.3 11.9 21.7 40.7
+ PACHINCO 48.9 64.3 78.3 18.0 30.5 47.7
− Schema Desc. 44.2 60.0 75.0 13.0 22.2 36.1

Table 2: pass@k using notebook context as prompts.

additional NL-to-code exemplars as prompt prefix
before the notebook context. As shown in Fig. 3
(Completion 3b), we focus on prompting LMs to
generate code that follows a multi-line, step-by-
step (SbS) decomposition structure, in contrast
with the common practice of chaining multiple API
calls in a single line (Completion 3a). Each step
is also optionally inlined with NL explanations .
Such step-wise explanations could help novice de-
velopers understand model predictions, and they
have been found effective for reasoning (Wei et al.,
2022; Gao et al., 2022) and program induction (Nye
et al., 2021) tasks. Following Kojima et al. (2022),
we also use a preamble to further elicit step-wise
decomposition in predictions. See Appendix L for
a complete list of example prompts.

5.2 Main Results
Tab. 2 reports pass@k on ARCADE using note-
book contexts as prompts. PACHINCO achieves
strong performance on both the Existing Tasks split
and the New Tasks split due to its larger size and
domain-specific fine-tuning.
Impact of Fine-tuning The base PALM model
outperforms most public code LMs and is on
par with CODEGENmono 16B. Fine-tuning on
Python (+Python f.t., Tab. 2) and notebooks data
(+PACHINCO) further closes the domain gap with
improved pass@k. The absolute gain after fine-
tuning on Python code is higher than continued
training on notebooks, likely because the semantic
gap between NL data and Python code is larger than
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Dataset HUMANEVAL MBPP TRANSCODER
Metric pass@100 pass@80 pass@25

PALM-CODER 540B† 88.4 80.8 82.5
CODE-davinci-002 92.1α 84.5α 87.9
PaLM 62B (Python f.t. §4) 91.5 86.0 86.4

Table 3: Evaluation of existing code LMs and PaLM 62B
after the first-stage fine-tuning on Python code. †Results from
Chowdhery et al. (2022). α Results from Chen et al. (2022)

.

that between general Python code and notebooks.
We note that the base PALM 62B model after

fine-tuning on Python code corpora is already a
strong code LM, performing competitively com-
pared to other strong code LMs on established
code generation (HUMANEVAL and MBPP) and
translation (TRANSCODER) tasks (Tab. 3). With
7× more Python code tokens, our Python fine-
tuned PALM 62B model outperforms the 8× larger
PALM-CODER 540B model on all the three tasks.
Comparing Existing Code LMs Among mod-
els with similar size and amount of Python train-
ing data (INCODER 6B vs. CODEGENmulti 6B),
INCODER 6B performs better, likely because IN-
CODER was trained on Jupyter notebooks.7 With
4× more Python data, CODEGENmono 6B takes
over. Appendix F further reports the scaling curve
of CODEGEN on ARCADE, where pass@k scales
as a power law with model size.

For reference, we also report the results using
the CODEX API. PACHINCO significantly outper-
forms the smaller cushman API, while davinci-002
is stronger. While we cannot gain much insight
from the results due to limited knowledge about
davinci-002, through error analysis, we find that
davinci-002 is better at instruction following, es-
pecially in understanding NL descriptions of com-
plex DataFrame schema (§5.1). Intuitively, com-
pared to existing benchmarks, NL understanding
on ARCADE is more challenging given its succinct
and potentially ambiguous intents together with
rich contexts. Therefore, the gap between CODEX-
davinci-002 and our models could be larger on AR-
CADE compared to that on other datasets in Tab. 3.
We leave improving the instruction following skills
of PACHINCO as interesting future work.
Comparing Existing Tasks and New Tasks The
pass@k scores on Existing Tasks are significantly
higher than on New Tasks across all models. How-
ever, comparing the improvements after Python
and notebook-specific fine-tuning of the base LM,

7Fine-tuning CODEGEN on notebooks corpora would
likely improve its performance on ARCADE.

Models pass@30 # API Lines of Comment Tokens API
Code (LoC) Lines / Line / Line

Baseline (Tab. 2) 47.7 4.9 2.3 0.1 21.1 3.2
+ More Context 49.3 4.9 2.3 0 21.1 3.1

Prompting with Additional Few-shot Exemplars
Vanilla Code 49.9 5.3 2.4 0.1 20.8 3.1
Step-by-Step Code 51.9 5.6 3.2 0.1 17.8 2.7
+ Preamble 51.9 5.9 3.5 0.2 16.9 2.5
+ Pre. + Explanation 52.5 6.8 4.2 3.3 14.9 2.2

Table 4: pass@30 and code style metrics for few-shot prompt-
ing on New Tasks. Results are averaged over three runs with
different prompt prefixes.

the gain on New Tasks is higher. One reason is that
the problems in Existing Tasks are overall simpler
than in New Tasks (§3.2). Additionally, some code
data similar to our evaluation notebooks in Exist-
ing Tasks could leak into the training data of those
LMs. Despite our significant effort to deduplicate
fine-tuning data against Existing Tasks (§4), the
base LM might have seen similar code data on the
Web, e.g., as data science tutorials. This highlights
the importance of robust evaluation using held-out
data, which is the purpose of the New Tasks split.
Ambiguous Intents are Hard to Solve without
Extra Specifications In §3 we discussed how in-
tents in ARCADE can be ambiguous and underspec-
ified (§3.2), and mitigating intent ambiguity using
additional specifications to further clarify on the
desired target output (§3.1). Indeed, those addi-
tional specifications are crucial for disambiguation.
Without them the pass@30 of PACHINCO on the
subset of 136 intents annotated with extra specifica-
tions on New Tasks dropped from 46.5% to 27.8%
(43.8 on the full split v.s. 47.7 on Tab. 2), suggest-
ing the importance of modeling prompt ambiguity
for LLMs as future work.
Grounded NL Understanding is Important
Our prompts contain NL descriptions of imported
DataFrames (§5.1), crucial for grounded under-
standing of NL intents (§3.2). Removing such
schema descriptions significantly worsens the re-
sults, especially on New Tasks, as the last row in
Tab. 2 (−Schema Desc.) shows. Encoding the
states for more intermediate variables could likely
further improve performance, which we leave as
important future work.
Further Analysis We report more ablation ex-
periments, such as pass@k w.r.t. problem complex-
ity and the notebook context size in Appendix G.

5.3 Few-shot Prompting Results
Next, we investigate few-shot prompting to help a
model better understand the task while controlling
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Figure 4: Cumulative distributions of the number of (A) unique API sequences and (B) output clusters, extracted from
PACHINCO’s 50 predictions on the New Tasks split. Curves that appear more to the right represent prompting methods with
greater diversity in the samples. Step-by-step prompting leads to much greater diversity than the baselines. (C) Self-consistency
decoding accuracy using 1 reranked sample on New Tasks.

the style of predictions.8 Tab. 4 summarizes the
results on New Tasks. We start with the prompt-
ing strategy of predicting just the Step-by-Step
Code (SbS) without preambles or explanations
(i.e., only the code part of Completion 3b in Fig. 3),
which improves over the baseline using only note-
book contexts (c.f. Tab. 2). SbS prompting is es-
pecially effective for problems without adequate
contexts, yielding 6% absolute improvements for
the first two rounds of problems in a notebook as
compared to the zero-shot baseline. More inter-
estingly, even if we include more context in the
baseline such that its prompt length matches SbS
prompting (Baseline + More Context), SbS
prompting still outperforms, again suggesting the
complimentary value of extra exemplars.
Step-by-step Prompting Improves Code Style
SbS prompting also changes the style of predicted
code, which is decomposed into more lines (LoC↑,
Tab. 4) where each line is simpler (Tokens/API per
Line↓). In contrast, if we instead prompt the model
using exemplars with “vanilla”-styled code fol-
lowing the common practice of chaining multiple
pandas API calls in a single line (Vanilla Code,
e.g., Completion 3a in Fig. 3), we get less pass@k
improvement over the baseline while the code style
remains consistent.

Next, using preambles (+Preamble) to further
encourage the model to produce step-by-step solu-
tions improves the level of decomposition (LoC↑,
Tokens/API per Line↓) while maintaining pass@k.
More surprisingly, with additional inline NL expla-
nations for each step (+Pre.+Explanation),
PACHINCO produces even more decomposed solu-
tions with slightly improved accuracy. As a result,
those predictions have rich NL comments, with
the number of comment lines nearly equal to the
number of code lines. Interestingly, the predicted

8We only evaluate PACHINCO because the prompt length
(max 2,100 sub-tokens) exceeds the limit of public code LMs.

solutions are also more complex, as indicated by
the increased pandas API usage (# API↑). How-
ever, as we explain in Appendix H, on Existing
Tasks, while prompting with NL explanations still
alters the code style, pass@k is slightly worse.
This is likely due to the fact that this split con-
tains problems similar to the base LM’s training
data, and prompting the model to generate addi-
tional NL comments breaks its “flow” of generat-
ing code by memorization. Moreover, this split is
also dominated by simpler tasks requiring fewer
steps, while explanation-based prompting favors
predicting more complex solutions with richer API
usage and more code tokens (Tab. 4). Nevertheless,
prompting with explanations yields more diverse
predictions and could also help developers better
understand the generated solutions, as we discuss
next and also in §6.
Step-by-Step Prompting Diversifies Solutions
We also explore whether SbS prompting helps pro-
duce more diverse solution approaches. Intuitively,
more output diversity could improve the odds of
finding a solution at higher sample sizes. Deter-
mining whether two solutions are “different” is
difficult and subjective, but we approximate this in
two ways. First, we use the sequence of pandas
API calls as a signature of the high-level solution
pattern. Second, since two solutions might have the
same functionality (executing to the same output),
we also cluster predictions based on their outputs.

Figs. 4a and 4b plot the cumulative distributions
of the number of unique solution patterns and out-
put clusters on the New Tasks split. SbS prompting
increases diversity on both metrics compared to the
baselines. Notably, prompting with NL explana-
tions yields even more solution patterns.

Diverse predictions could help handle underspec-
ified intents (§3.2), since they might correspond to
different interpretations of an ambiguous intent.
Having diverse predictions also allows us to trans-

133



late better pass@k performance into better per-
formance on a single suggestion using post-hoc
reranking such as self-consistency decoding (Wang
et al., 2022b), where we return the user one pre-
diction from the largest output cluster instead of
showing all k predictions (Fig. 4c). SbS prompt-
ing significantly improves over baselines. Notably,
the 1-sample accuracy of SbS with NL explana-
tions outperforms pass@5 of the baseline in Tab. 2.
Refer to Appendix I for further analysis.

