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Abstract

In work on AMR (Abstract Meaning Represen-
tation), similarity metrics are crucial as they are
used to evaluate AMR systems such as AMR
parsers. Current AMR metrics are all based
on nodes or triples matching without consider-
ing the entire structures of AMR graphs. To
address this problem, and inspired by learned
similarity evaluation on plain text, we propose
AMRSim, an automatic AMR graph similarity
evaluation metric. To overcome the high cost
of collecting human-annotated data, AMRSim
automatically generates silver AMR graphs and
utilizes self-supervised learning methods. We
evaluated AMRSim on various datasets and
found that AMRSim significantly improves the
correlations with human semantic scores and
remains robust under diverse challenges. We
also discuss how AMRSim can be extended to
multilingual cases.1

1 Introduction

An Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a rooted, directed graph
where nodes represent concepts and edges corre-
spond to relations of concepts. The goal of an
AMR metric is to evaluate the similarities of pairs
of AMR graphs so that it can be used to evaluate
the outputs of AMR generators such as parsers.
Therefore, a good AMR metric is crucial for the
design and evaluation of AMR parsers. However,
the research on AMR metrics has so far lagged far
behind the work on AMR parsing.

Current AMR metrics either transfer AMR
graphs to triples and consider the one-to-one match-
ing of variables (Cai and Knight, 2013) or linearize
AMR graphs as sequences and calculate n-gram
matching (Song and Gildea, 2019). These metrics
fail to consider the entire AMR structure and lack
flexibility, resulting in poor correlation with human
annotations.

1The code and datasets can be found at https://github.
com/zzshou/AMRSim.

Inspired by plain-text automatic similarity as-
sessment methods that encode sentences into latent
semantic representations to measure a similarity
of the two representations (Reimers and Gurevych,
2019), we propose to learn the automatic assess-
ment of AMR graph similarity through a similar
pipeline. Our proposed metric, called AMRSim,
adopts the pre-trained language model BERT as
the backbone and incorporates GNN adapters to
capture the structural information of AMR graphs.
To overcome the high cost of collecting training
data, we utilize self-supervised learning methods.
The training objective is to maximize the dot prod-
uct between positive embeddings and to minimize
the dot product between different encodings. In
contrast to one-to-one matching metrics, our AMR-
Sim is alignment-free by computing the cosine of
contextualized token embeddings. The prediction
process can be considerably accelerated by lever-
aging GPUs.

We experiment with AMRSim on the trans-
formed STSB (Baudiš et al., 2016) and SICK
(Marelli et al., 2014) datasets, which contain
pairs of AMR graphs and corresponding similarity
scores. Our experiments demonstrate that AMR-
Sim achieves prominent improvements in correla-
tion with human annotations. In further analysis,
AMRSim retains the highest performance under
various challenges compared to previous metrics.
We also explore the potential of extending our met-
ric to multilingual cases, taking into account the
generic nature of the transformer structure and the
fact that the pipeline of AMRSim is not constrained
to any particular language.

The remaining paper is structured as follows.
Section 2 gives an overview of existing AMR met-
rics; Section 3 introduces our proposed metric,
AMRSim; Section 4 includes experimental settings
and main results; We analyze the robustness and the
efficiency of our metrics in Section 5 and conclude
in Section 6.
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2 Existing Metrics

AMR similarity metrics play a vital role in evalu-
ating the performance of AMR parsers. However,
computing the degree of similarity between AMR
graphs is not trivial. In this section, we summarise
the existing AMR metrics.

SMATCH SMATCH (Cai and Knight, 2013) evalu-
ates the overlap of structures as the similarity score.
Each AMR graph is viewed as a conjunction of
triples. SMATCH tries to find a one-to-one match-
ing of variables that maximizes the numbers of
exact matches of triples through the hill climbing
method in a greedy style. The alignment process,
which has been proved as NP-hard, limits the effi-
ciency of SMATCH, especially as the sizes of AMR
graphs increase. Another weakness is that the struc-
tural