As a side note, while SbS prompting leads to
improved sample diversity, it may not directly im-
prove code quality. If we consider functional cor-
rectness to approximate code quality, we observe
that vanilla few-shot prompting and SbS variants
have a similar fraction of correct samples (∼ 15%).
This suggests that for SbS prompting, it is higher
sample diversity that may contribute to improved
pass@k (k > 1) and reranking accuracy instead of
other potential factors.

6 Case Study: How Useful is Predicted
Code with Step-wise Explanations?

Finally, we remark that besides improving solution
diversity, step-by-step prompting with NL expla-
nations could also potentially help novice data sci-
entists understand model-generated solutions, as
shown in the following qualitative case study.

First, NL explanations could help users follow
the flow of complex data transformations for pro-
grams involving a chain of pandas operations. By
decomposing and explaining how data is manipu-
lated after individual transformation steps, it is eas-
ier for users to understand the solution and track its
dataflow behind the scene, especially when some
steps involve complex computation (Fig. 17), or the
underlying schema is less intelligible (e.g., column
names with abbreviations, Fig. 18). Additionally,
some inline explanations also describe the output
of intermediate steps, which is particularly helpful
when these steps involve advanced pandas func-
tions whose output structure may not be obvious,
such as pd.unstack (Fig. 19)

Meanwhile, step-wise NL explanations serve as
high-level procedural descriptions of code, which
enable users to easily browse through and under-
stand different solution approaches without being
distracted by nuances in the actual code implemen-
tation (Fig. 20). Moreover, explanations also help
users verify the code solutions by identifying po-
tentially incorrect steps (Fig. 21). The observations
presented here offer insight into potential future

avenues to improve the utility of code LMs for
developers through the use of step-by-step explana-
tions, which we leave as important future work.

7 Related Work
Automating Data Science The amount of exper-
tise required in data science has called for devel-
opment of systems to automate its lifecycle (Wang
et al., 2021b). Much work has focused on au-
tomating feature engineering and tuning of ML
models (AutoML, He et al., 2021; Karmaker et al.,
2020), with well-established systems (Feurer et al.,
2015) and benchmarks (Zöller and Huber, 2021).
This paper focuses on automating tabular data wran-
gling and EDA tasks, which account for nearly the
same amount of code and documentations in note-
books as that for ML-related tasks (Agashe et al.,
2019; Wang et al., 2022a). Along this line, exist-
ing research synthesizes data wrangling programs
using I/O examples (Bavishi et al., 2019; Shi et al.,
2020) or partial table contents (Chen et al., 2021c),
followed by recent efforts using LLMs with addi-
tional NL specifications (Jain et al., 2021; Bavishi,
2022). This paper considers code generation in
notebooks with multiple contextually dependent
problems (see §3.2 for recent work). In addition,
other works have also considered applications such
as synthesizing visualization plots (Amar et al.,
2005; Wang et al., 2019; Narechania et al., 2020;
Fu et al., 2020; Wu et al., 2022b).
Context-driven Code Generation Our work is
another application of context-driven code genera-
tion, which maps a series of contextually dependent
utterances to programs, such as domain-specific
logical forms (Zettlemoyer and Collins, 2009; Long
et al., 2016; Iyyer et al., 2017; Andreas et al., 2020),
SQL queries over databases (Hemphill et al., 1990;
Suhr et al., 2018; Yu et al., 2019a,b), or general-
purpose PLs (Nijkamp et al., 2022). ARCADE fur-
ther offers contextually dependent utterances ex-
hibiting non-trivial dependencies (§2), with target
programs defined in a general-purpose PL.

8 Conclusion
In this paper we present ARCADE, a code genera-
tion benchmark for data wrangling and EDA tasks
in computational notebooks, featuring problems
with realistic NL intents and rich contexts. We also
develop PACHINCO, a 62B LM tailored for data
science. PACHINCO outperforms public LMs on
ARCADE, while being effective in few-shot learn-
ing to improve code style and solution diversity.
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9 Limitations

We discuss limitations of our work that hopefully
could inspire future research in this avenue.
Task Coverage in ARCADE ARCADE consists
of realistic data wrangling and EDA tasks for a
variety of ML datasets. In particular, we focus on
problems that can be solved using pandas because
of its popularity in data science — 90% of Kaggle
notebooks use pandas. Still, our annotated prob-
lems may not cover all the types of tasks in these
two categories. As an example, data visualization
is an important part of EDA. Our dataset also in-
cludes 59 natural language to plotting problems,
which are not used in this paper due to challenges
in automated evaluation (Chen et al., 2021b). Fu-
ture work might consider evaluation of plotting
tasks using unit tests (Lai et al., 2022). Addition-
ally, some of the existing datasets in Tab. 1 usually
contain broader types of problems other than the
wrangling and EDA tasks considered in this paper
(e.g., fitting ML models, §7). We leave expanding
the task spectrum as important future work.
Session-level Evaluation ARCADE features
multiple contextually dependent problems in
computational notebooks. As the first step towards
evaluating code LMs in this interactive program
synthesis paradigm, we report turn-level accuracy,
and generate notebook context for prompting
using ground-truth solutions for the prior turns of a
problem (§5.1), following the common evaluation
protocol in task-oriented dialogue (Hosseini-Asl
et al., 2020; Andreas et al., 2020). Future work
could consider a more realistic scenario of
session-level evaluation where history contexts
consist of model-predicted code instead of the
reference (Yang et al., 2020; Nijkamp et al., 2022).
However, this evaluation setting is still not ideal
without modeling the user (e.g., asking follow-up
questions to correct a model’s predictions in a
turn before proceeding to the next round, see
Austin et al., 2021), which often requires building
specialized simulators (Cheng et al., 2022a).
Reliance on Large Language Models Our ex-
periments are based on public and in-house large
code LMs (PACHINCO), which require adequate
computational resources9 and create carbon emis-
sions (Patterson et al., 2021). Their predictions
could also be subject to known issues such as
misalignment with user intents; for a discussion

9FLOPs usage of fine-tuning PACHINCO is 3.6× 1022.

of these and other risks of code language mod-
els, see Chen et al. (2021a, Appendices E-H)
and Chowdhery et al. (2022, Section 6.4). To re-
duce the amount of computational resources re-
quired, our initial prompting experiments (§5.2)
and error analysis (Appendix J) suggest that lever-
aging program execution information (e.g., schema
descriptions) could be a promising direction to im-
prove sample efficiency and reduce the size of code
LMs (Nye et al., 2021), while explicit modeling
of code-intent correspondence (Zhang et al., 2022)
could be a viable path to mitigate alignment issues
in model predictions. In addition, as generative
AI coding tools are becoming more available to
developers, more efforts are required to understand
the potential limitations of those systems and the
risks they may pose, such as producing insecure
code and over-reliance on model predictions (Chen
et al., 2021a). We leave addressing those issues as
important future work.
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Supplementary Materials

A Details of Dataset Construction

In this section we elaborate on the process of building ARCADE.

A.1 Mining Examples from Existing Notebooks
To build the Existing Tasks split with annotated NL-to-code problems from publicly-available notebooks,
we first identify candidate code cells performing data wrangling and EDA tasks from existing high-quality
data science notebooks, and then manually annotate these cells with NL intents.
Collecting Notebooks for Annotation To form a pool of candidate notebooks, we use JuICe (Agashe
et al., 2019), a collection of Jupyter notebooks from GitHub, together with additional notebooks from
BIGQUERY10, yielding over 1.5M notebooks in total. These notebooks are first filtered and near-
deduplicated, similar to PACHINCO’s training data preprocessing step in Appendix D. We then identify
candidate code cells from the remaining notebooks for annotation. Specifically, we select code cells that
are either (1) contain pandas programs with at least three API calls, or (2) preceded by a Markdown cell
with a short question as its content (e.g., What are the top 10 producers?). The first heuristic is useful
to identify complex wrangling tasks, while the second one is particularly effective in finding interesting
dataset-specific EDA tasks, and the existing Markdown texts also provide reference for labeling intents
later. Next, we group the notebooks with at least one candidate cell based on their underlying ML datasets
(e.g., imported using pd.read_csv()), and then select the top 5 notebooks with the greatest number of
candidate cells from a curated set of 36 dataset groups for annotation. This set contains ML datasets from
a variety of domains and schema. We favor notebooks with more candidate cells so that we could extract
multiple NL-to-code problems within the same notebook.
Annotation We hired a group of data scientists to annotate the notebooks selected above, following the
process outlined in §3.1. Annotation primarily consists of judging the quality of candidate code cells,
fixing any errors, and creating NL intents summarizing the code. Throughout the annotation process, we
find that re-purposing notebooks in the wild to build our benchmark is not an easy task. As an example,
many notebooks in JuICe are data science tutorials, which often contains documentation that includes
background knowledge, reference materials, and even solution hints. Those extra information makes the
code generation task easier, and may not reflect the style of ordinary notebooks authored by data scientists
in their day-to-day work. We therefore ask the annotators to clean the notebook and remove such extra
information whenever possible.

A.2 Creating Notebooks with Examples from Scratch
The problems derived from high-quality GitHub notebooks could capture realistic tasks and notebook
contexts, but may result in artificially high evaluation accuracies due to potential leakage of evaluation
notebooks to the training data of LLMs, which is a common issue in LLM evaluation (Brown et al., 2020).
To defend against this data contamination, we additionally annotated 660 problems by creating notebooks
from scratch.
Sourcing Novel ML Datasets To ensure that those newly-created examples can be used to evaluate the
generalization ability of code LMs on unseen ML datasets, we create notebooks targeting data wrangling
and EDA tasks for 70 tabular ML datasets that have been recently uploaded to the Kaggle data science
platform since February 2022. Those short-listed datasets are manually selected from a pool of 600
datasets with reasonably complex schema (e.g., having columns with diverse data type), and are verified
by our annotators that no older-versioned datasets with similar schema appeared before.
Creating Notebooks For each ML dataset, the annotators were asked to create one notebook with a
series of wrangling and EDA tasks annotated with NL intents. Specifically, we ask annotators to come
up with tasks that they would like to perform in order to gain insights into these recently appeared ML
datasets in order to build models for them. We follow the same standard to create intents as in creating

10https://cloud.google.com/bigquery/public-data/
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Existing Tasks. To make the problems more challenging, annotators are encouraged to create harder tasks
whose code solutions require at least 5 pandas API calls.

A.3 Annotation Process and Quality Assurance
Eight freelancers proficient in English and reported skill in pandas are hired from Upwork, with an
average of 3 years of experience. All the annotators went through a qualification round with data science
interview questions. In building the Existing Tasks split, each freelancer first performed a trial batch by
annotating a single notebook, and received detailed comments from the first author, before proceeding
with annotating the rest of assigned notebooks. Each annotated sample is reviewed by the first author.
Annotators spent 3 ∼ 4 minutes to create each problem on average. To create the more challenging New
Tasks split from scratch, we only invite the top-3 performers for this task since it is harder than labeling
existing notebooks. Each created notebook is first peer reviewed by another annotator, before a final
round of review by the first author. Since the annotators have already worked on the prior task of creating
examples in existing notebooks, they are fairly familiar with the requirement, and are able to create each
problem in 13 minutes on average. To further improve quality, we also did another round of manual review
for the set of problems in the two splits that a strong code LLM fails to predict the annotated solution
(based on fuzzy output matching) within a budget of 50 samples.11

B Outline of ARCADE Annotation Guideline

In this section we provide a brief outline of our annotation guideline.
Existing Tasks The annotators are given a list of Jupyter notebooks. Each notebook uses pandas to
perform certain data analysis tasks. For each notebook, an annotator is asked to:

1. Identify code cells that contain instructive code snippets that perform data wrangling or exploratory
data analysis tasks.

2. Fix the notebook and make them clean and executable.

3. For each code snippet identified in Step 1, create natural language descriptions of the task. Also
verify the code solution and fix them as appropriate. Finally, remove any redundant text in the
notebook (e.g., solution outline or hints for tutorial notebooks) that could give away to the refernce
solution.

Instruction on Creating Natural Intents Specifically, for step 3, in order to collect realistic NL
intents, the annotators are given the following high-level description, followed by detailed instructions
and examples.

Below we share some suggestions to write good intents.

Keep it natural without redundant explanations. Imagine an AI programmer can help you
accomplish simple data wrangling and EDA tasks, what kind of intents will you send to the
system? Our goal is to collect real inputs to such a system from data scientists like you.

One idea to write good intents is to keep it concise such that another programmer could quickly
understand and implement a solution that executes to the same outputs. You are encouraged to
create simple, short intents while describing the desired outputs without much ambiguity.

New Tasks For each ML dataset we provided, an annotator creates a Colab notebook with code snippets
for some interesting data wrangling and exploratory data analysis tasks using this dataset. Each code
snippet is paired with its natural language intent, simliar to the process of annotating Existing Tasks. We
ask annotators to feel free to work on any tasks that they may find interesting for the given dataset, as long

11We use CODEX-DAVINCI-002.
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as the code solution for the task should consist of multiple lines and use different pandas API functions.
Different from annotating Existing Tasks, we ask them to first create a natural language intent for their
task, and then write a code solution in the next cell.

Below is an excerpt from the annotation guideline describing the types of data wranling and EDA tasks
to create.

What Tasks to Create

In general, you may create whatever exploratory data analysis tasks that you find interesting for the
given datasets. To come up with interesting tasks, you can think in this way: before training your
ML models for the dataset, what kind of data wrangling or EDA tasks would you like to perform
on the dataset? Below are some more concrete descriptions of such wrangling or EDA tasks:

Data Preprocessing/Wrangling Tasks which involves modifying existing dataframes or creating
new ones. Such as normalizing column names, adding new columns, modifying existing columns
(e.g., converting string values to date times), generating new dataframes using ops like group_by,
and so on. Some datasets we shared are just raw data without any preprocessing or cleaning.
Feel free to . Please also refer to Section: Identify Code Snippets to Annotate in our previous
annotation guideline for more examples.

Exploratory Data Analysis Tasks that Require Some Wrangling and Preprocessing Answer-
ing interesting EDA questions using the given dataset, but some data wrangling steps are required
in order to derive the answer. For example, given a dataframe df of user shopping history and
credit card expiration dates in the format of df.loc[0][’cc_exp’] = ’08/26’. To answer the
EDA question “How many users have a credit card expiring in 2024?”, we need to first convert the
expiration year from the string-formatted cc_exp column.

To encourage the annotators to create more complex tasks, we also provide the following high-level
instruction:

Complexity of Tasks

You should create relatively complex tasks that require multiple steps and also a combination of
different pandas APIs to solve them. Avoid problems that can be solved using one-liner code such
as df.group_by(...).sort_values(...). An ideal task should be reasonably complex and
needs to be broken down into multiple smaller steps to solve, and each step may require using one
or multiple pandas functions.

As a general rule of thumb, you should aim at creating tasks that either have at least 50 tokens or
use at least 4 pandas APIs (dataframe/series indexing, like df[df[‘continent’] == ‘NA’] is
also counted as one API usage). You can find more concrete example tasks at the end of this doc.

Full Guideline Our annotation guideline is 35-pages long in total, which we will provide on a per-
request basis. Please contact pcyin@google.com to request access.

C Descriptions of Existing Data Science Code Generation Dataset

Here, we describe existing natural language to code generation datasets in data science domain listed in
Tab. 1 in more detail.
JuICe (Agashe et al., 2019) contains exercise problems in assignment notebooks from data science
tutorials or coures, where the NL intents are usually elaborative assignment problem definitions. Notebooks
in JuICe are not executable so evaluation is performed by surface-level matching (exact match or BLEU)
between reference and predicted programs.
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DSP (Chandel et al., 2022) contains problems from a filtered set of JuICe notebooks that are executable
and also associated with unit tests for auto-grading. Hence the intents in DSP follow similar patterns as
those in JuICe. To ensure that the free-form model-predicted code is compatible with unit tests, DSP uses
the unit test code itself as extra model input besides NL intents to constrain the model to generate code
that could be directly consumed by the tests.
ExeDS (Huang et al., 2022) is a concurrent work to this paper. It is another set of filtered problems from
JuICe. Similar to this work, ExeDS uses hand-annotated intents, and compares the execution output
between reference and predicted code for evaluation instead of relying on unit tests (§3.3).
NLGP (Heyman et al., 2021) is another collection of the NL-to-code problems in Jupyter notebooks with
short annotated intents for simple data manipulation tasks, where most notebooks have one associated
problem.
DS-1000 (Lai et al., 2022) is a collection of data science problems derived from StackOverflow questions.
It primarily features problems using synthetic contexts with minimal working examples, and therefore
does not concerns with code generation in notebooks with interrelated problems on general ML datasets.

D Details of Fine-tuning PACHINCO

Pre-processing Python Source Code Data We detail the preprocessing steps for the Python source
code corpus used in the first stage of fine-tuning in the data card (Appendix K).
Pre-processing Notebooks Data We apply additional domain-specific pre-processing steps for the
Jupyter notebooks corpus, such as filtering out notebooks without any Markdown cells, or with fewer than
4 code cells. In addition, to mitigate the risk of having notebooks similar to the evaluation notebooks
from GitHub in the Existing Tasks split leaked into the training data, we perform near de-duplication
against notebooks in Existing Tasks at the cell level. Specifically, we cluster the cells of notebooks in both
the evaluation and training sets based on a fuzzy-matching similarity metric, and remove any training
notebooks that has one cell that falls into the same cluster as a cell from one of the evaluation notebooks.
This process eliminates ∼350K notebooks from the fine-tuning data. Our final training set consist of
∼3.8M notebooks and ∼9.6B tokens in total.
Linearize Notebooks to Python Source Code We convert computational notebooks for finetuning (§4)
and evaluation (§5.1) to Python source code using nbconvert.12 Specifically, Markdown and code cells
in a notebook are concatenated using the special delimiter ‘# In[]:’, and text in Markdown cells is
commented out using the ‘# ’ prefix. See Listing 7 for an example of the linearized notebook for Fig. 1
(up to c3). Jupyter notebooks that are converted to Python files in such format are common in GitHub
repositories, which mitigates the domain transfer gap between general Python code and notebook-specific
data, and also allows us to prompt public code LLMs that have not been specifically trained on Jupyter
notebooks data.
Fine-tuning Hyper-parameters For the two-stage fine-tuning (§4), we use the similar training recipe
of the base LM. Specifically, we apply the learning rate decay scheduling 0.2/

√
t, where t is the number

of steps. At the first stage of fine-tuning on Python source data, we train the model for 124K steps (1
epoch) with a batch size of 256. Afterwards, we reload the optimizer state and continue training on the
Jupyter notebooks data (9.6B tokens) using the same hyper parameter for 3 epochs (∼ 572K steps). The
model is implemented in JAX13, and is fine-tuned on 512 TPU v4 chips.

E Inference Setup

For CODEGEN, we use the inference script from the official GitHub repository.14 For INCODER, we follow
the official inference example script and use the release on Huggingface model hub.15 We convert each
example in our dataset to Python source code to a prompt, as outlined in §5.1. Notebooks are linearized
using nbconvert similar as generating fine-tuning data (Appendix D). One exception is INCODER, for

12One exception is INCODER, as explained in Appendix E.
13https://github.com/google/jax
14https://github.com/salesforce/CodeGen
15https://github.com/dpfried/incoder/blob/main/example_usage.py
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which we follow Fried et al. (2022) and use the Jupyter notebook linearization template used in its
pre-training.

At inference time, by default we left-truncate notebook context up to 900 tokens (measured by PACH-
INCO’s vocabulary), which fit in the context window size of all LLMs we evaluated. We also make
sure to always include NL schema descriptions in prompts given their importance in understanding NL
intents. In addition, for few-shot experiments in §5.3, we use additional 1,200 tokens to accommodate
the prompt prefix, making the total maximal prompt length to be 2,100. Due to its excessive length, we
only perform few-shot prompting experiments on PACHINCO since its rotatory positional embedding
(Su et al., 2021) could generalize to encode longer contexts at inference time. We use nucleus sampling
with a top probability of 0.95 and a temperature of 0.8 to draw 50 samples for each problem. For pass@1
evaluation, we use a temperate of 0.2, which gives very similar results compared to greedy decoding for all
the models considered in Tab. 2. Due to rate limit in open AI API, we therefore use greedy decoding for
pass@1 evaluation for CODE-cushman-001 and CODE-davinci-002. We set the maximum target length to
be 512 tokens.

F CODEGEN Scaling Curve on ARCADE

Number of Parameters in Millions
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Figure 5: Scaling curve of CODEGENmono models on ARCADE and existing code generation benchmarks. Results on HumanEval
are selected from the best temperature t ∈ {0.2, 0.6, 0.8} (Nijkamp et al., 2022).

Fig. 5 depicts the scaling curve of ARCADE with respect to the number of parameters for CODEGENmono
models. The pass rate scales nearly log-linearly as a function of model size, and the performance has
not saturated, especially on the New Tasks split. This shows ARCADE is a reliable dataset to study the
scaling behavior of code LLMs. The slope of the curve on New Tasks is also smaller than on other
datasets, suggesting that this problem set is more challenging for CODEGEN models. It is also interesting
to extrapolate CODEGEN models to 62B according to the scaling curve and compare with our models at
similar size. This gives a projected pass@10 of 22% on New Tasks, wihch is lower than PALM after the
first-stage Python fine-tuning (28%).

G Break-down Analysis of pass@k on ARCADE

Accuracy with Problem Complexity To better understand PACHINCO’s performance on problems at
different levels of complexity, we plot pass@30 with respect to the number of pandas function calls in
the annotated reference solutions, as shown in Fig. 6. For problems with similar complexity, PACHINCO

generally achieves higher pass rate on Existing Tasks, again suggesting that the New Tasks split is still
more challenging even after controlling problem complexity.

Fig. 7 plots pass@30 with respect to the AST size of reference programs. Similar to Fig. 6, results
on New Tasks are generally lower. Meanwhile, it seems that AST size correlates better with pass@k
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Figure 6: pass@k of PACHINCO w.r.t problem complexity
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Figure 7: pass@k of PACHINCO w.r.t AST size of reference programs.

compared to the number of API usage, while the latter metric offers more intuitive information about the
data transformation steps involved.
How Much Notebook Context is Useful? ARCADE requires a model to leverage rich programmatic
and NL context in test notebooks to generate code solutions for the current cell. To study PACHINCO’s
performance with varying amount of available notebook context, we control the number d of context
cells {ci}n−1i=n−d (§2) when generating code for each problem (at cell cn) in our dataset. Fig. 8 depicts
pass@30 as a function of the context size d. Since we use the first preceding cell cn−1 to store the NL
intent un for cn (Appendix L), having only one context cell is equivalent to the “cold-start” setting of
only using the intent un (besides schema description) to predict cn. PACHINCO achieves a pass rate
of 44% (existing tasks) and 17% (new tasks) in this challenging setting (d = 1), with errors mostly due
to failure in referring to variables that the solution relies on, whose information is not present in the
short context. Indeed, including additional context cells is crucial for good performance. In particular,
having 3 context cells could already lift the pass@30 to 72% and 36% on the two splits — 1.6 ∼ 2×
higher than d = 1. The results also start to plateau after including 5 ∼ 7 context cells, with diminishing
returns after including more cells, which is in line with findings in Agashe et al. (2019). 16 Empirically,
we observe that using more context helps to reduce schema understanding errors (e.g., using undefined
columns in DataFrames). Fig. 9 illustrates the distribution of execution error types on failed predictions.
Notably, using more notebook context cells significantly reduces the chance of NameErrors caused by
using undefined variables in context. The number of KeyErrors is also reduced, indicating that the model
makes fewer schema understanding errors when referring to columns in DataFrames.
Does Problem Location Impact Performance? Another interesting angle to study the effect of context
is through the lens of model accuracy when solving problems cn at different locations. Intuitively, problems
located later in a notebook (n is larger) would have more context available, therefore they could be easier
to answer (Wang and Cho, 2016). Fig. 10 shows pass@30 on problems grouped by their preceding context
size, which shows increased task success rate when solving problems with more context, confirming the
prior intuition.17

16Prior work suggests that the plateau point is around three neighboring cells, while in our case, the number if approximately
doubled since we need extra cells to include intents in previous turns (Appendix L).

17We remark that our setup is different from multi-turn semantic parsing where later turns are conditioned on the predictions
of prior turns, while we use reference solutions (§5.1). See §7 for discussion.
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Figure 11: Plots for few-shot prompting evaluation on New Tasks.
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Figure 12: Plots for few-shot prompting evaluation on Existing Tasks.

H Additional Few-shot Prompting Results

Plots for the Results on New Tasks in Tab. 4 Fig. 11 plots the few-shot prompting results on New
Tasks presented in Tab. 4. Here we also report breakdown results of pass rate on problems with varying
level of complexity. Step-by-step prompting and its variants are helpful across the board, especially
for harder tasks with more than 7 pandas function calls. This might suggest the value of step-by-step
decomposition when synthesizing complex programs.
Few-shot Prompting Results on Existing Tasks We also report results of prompting PACHINCO using
few-shot exemplars on the Existing Tasks split in Fig. 12. Compared to the results obtained on New Tasks
(Fig. 11), while few-shot prompting, especially step-by-step prompting, is still effective compared to the
baseline, the gap is not as profound as the results on New Tasks. The difference between different prompting
methods is also less significant, and using NL explanations (SbS + Preamble + Explanations) is less
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Figure 13: Cumulative distributions of the number of unique API sequences extracted from PACHINCO’s 50 predictions on the
New Tasks split, for all predictions (left), only executable predictions (middle), or only correct predictions (right). Curves that
appear more to the right represent prompting methods with greater diversity in the samples.
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Figure 14: Cumulative distributions of the number of unique API sequences extracted from PACHINCO’s 50 predictions on
Existing Tasks.
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Figure 15: Distribution of the number of output clusters and self-consistency decoding accuracy on Existing Tasks.

effective compared to the two baseline zero-shot approaches. This is likely due to potential evaluation data
leakage. Intuitively, as the model relies on memorization to generate code that it has encountered during
training to solve problems in Existing Tasks, using few-shot exemplars to “nudge” the model to generate
code in a different style would be less effective.This issue is perhaps more problematic for prompting with
additional inline explanations, as generating those extra interspersed NL comments would likely break
the model’s “flow” of generating code (without such explanations) that it has memorized. Additionally,
explanation-based prompting favors generating more complex code solutions with more steps (LoC↑) and
API calls, as indicated in Figs. 11 and 12, which could actually be counter-productive for Existing Tasks,
where more than 70% of the tasks are simple and require less than 4 API calls to solve them. Nevertheless,
these results reiterate the value of the New Tasks split as a more reliable benchmark to better differentiate
different prompting strategies.

I Further Analysis of Solution Diversity

Here we provide further analysis of the diversity in solution patterns, measured by the number of distinct
pandas API call sequences used in the samples. Fig. 13 and Fig. 14 depict cumulative distributions
of the number of solution patterns for different subsets of the predictions on the two task splits: all
predictions, only those that execute successfully, and only the correct predictions. In each case, we see
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that step-by-step prompting leads to increased diversity compared to the baselines, and prompting with
NL explanations further increases the diversity. While increased diversity is helpful in finding a correct
solution at higher sample size k, it is also helpful when considering only correct solutions because a user
might want to see a variety of solution approaches, whether for educational purposes or to choose the one
they like best (which is partially subjective). Refer to §6 for such examples.

Next, Fig. 15a presents the cumulative distribution of the number of output clusters for predictions on
Existing Tasks, where step-by-step prompting variants produce more functionally diverse solutions that
execute to different results. Finally, Fig. 15b shows self-consistency reranking accuracy on the Existing
Tasks split. While step-by-step code prompting is still helpful due to improved prediction diversity, similar
to the results on the New Tasks split (c.f. Fig. 4c), the results obtained with prompting using additional NL
explanations becomes worse, due to the relatively lower success rate of this prompting strategy (Fig. 12,
see Appendix H for more discussions).
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Figure 16: Frequency of execution errors on New Tasks.

J Error Analysis

J.1 Summary of Error Types
To understand the types of errors that LLMs make on ARCADE, especially on challenging problems,
we conduct an error analysis on model predictions on the New Tasks split (Tab. 2). Overall, we notice
a significant drop in execution errors after two-stage code fine-tuning (base LM 7→Python-finetuned
LM 7→PACHINCO, §4). Out of all the incorrect predictions from PACHINCO under the fuzzy output
matching evaluation metric (§3.3), roughly 35% of the samples result in execution errors, while the
remaining 65% predictions have executable programs but are functionally incorrect.
Summary of Inexecutable Predictions First, for inexecutable samples, we present an analysis of
the distribution of different execution error types, as illustrated in Fig. 16. The primary source of
execution error is KeyError and AttributeError due to reference to non-existing indices or columns
in DataFrames. While in the prompts we provide NL schema descriptions for DataFrames loaded to
notebooks (§5.1), such descriptions for intermediate DataFrames that are later derived in the context are
still missing due to limited prompt length, and the model may not be able infer their schema information
solely from the source code. This could be especially problematic for APIs that create compound
intermediate DataFrames with complex schema, such as pd.groupby, which accounts for that more than
50% of those KeyErrors and AttributeErrors. Similarly, other execution errors such as ValueError
and TypeError are often caused by the insufficient knowledge about the DataFrame contents. For
example, ValueError occurs when a model tries to calculate the mean of a column which has NaN values.
This finding suggests the importance of developing LLMs that could handle longer context (Wu et al.,
2022a) in order to include more DataFrame information in prompts. We gave a detailed case study on
these types of execution errors later in this section.
Summary of Executable but Incorrect Predictions Next, we conduct a manual analysis on 50 ran-
domly sampled incorrect predictions that are executable. The cause of these errors can be grouped into
the following categories: 1. Complex problems requiring non-trivial reasoning or data transformation
steps (43%); 2. Errors in interpreting NL intents, such as missing a requirement specified in the intent
(e.g., round to two decimal places) in the code solution (26%); 3. Errors caused by underspecified intents
(§3.2, 19%); 4. False-negatives due to limited coverage of the fuzzy-matching evaluation metric (§3.3,
6%); 5. Annotation errors (6%).

The primary source of errors is due to complex problems, which reiterates the motivation of ARCADE —
evaluating code LLMs on challenging data wrangling and EDA tasks. The second majority type of errors
(misunderstanding intents) suggests room to improve PACHINCO’s skill in instruction following. Next, a
non-trivial amount of errors are caused by underspecified intents, which are common in the setting of
prompting LLMs using ambiguous instructions (§3.2), calling for future research to specifically address
this issue. Finally, our evaluation metric based on fuzzy output matching seems effective in identifying
plausible alternative solutions. Still, there are non-trivial cases where there are multiple ways of presenting
the outputs (e.g., DataFrames with nested columns or different orientations, Fig. 30).
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J.2 Case Study
Case Study for Inexecutable Predictions Execution error has error message from the notebook envi-
ronment. We can classify these errors into more fine-grained categories in Fig. 16. As the result shows,
KeyError is the top error mode in the execution errors. Over 50% of the KeyError are associated with
the pd.groupby API call. pd.groupby API call changes the dataframe schema as the model generates
more data transformation code. For example, pd.groupby().mean() will remove non-numeric columns
in the dataframe. This requires the model to have a profound understanding of the dataframe schema.
We gave an example in Fig. 22. The column shipping_fee is string value which will be removed after
df.groupby(ship_state).sum().

The secondary source of execution error is AttributeError, which shares a similar cause to the
KeyError. This is because AttributeError is often triggered by calling a non-existing column as an
attribute of a dataframe. An example is given in Fig. 23, where the model tries to call the non-existing
column signupdate as an attribute of df_users, leading to an AttributeError. These two error modes
suggest that building a better schema-aware language model is a promising future research direction.

We also present Fig. 24 and Fig. 25 as examples for TypeError and ValueError, respectively. These
two error modes are often caused by insufficient knowledge of the column types and example values.
For example, the model tried to compare a string-value column to a integer in Fig. 24, which causes
TypeError. Fig. 25 showcased that the model tries to apply numeric operation pd.DataFrame.mean()
on a column with NaN values, leading to ValueError. These errors suggest room to improve NL schema
descriptions (§5.1) with column type annotation and more example cell values.
Case Study for Executable but Incorrect Predictions To complement the discussion earlier in Ap-
pendix J, we showcase examples of representative semantic errors, where the predictions are executable
but functionally incorrect.

The primary source of semantic error is complex reasoning. Two complex problems are given in
Fig. 26 and Fig. 27. In Fig. 26, the model need to infer that the last 10 years can be computed using
the code dt.datetime.today().year - 10. Fig. 27 is another example of complex data wrangling
steps. To generate the correct program, the model need to compare the current rank to the past rank, while
ensuring that the 2021 rank entries exist, and then aggregate the information.

Misinterpretation of NL intents is the secondary source of semantic errors. In Fig. 28, the generated
program does not reflect the search constraint in the intent (institute type is IIT). Another source of
semantic errors is underspecified intents with multiple plausible interpretations. As an example, in
Fig. 29 the predicted program provides one plausible interpretation by calculating the sum of front- and
left-facing trees, while the reference code implements another interpretation, which presents a table with
the two numbers listed separately. Such cases are hard to cover by the fuzzy-matching evaluation metric,
which may suggest the importance of collecting multiple reference interpretations for underspecified
intents.

Finally, Fig. 30 illustrates an issue with the coverage of the evaluation function based on output
matching. In this example with complex output DataFrames, the model gives an acceptable answer
which differs from the reference in its DataFrame schema and orientation.
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u: What are the five most common genres for shows released during the year having the
highest percent increase in votes?

  # Step 1: Get the year that has the highest percent increase in votes.
max_year_pct_change = pct_change_votes.idxmax()
# Step 2: Get the genres for each shows in that year.
genres = drama[drama['Year of Release']==max_year_pct_change]['Genre']
# Step 3: Count each genre
genre_counts = {}
for genre in genres:
  for genre in genre.split(','):
    if genre not in genre_counts:
      genre_counts[genre] = 0
    genre_counts[genre] += 1
# Step 4: Return the most common genres
most_common_genres = pd.Series(genre_counts).sort_values(ascending=False)
most_common_genres[:5]

Figure 17: An example prediction from PACHINCO with a complex single step.

u: Convert crash dates to datetime and show the total number of vehicles involved in
crashes over the years.

# Step 1: Convert crash date to datetime
df['CRASH DATE'] = pd.to_datetime(df['CRASH DATE'])
# Step 2: Create a new column with the year of the crash date
df['CRASH YEAR'] = df['CRASH DATE'].dt.year
# Step 3: Return the total number of vehicles involved in crashes in each year
result = df.groupby('CRASH YEAR')['TOT VEH'].sum()

Figure 18: An example prediction from PACHINCO that explains the semantics of a column.

u: What is the distribution of student adaptivity level across each age group?
Return a DataFrame with age groups as an index and adaptivity levels as columns.

# Step 1: Get the unique values of age
age_groups = students['Age'].unique()
# Step 2: Group students by their age groups and adaptivity level and
# get the number of students in each group
distribution = students.groupby(['Age', 'Adaptivity Level']).size()
# Step 3: Return the age groups as an index and adaptivity levels as columns
result = distribution.unstack(level=1, fill_value=0)

Figure 19: An example prediction from PACHINCO that explains the return value from a complex API.

u: Drop columns with more than 70 percent null values

# Step 1: Get the column names and total number of null values in each column.
column_names = df.columns
total_rows = len(df)
column_null_count = df.isnull().sum()
# Step 2: Filter columns with less than 70 percent null values.
# Get the names of columns whose null values are less than 70%.
column_names_filtered = column_names[column_null_count / total_rows < 0.7]
# Step 3: Return the filtered columns.
result = df[column_names_filtered]

# Step 1: Calculate the number of rows
num_rows = len(df)
# Step 2: Count the number of null values in each column
num_missings = df.isna().sum()
# Step 3: Divide the number of null values in each column by the total number 
of rows
pct_missings = num_missings / num_rows
# Step 4: Get the columns with more than 70% of values missing
drop_cols = pct_missings[pct_missings > 0.7]
# Step 5: Drop the columns
result = df.drop(drop_cols.index, axis='columns')

Solution 1:

Solution 2:

Figure 20: Two predictions from PACHINCO with different solution approaches.
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u: In which year, within the last ten years, did Israel receive the highest amount of
financial aid, in constant amount? Show the year and amount received.

# Step 1: Get the Israel data
isr = aid[aid.country_name=='Israel']
# Step 2: Group the data by fiscal year
isr_by_year_df = isr.groupby('fiscal_year')
# Step 3: Find the index of the row that has the highest constant amount
idx = isr_by_year_df['constant_amount'].idxmax()
# Step 4: Get the row with the highest constant amount
max_aid = isr.loc[idx]
# Step 5: Return the fiscal year and constant amount
result = max_aid[['fiscal_year', 'constant_amount']]

Incorrect Solution:

# Step 1: Get all the rows with Israel in country_name column
israel_aid_df = aid[aid['country_name'] == 'Israel']
# Step 2: Get all the rows for last 10 years
israel_aid_df = israel_aid_df[israel_aid_df['fiscal_year'] >= 
israel_aid_df['fiscal_year'].max()-10]
# Step 3: Group by the years and get the sum of aid received in each year.
israel_aid_df.groupby('fiscal_year').constant_amount.sum().agg(['max','idxmax'])

Correct Solution:

Figure 21: Two predictions from PACHINCO. NL explanations help users identify incorrect steps.

u: What are the average shipping fees for each state, starting from highest to lowest?
(rounded to 2 decimal places)?

Reference Solution:
df['shipping_fee']=df['shipping_fee'].apply(total_float)
df.groupby('ship_state').mean()['shipping_fee'].sort_values(ascending=False).round(2)

Incorrect Model Output:
df.groupby('ship_state').sum()['shipping_fee'].sort_values(ascending=False).apply(
lambda x: round(x,2))
# Error Text:
RuntimeError: KeyError: 'shipping_fee'

Figure 22: An example of KeyError: the model calls a column which is removed after the pd.groupby().mean() API call.

u: Show how many new users signed up for every year since 2000
Reference Solution:
df_users[df_users['Customer Since']>datetime.fromisoformat('2000-01-01')]['Customer 
Since'].apply(lambda x: x.year)\
    .value_counts().sort_index()

Incorrect Model Output:
df_users['signup_year'] = df_users.signupdate.dt.year
df_users[df_users.signupdate.dt.year >= 2000].signup_year.value_counts()
# Error Text:
RuntimeError: AttributeError: 'DataFrame' object has no attribute 'signupdate'

Figure 23: An example of AttributeError: the model tries to call a non-existing column.

u: What are the top five models with most number of bikes having mileage less than 5000
kilometers?

Reference Solution:
df_bikes=bikes[bikes['Ridden for']<5000]
df_bikes['Model Name'].value_counts().head()

Incorrect Model Output:
model=bikes.groupby('Model Name')['Comfort'].mean().loc[bikes_models.index].idxmax()
# Error Text:
RuntimeError: TypeError: '<' not supported between instances of 'str' and 'int'

Figure 24: An example of TypeError: the model is intent to compare a string-value column to an integer.

u: What is the average number of filed charges for drug related cases?
Reference Solution:
int(district[district.crime_type.str.contains('narcotic',case=False, 
na=False)].num_charges.mean())

Incorrect Model Output:
district[district.crime_type.str.contains('Drugs')].num_charges.mean()
# Error Text:
RuntimeError: ValueError: Cannot mask with non-boolean array containing NA / NaN values

Figure 25: An example program of ValueError: the model tries to calculate the mean of a column containing NaN values.
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u: What is the number of deaths by accident as a percentage of total deaths in the last ten
years?

Reference Solution:
import datetime as dt
last_ten_years = age[(age['Death year']>=dt.datetime.today().year-10)]
total_deaths = last_ten_years.groupby('Death year').size()
deaths_by_accident = last_ten_years[last_ten_years['Manner of 
death'].str.contains('accident')].groupby('Death year').size()
deaths_by_accident / total_deaths * 100

Incorrect Model Output:
(age[(age['Manner of death']=='accident') & (age['Death year'].between(2007,2017, 

inclusive='left'))].shape[0] / age[age['Death year'].between(2007,2017, 

inclusive='left')].shape[0])*100

Figure 26: An example of complex reasoning: the model has to infer the API call (dt.datetime.today().year - 10) from
the last-ten-years constraint in the intent.

u: Which hotels had a worse ranking this year than in 2021? Show the hotel name,
location and the difference in ranking from last year.

Reference Solution:
drop_rankings = hotels[(hotels.Rank > hotels.Past_rank) & (hotels['2021']==1)]
drop_rankings['rank_drop'] = drop_rankings.Rank - drop_rankings.Past_rank
drop_rankings[['Hotel','Location','rank_drop']]

Incorrect Model Output:
hotels['Ranking_diff'] = hotels.Past_rank - hotels.Rank
hotels.loc[hotels['Ranking_diff'] > 0, ['Hotel','Location','Ranking_diff']]

Figure 27: An example of complex reasoning: the model needs to compare the current rank and the past rank while making sure
the rank in 2021 exists.

u: What was the mean opening rank across all IIT institutes for each program over the
years? Show the mean opening rank for each year in columns with program as index and
consider only general students.

Reference Solution:
df_iit = df_general[df_general.institute_type == 'IIT']
df_iit[['year', 'opening_rank', 'program_name']].groupby(['year', 'program_name']).mean().unstack(0)

Incorrect Model Output:
df_general[['program_name', 'opening_rank', 'year']].groupby(['program_name', 

'year']).mean().unstack(0)

Figure 28: An example of NL misunderstanding: the model does not filter the institute type according to the intent.

u: How many front and left facing trees were planted in that park?

Reference Solution:
trees[(trees.Parks==park) & 
(trees.SideOfParcel.str.contains('front|left',case=False))].groupby('SideOfParcel').size()

Incorrect Model Output:
trees[trees.Parks == park][trees.SideOfParcel == 'Left'].shape[0] + trees[trees.Parks == 

park][trees.SideOfParcel == 'Front'].shape[0]

Figure 29: An example of underspecified intent. It does not specify the output should not sum the number of front facing and left
facing trees.
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u: Return a matrix with the average ticket prices to and from all the cities for each ticket
class.

Reference Solution:
flights.groupby(['class','source_city','destination_city']).price.mean().unstack(level=2)

Incorrect Model Output:
prices = flights.groupby(['class','source_city','destination_city']).price.mean()
prices.unstack(level=[0,2]).round()

(a) Intent, reference program and generated program
destination_city Bangalore Chennai Delhi Hyderabad Kolkata Mumbai

class source_city
Business Bangalore NaN 52436.915395 48144.337108 50395.796948 58854.693091 58024.618208

Chennai 53113.008692 NaN 52443.367242 51559.874283 57078.895872 56223.838086
Delhi 48576.027921 52031.778099 NaN 44457.376775 56239.853659 44364.442811
Hyderabad 50358.290706 51132.155288 44250.700281 NaN 53729.157762 52184.424666
Kolkata 58681.104437 56502.775035 55047.492193 54732.447908 NaN 57422.551724
Mumbai 57970.544389 55703.326197 43846.329273 51593.643678 57106.526385 NaN

Economy Bangalore NaN 7105.953850 6124.897982 6360.141698 7375.638594 6381.093332
Chennai 7175.020192 NaN 6075.961190 5960.788831 7547.295815 6529.119453
Delhi 6175.622535 6102.317245 NaN 6031.164261 7045.621678 6059.826087
Hyderabad 6234.882649 6049.884930 6072.296659 NaN 6881.680392 5969.259906
Kolkata 7471.621990 8011.745229 7161.400077 7489.144374 NaN 7405.787239
Mumbai 6432.511946 6420.917984 5889.281400 5774.891130 7227.971735 NaN

(b) Reference output
class Business Economy
destination_city Chennai Delhi Hyderabad Kolkata Mumbai Bangalore Chennai Delhi Hyderabad Kolkata Mumbai Bangalore
source_city
Bangalore 52437.0 48144.0 50396.0 58855.0 58025.0 NaN 7106.0 6125.0 6360.0 7376.0 6381.0 NaN
Chennai NaN 52443.0 51560.0 57079.0 56224.0 53113.0 NaN 6076.0 5961.0 7547.0 6529.0 7175.0
Delhi 52032.0 NaN 44457.0 56240.0 44364.0 48576.0 6102.0 NaN 6031.0 7046.0 6060.0 6176.0
Hyderabad 51132.0 44251.0 NaN 53729.0 52184.0 50358.0 6050.0 6072.0 NaN 6882.0 5969.0 6235.0
Kolkata 56503.0 55047.0 54732.0 NaN 57423.0 58681.0 8012.0 7161.0 7489.0 NaN 7406.0 7472.0
Mumbai 55703.0 43846.0 51594.0 57107.0 NaN 57971.0 6421.0 5889.0 5775.0 7228.0 NaN 6433.0

(c) Model output

Figure 30: An example of plausible alternative prediction that is labeled as incorrect due to limited coverage of the evaluation
metric.
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K Data Card for the Training Data of PACHINCO

We provide a data card for the training data of PACHINCO as outlined in §4, and also report training data
composition in Tab. 6.

Motivation
For what purpose was the dataset
created? Who created the dataset?
Who funded the creation of the
dataset?

The dataset was created for training code and language models by
a team of researchers.

Composition
What do the instances that com-
prise the dataset represent (e.g.,
documents, photos, people, coun-
tries)?

Dataset comprises of Python source code files and Jupyter note-
books from GitHub, filtered by license so as to exclude code with
restrictive licenses.

How many instances are there in
total (of each type, if appropri-
ate)?

The data makeup is given in Table 6.

Does the dataset contain all possi-
ble instances or is it a sample (not
necessarily random) of instances
from a larger set?

The dataset is a small (random) subset of a larger set.

What data does each instance con-
sist of?

Each instance is encoded content of a source code file.

Is there a label or target associated
with each instance?

No, there are no labels associated with each instance.

Is any information missing from
individual instances?

No.

Are relationships between individ-
ual instances made explicit?

No.

Are there recommended data
splits?

We use random splits for the training, validation, and test.

Are there any errors, sources
of noise, or redundancies in the
dataset?

• Python files were near deduplicated at the file level using a
custom implementation of minhash algorithm, so lower level
redundancies (lines, code blocks) may still exist.

• Some files were misclassified in the license tagging and
filtration process given that license classification algorithm
can have false positives and negatives.

Is the dataset self-contained, or
does it link to or otherwise rely on
external resources?

The dataset is self-contained.

Does the dataset contain data that
might be considered confidential?

No.

156



Does the dataset contain data that,
if viewed directly, might be of-
fensive, insulting, threatening, or
might otherwise cause anxiety?

Given the dataset contains source code, it is not likely there is any
offensive text in it, however no explicit measures are in place to
eliminate such data if it were present.

Collection Process
How was the data associated with
each instance acquired?

The data was collected from publicly available sources.

What mechanisms or procedures
were used to collect the data?

The data was collected using a variety of software programs to
extract and clean source code files.

If the dataset is a sample from a
larger set, what was the sampling
strategy?

The dataset is small subset of publicly available code from Github,
sampled randomly.

Who was involved in the data col-
lection process?

A team of researchers.

Over what timeframe was the data
collected?

April - July 2022

Were any ethical review processes
conducted?

No.

Preprocessing, cleaning, and labeling
Was any preprocessing, cleaning,
or labeling of the data done (e.g.,
discretization or bucketing, tok-
enization, part-of-speech tagging,
SIFT feature extraction, removal
of instances, processing of miss-
ing values)?

License filtration, quality filtration and deduplication were applied
to the source code files.

• License classification was done using Google License Clas-
sifier library. Source code files with restricted licenses were
filtered out.

• Python files were deduplicated at the file level using a cus-
tom variant of minhash algorithm. Locality sensitive hashes
of file content were used to create partitions of potentially
duplicate files based on collisions in the hash buckets. For
each pair in the partitions, Jaccard Similarity and Edit Dis-
tance scores were calculated to create an "edge" for a pair
whenever the scores are higher than the specified threshold.
This was followed by application of connected components
algorithm to return the sets of duplicates.

• Jupyter notebooks were first deduplicated following the same
procedure as deduplicating Python files, and then dedupli-
cated at individual cell level against the evaluation dataset
(§4).

Is the software used to preprocess,
clean, or label the instances avail-
able?

No.

Uses
Has the dataset been used for any
tasks already?

Yes, we use the dataset for pre-training other code and language
models.
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Is there a repository that links to
any or all papers or systems that
use the dataset?

No.

What (other) tasks could the
dataset be used for?

The dataset can be used for training of other code and language
models.

Is there anything about the
composition of the dataset or
the way it was collected and
pre-processed/cleaned/labeled
that might impact future uses?

The dataset is static in nature and thus will become progressively
more “stale”. It will not include any new source code repositories
that were created/updated later on Github.

Are there tasks for which the
dataset should not be used?

This should not be used for any unacceptable code or language
modeling use cases e.g. generating code or language with toxi-
c/biased connotations.

Distribution
Will the dataset be distributed to
third parties outside of the entity
(e.g., company, institution, orga-
nization) on behalf of which the
dataset was created?

No.

Language Tokens Source Files

Python 63,786,481,126 60,397,107
Jupyter Notebooks 9,613,648,619 3,796,713

Table 6: Data Composition of the fine-tuning data for PACHINCO.
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L Detailed Prompting Examples

In this section we provide detailed examples of prompts used in our experiments. As in §5.1, there are two
categories of experiments in §5, namely prompting using notebook context (§5.2) and few-shot prompting
with extra exemplars pre-pended to notebook context (§5.3). Here, we list the prompts for u2 in Fig. 1 in
these two types of prompting experiments.
Prompting using Notebook Context In the basic setup without extra few-shot exemplars, the prompt
basically consist of all the prior notebook context, including NL descriptions of schema information and
previous rounds of problems. Listing 7 shows the complete prompt for u2 in Fig. 1 in this setup.18 At
inference time, a code LM will complete the last code cell after the cell delimiter ‘# In[ ]:’. Note that
for INCODER we follow Fried et al. (2022) and use a special template to linearize notebooks (Appendix E).
Prompting using Additional Few-shot Exemplars We have four prompting styles for few-shot ex-
periments. Here, we show the prompt prefix (§5.1) for Vanilla Code and Step-by-Step+Explanations
prompting, as the remaining two styles are just simplified version of the latter by removing inline
explanations (SbS + Preamble) and preambles (Step-by-Step).

A prompt in this setup is the concatenation of a prompt prefix (with few-shot exemplars) and the
notebook context (with prior rounds of problems and NL schema descriptions). The part of a prompt
that corresponds to notebook context is the same as the previous setting (e.g. Listing 7), except that we
insert the preamble # Solution: Let’s solve this problem step-by-step. as appropriate after
the last cell delimiter. For prompt prefix, Listing 1 gives an example prompt prefix for Step-by-Step
prompting, while Listing 4 shows the same set of few-shot exemplars for Vanilla Code prompting.

As mentioned in §5.1, we created three prompt prefixes for each of the four different styles, and report
results averaged over these three restarts. Listings 1 to 3 show the three groups of prompt prefixes for
Step-by-Step, and Listings 4 to 6 show those for Vanilla Code prompting. Each prompt prefix has four
exemplars, and some exemplars are shared across different prefixes. Note that some prompt prefixes
in Step-by-Step also contain one simple problem that does not require decomposition and explanation
(e.g. Exercise 3, Listing 1). We find this to be useful to not bias a model from generate overly complex
code solutions for simpler problems. We did not put much effort in prompting engineering. Actually,
those prompt prefixes were created before we collected 70% of the problems in our dataset.

Listing 1: Step-by-Step Prompt Prefix (Group 1)

1 # In[ ]:
2
3
4 import pandas as pd
5 import matplotlib.pyplot as plt
6
7
8 # In[ ]:
9

10
11 # You are a professional data scientist. Answer the following questions using pandas and matplotlib.
12
13
14 # In[ ]:
15
16
17 # # Exercise 1
18
19
20 # In[ ]:
21
22
23 df = pd.read_csv('employee.csv')
24
25
26 # In[ ]:
27
28
29 # Schema of Dataframes:
30 # Columns in df with example values:
31 # name (Peter), gender (m), DOB (1992/01/17)
32
33

18This prompt is not exactly the same as the one in our dataset. It is adapted to align with the illustrative example in Fig. 1
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34 # In[ ]:
35
36
37 # Problem: How many male and female employees are born in 1992?
38
39
40 # In[ ]:
41
42
43 # Solution: Let's solve this problem step-by-step.
44 # Step 1: convert date of birth in to datetime
45 df['DOB'] = pd.to_datetime(df['DOB'])
46 # Step 2: get the number of male born in 1992
47 num_male_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'm')])
48 # Step 3: get the number of female born in that year
49 num_female_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'f')])
50
51
52 # In[ ]:
53
54
55 # # Exercise 2
56
57
58 # In[ ]:
59
60
61 df = pd.read_csv('scores.csv')
62
63
64 # In[ ]:
65
66
67 # Schema of Dataframes:
68 # Columns in df with example values:
69 # Stu_Name (Mike), Engineering (90), English (89), Math (92)
70
71
72 # In[ ]:
73
74
75 # Problem: Get the students with an averaged score above 90 for science subjects.
76
77
78 # In[ ]:
79
80
81 # Solution: Let's solve this problem step-by-step.
82 # Step 1: Create a new column with the average score of engineering and math
83 df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2
84 # Step 2: Get the rows whose average score is above 90
85 df_score_above_90 = df[df['Science_Avg'] > 90]
86 # Step 3: Return the student name and average scores
87 result = df_score_above_90[['Stu_Name', 'Science_Avg']]
88
89
90 # In[ ]:
91
92
93 # # Exercise 3
94
95
96 # In[ ]:
97
98
99 df = pd.read_csv('geo.csv')

100
101
102 # In[ ]:
103
104
105 # Schema of Dataframes:
106 # Columns in df with example values:
107 # state (WA), capital (Seattle), population (1.4 millon)
108
109
110 # In[ ]:
111
112
113 # Problem: What is the population of California?
114
115
116 # In[ ]:
117
118
119 # Solution: Let's solve this problem step-by-step.
120 result = df[df['state'] == 'CA']['population']
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121
122
123 # In[ ]:
124
125
126 # # Exercise 4
127
128
129 # In[ ]:
130
131
132 df = pd.read_csv('phones.csv')
133
134
135 # In[ ]:
136
137
138 # Schema of Dataframes:
139 # Columns in df with example values:
140 # model (Pixel 6), brand (Google), price (387), release (2022)
141
142
143 # In[ ]:
144
145
146 # Problem: What is the most expensive phone in each brand.
147
148
149 # In[ ]:
150
151
152 # Solution: Let's solve this problem step-by-step.
153 # Step 1: Group models by their brands.
154 model_by_brand_df = df.groupby('brand')
155 # Step 2: Find the index of rows that have the highest price in each group
156 idx = model_by_brand_df['price'].idxmax()
157 # Step 3: Get the rows using the index
158 expensive_models_df = df.loc[idx]
159 # Step 4: Return the brand name, model and price.
160 result = expensive_models_df[['brand', 'model', 'price']]
161
162
163 # In[ ]:
164
165
166 # # Exercise 5

Listing 2: Step-by-Step Prompt Prefix (Group 2)

167 # In[ ]:
168
169
170 import pandas as pd
171 import matplotlib.pyplot as plt
172
173
174 # In[ ]:
175
176
177 # You are a professional data scientist. Answer the following questions using pandas and matplotlib.
178
179
180 # In[ ]:
181
182
183 # # Exercise 1
184
185
186 # In[ ]:
187
188
189 df = pd.read_csv('employee.csv')
190
191
192 # In[ ]:
193
194
195 # Schema of Dataframes:
196 # Columns in df with example values:
197 # name (Peter), gender (m), DOB (1992/01/17)
198
199
200 # In[ ]:
201
202
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203 # Problem: How many male and female employees are born in 1992?
204
205
206 # In[ ]:
207
208
209 # Solution: Let's solve this problem step-by-step.
210 # Step 1: convert date of birth in to datetime
211 df['DOB'] = pd.to_datetime(df['DOB'])
212 # Step 2: get the number of male born in 1992
213 num_male_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'm')])
214 # Step 3: get the number of female born in that year
215 num_female_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'f')])
216
217
218 # In[ ]:
219
220
221 # # Exercise 2
222
223
224 # In[ ]:
225
226
227 df = pd.read_csv('scores.csv')
228
229
230 # In[ ]:
231
232
233 # Schema of Dataframes:
234 # Columns in df with example values:
235 # Stu_Name (Mike), Engineering (90), English (89), Math (92)
236
237
238 # In[ ]:
239
240
241 # Problem: Get the students with an averaged score above 90 for science subjects.
242
243
244 # In[ ]:
245
246
247 # Solution: Let's solve this problem step-by-step.
248 # Step 1: Create a new column with the average score of engineering and math
249 df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2
250 # Step 2: Get the rows whose average score is above 90
251 df_score_above_90 = df[df['Science_Avg'] > 90]
252 # Step 3: Return the student name and average scores
253 result = df_score_above_90[['Stu_Name', 'Science_Avg']]
254
255
256 # In[ ]:
257
258
259 # # Exercise 3
260
261
262 # In[ ]:
263
264
265 df = pd.read_csv('geo.csv')
266
267
268 # In[ ]:
269
270
271 # Schema of Dataframes:
272 # Columns in df with example values:
273 # state (WA), capital (Seattle), population (1.4 millon)
274
275
276 # In[ ]:
277
278
279 # Problem: What is the population of California?
280
281
282 # In[ ]:
283
284
285 # Solution: Let's solve this problem step-by-step.
286 result = df[df['state'] == 'CA']['population']
287
288
289 # In[ ]:
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290
291
292 # # Exercise 4
293
294
295 # In[ ]:
296
297
298 df = pd.read_csv('phones.csv')
299
300
301 # In[ ]:
302
303
304 # Schema of Dataframes:
305 # Columns in df with example values:
306 # model (Pixel 6), brand (Google), price (387), release (2022)
307
308
309 # In[ ]:
310
311
312 # Problem: What is the most expensive phone in each brand.
313
314
315 # In[ ]:
316
317
318 # Solution: Let's solve this problem step-by-step.
319 # Step 1: Group models by their brands.
320 model_by_brand_df = df.groupby('brand')
321 # Step 2: Find the index of rows that have the highest price in each group
322 idx = model_by_brand_df['price'].idxmax()
323 # Step 3: Get the rows using the index
324 expensive_models_df = df.loc[idx]
325 # Step 4: Return the brand name, model and price.
326 result = expensive_models_df[['brand', 'model', 'price']]
327
328
329 # In[ ]:
330
331
332 # # Exercise 5

Listing 3: Step-by-Step Prompt Prefix (Group 3)

333 # In[ ]:
334
335
336 import pandas as pd
337 import matplotlib.pyplot as plt
338
339
340 # In[ ]:
341
342
343 # You are a professional data scientist. Answer the following questions using pandas and matplotlib.
344
345
346 # In[ ]:
347
348
349 # # Exercise 1
350
351
352 # In[ ]:
353
354
355 df = pd.read_csv('olympics.csv')
356
357
358 # In[ ]:
359
360
361 # Schema of Dataframes:
362 # Columns in df with example values:
363 # Year (1896), City (Athens), Country (Greece), Nations (14)
364
365
366 # In[ ]:
367
368
369 # Problem: Which countries host at least two olympic games?
370
371
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372 # In[ ]:
373
374
375 # Solution: Let's solve this problem step-by-step.
376 # Step 1: Count the number of times each country hosted olympics
377 count_df = df['Country'].value_counts()
378 # Step 2: Find entries with more than 2 counts
379 filtered_df = count_df[count_df >= 2]
380 # Step 3: Get the country names as a list
381 filtered_df.index.tolist()
382
383
384 # In[ ]:
385
386
387 # # Exercise 2
388
389
390 # In[ ]:
391
392
393 df = pd.read_csv('employee.csv')
394
395
396 # In[ ]:
397
398
399 # Schema of Dataframes:
400 # Columns in df with example values:
401 # name (Peter), gender (m), DOB (1992/01/17)
402
403
404 # In[ ]:
405
406
407 # Problem: How many male and female employees are born in 1992?
408
409
410 # In[ ]:
411
412
413 # Solution: Let's solve this problem step-by-step.
414 # Step 1: convert date of birth in to datetime
415 df['DOB'] = pd.to_datetime(df['DOB'])
416 # Step 2: get the number of male born in 1992
417 num_male_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'm')])
418 # Step 3: get the number of female born in that year
419 num_female_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'f')])
420
421
422 # In[ ]:
423
424
425 # # Exercise 3
426
427
428 # In[ ]:
429
430
431 df = pd.read_csv('score.csv')
432
433
434 # In[ ]:
435
436
437 # Schema of Dataframes:
438 # Columns in df with example values:
439 # name (John), score (97)
440
441
442 # In[ ]:
443
444
445 # Problem: Make a new column "grade" for letter grades (A: 90+, B: 70-90, C: <70) and plot the number

of students in each grade.↪→
446
447
448 # In[ ]:
449
450
451 # Solution: Let's solve this problem step-by-step.
452 # Step 1: Define a function to convert scores to letter grades.
453 def get_grade(score):
454 if score >= 90:
455 return 'A'
456 elif 70 <= score < 90:
457 return 'B'
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458 else:
459 return 'C'
460 # Step 2: Convert scores to letter grades.
461 df['grade'] = df.score.apply(get_grade)
462 # Step 3: Count the number of students by grade.
463 count_df = df['grade'].value_counts()
464 # Step 4: Visualize in a bar chart.
465 count_df.plot(kind='bar')
466
467
468 # In[ ]:
469
470
471 # # Exercise 4
472
473
474 # In[ ]:
475
476
477 df = pd.read_csv('phones.csv')
478
479
480 # In[ ]:
481
482
483 # Schema of Dataframes:
484 # Columns in df with example values:
485 # model (Pixel 6), brand (Google), price (387), release (2022)
486
487
488 # In[ ]:
489
490
491 # Problem: What is the most expensive phone in each brand.
492
493
494 # In[ ]:
495
496
497 # Solution: Let's solve this problem step-by-step.
498 # Step 1: Group models by their brands.
499 model_by_brand_df = df.groupby('brand')
500 # Step 2: Find the index of rows that have the highest price in each group
501 idx = model_by_brand_df['price'].idxmax()
502 # Step 3: Get the rows using the index
503 expensive_models_df = df.loc[idx]
504 # Step 4: Return the brand name, model and price.
505 result = expensive_models_df[['brand', 'model', 'price']]
506
507
508 # In[ ]:
509
510
511 # # Exercise 5

Listing 4: Vanilla Code Prompt Prefix (Setup 1)

512 # In[ ]:
513
514
515 import pandas as pd
516 import matplotlib.pyplot as plt
517
518
519 # In[ ]:
520
521
522 # You are a professional data scientist. Answer the following questions using pandas and matplotlib.
523
524
525 # In[ ]:
526
527
528 # # Exercise 1
529
530
531 # In[ ]:
532
533
534 df = pd.read_csv('employee.csv')
535
536
537 # In[ ]:
538
539
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540 # Schema of Dataframes:
541 # Columns in df with example values:
542 # name (Peter), gender (m), DOB (1992/01/17)
543
544
545 # In[ ]:
546
547
548 # Problem: How many male and female employees are born in 1992?
549
550
551 # In[ ]:
552
553
554 # Solution:
555 df['DOB'] = pd.to_datetime(df['DOB'])
556 num_male_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'm')])
557 num_female_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'f')])
558
559
560 # In[ ]:
561
562
563 # # Exercise 2
564
565
566 # In[ ]:
567
568
569 df = pd.read_csv('scores.csv')
570
571
572 # In[ ]:
573
574
575 # Schema of Dataframes:
576 # Columns in df with example values:
577 # Stu_Name (Mike), Engineering (90), English (89), Math (92)
578
579
580 # In[ ]:
581
582
583 # Problem: Get the students with an averaged score above 90 for science subjects.
584
585
586 # In[ ]:
587
588
589 # Solution:
590 df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2
591 df[df['Science_Avg'] > 90][['Stu_Name', 'Science_Avg']]
592
593
594 # In[ ]:
595
596
597 # # Exercise 3
598
599
600 # In[ ]:
601
602
603 df = pd.read_csv('geo.csv')
604
605
606 # In[ ]:
607
608
609 # Schema of Dataframes:
610 # Columns in df with example values:
611 # state (WA), capital (Seattle), population (1.4 millon)
612
613
614 # In[ ]:
615
616
617 # Problem: What is the population of California?
618
619
620 # In[ ]:
621
622
623 # Solution:
624 result = df[df['state'] == 'CA']['population']
625
626
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627 # In[ ]:
628
629
630 # # Exercise 4
631
632
633 # In[ ]:
634
635
636 df = pd.read_csv('phones.csv')
637
638
639 # In[ ]:
640
641
642 # Schema of Dataframes:
643 # Columns in df with example values:
644 # model (Pixel 6), brand (Google), price (387), release (2022)
645
646
647 # In[ ]:
648
649
650 # Problem: What is the most expensive phone in each brand.
651
652
653 # In[ ]:
654
655
656 # Solution:
657 df.loc[df.groupby('brand')['price'].idxmax()][['brand', 'model', 'price']]
658
659
660 # In[ ]:
661
662
663 # # Exercise 5

Listing 5: Vanilla Code Prompt Prefix (Setup 2)

664 # In[ ]:
665
666
667 import pandas as pd
668 import matplotlib.pyplot as plt
669
670
671 # In[ ]:
672
673
674 # You are a professional data scientist. Answer the following questions using pandas and matplotlib.
675
676
677 # In[ ]:
678
679
680 # # Exercise 1
681
682
683 # In[ ]:
684
685
686 df = pd.read_csv('employee.csv')
687
688
689 # In[ ]:
690
691
692 # Schema of Dataframes:
693 # Columns in df with example values:
694 # name (Peter), gender (m), DOB (1992/01/17)
695
696
697 # In[ ]:
698
699
700 # Problem: How many male and female employees are born in 1992?
701
702
703 # In[ ]:
704
705
706 # Solution:
707 df['DOB'] = pd.to_datetime(df['DOB'])
708 num_male_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'm')])
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709 num_female_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'f')])
710
711
712 # In[ ]:
713
714
715 # # Exercise 2
716
717
718 # In[ ]:
719
720
721 df = pd.read_csv('scores.csv')
722
723
724 # In[ ]:
725
726
727 # Schema of Dataframes:
728 # Columns in df with example values:
729 # Stu_Name (Mike), Engineering (90), English (89), Math (92)
730
731
732 # In[ ]:
733
734
735 # Problem: Get the students with an averaged score above 90 for science subjects.
736
737
738 # In[ ]:
739
740
741 # Solution:
742 df['Science_Avg'] = (df['Engineering'] + df['Math']) / 2
743 df[df['Science_Avg'] > 90][['Stu_Name', 'Science_Avg']]
744
745
746 # In[ ]:
747
748
749 # # Exercise 3
750
751
752 # In[ ]:
753
754
755 df = pd.read_csv('geo.csv')
756
757
758 # In[ ]:
759
760
761 # Schema of Dataframes:
762 # Columns in df with example values:
763 # state (WA), capital (Seattle), population (1.4 millon)
764
765
766 # In[ ]:
767
768
769 # Problem: What is the population of California?
770
771
772 # In[ ]:
773
774
775 # Solution:
776 result = df[df['state'] == 'CA']['population']
777
778
779 # In[ ]:
780
781
782 # # Exercise 4
783
784
785 # In[ ]:
786
787
788 df = pd.read_csv('phones.csv')
789
790
791 # In[ ]:
792
793
794 # Schema of Dataframes:
795 # Columns in df with example values:
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796 # model (Pixel 6), brand (Google), price (387), release (2022)
797
798
799 # In[ ]:
800
801
802 # Problem: What is the most expensive phone in each brand.
803
804
805 # In[ ]:
806
807
808 # Solution:
809 df.loc[df.groupby('brand')['price'].idxmax()][['brand', 'model', 'price']]
810
811
812 # In[ ]:
813
814
815 # # Exercise 5

Listing 6: Vanilla Code Prompt Prefix (Setup 3)

816 # In[ ]:
817
818
819 import pandas as pd
820 import matplotlib.pyplot as plt
821
822
823 # In[ ]:
824
825
826 # You are a professional data scientist. Answer the following questions using pandas and matplotlib.
827
828
829 # In[ ]:
830
831
832 # # Exercise 1
833
834
835 # In[ ]:
836
837
838 df = pd.read_csv('olympics.csv')
839
840
841 # In[ ]:
842
843
844 # Schema of Dataframes:
845 # Columns in df with example values:
846 # Year (1896), City (Athens), Country (Greece), Nations (14)
847
848
849 # In[ ]:
850
851
852 # Problem: Which countries host at least two olympic games?
853
854
855 # In[ ]:
856
857
858 # Solution:
859 count_df = df['Country'].value_counts()
860 count_df[count_df >= 2].index.tolist()
861
862
863 # In[ ]:
864
865
866 # # Exercise 2
867
868
869 # In[ ]:
870
871
872 df = pd.read_csv('employee.csv')
873
874
875 # In[ ]:
876
877
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878 # Schema of Dataframes:
879 # Columns in df with example values:
880 # name (Peter), gender (m), DOB (1992/01/17)
881
882
883 # In[ ]:
884
885
886 # Problem: How many male and female employees are born in 1992?
887
888
889 # In[ ]:
890
891
892 # Solution:
893 df['DOB'] = pd.to_datetime(df['DOB'])
894 num_male_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'm')])
895 num_female_students = len(df[(df['DOB'].dt.year == 1992) & (df['gender'] == 'f')])
896
897
898 # In[ ]:
899
900
901 # # Exercise 3
902
903
904 # In[ ]:
905
906
907 df = pd.read_csv('score.csv')
908
909
910 # In[ ]:
911
912
913 # Schema of Dataframes:
914 # Columns in df with example values:
915 # name (John), score (97)
916
917
918 # In[ ]:
919
920
921 # Problem: Make a new column "grade" for letter grades (A: 90+, B: 70-90, C: <70) and plot the number

of students in each grade.↪→
922
923
924 # In[ ]:
925
926
927 # Solution:
928 df['grade'] = df.score.apply(lambda x: 'A' if x >= 90 else ('B' if 70 <= x < 90 else 'C'))
929 df.grade.value_counts().plot(kind='bar')
930
931
932 # In[ ]:
933
934
935 # # Exercise 4
936
937
938 # In[ ]:
939
940
941 df = pd.read_csv('phones.csv')
942
943
944 # In[ ]:
945
946
947 # Schema of Dataframes:
948 # Columns in df with example values:
949 # model (Pixel 6), brand (Google), price (387), release (2022)
950
951
952 # In[ ]:
953
954
955 # Problem: What is the most expensive phone in each brand.
956
957
958 # In[ ]:
959
960
961 # Solution:
962 df.loc[df.groupby('brand')['price'].idxmax()][['brand', 'model', 'price']]
963
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964
965 # In[ ]:
966
967
968 # # Exercise 5

Listing 7: The notebook context part of the prompt for u2 in Fig. 1

969 # In[ ]:
970
971
972 import pandas as pd
973
974 df=pd.read_csv('dataset/Gamepass_Games_v1.csv')
975
976
977 # In[ ]:
978
979
980 # Schema of Dataframes:
981 # Columns in df with example values:
982 # GAME (Mass Effect Legendary Edition), RATIO (1.87), GAMERS (84,143), COMP % (4.1), TIME (100-120

hours), RATING (4.8), ADDED (06 Jan 22), True_Achievement (5442), Game_Score (2915)↪→
983
984
985 # In[ ]:
986
987
988 # Extract min and max hours as two columns
989
990
991 # In[ ]:
992
993
994 def get_avg(x):
995 try:
996 return float(x[0]) , float(x[1])
997 except:
998 return 0,0
999 df['min'],df['max']=zip(*df['TIME'].str.replace("

hours",'').str.strip('+').str.split("-").apply(get_avg))↪→
1000
1001
1002 # In[ ]:
1003
1004
1005 df['ADDED']=pd.to_datetime(df['ADDED'],format="%d %b %y",errors='coerce')
1006
1007
1008 # In[ ]:
1009
1010
1011 # In which year was the most played game added?
1012
1013
1014 # In[ ]:
1015 . Model starts prediction
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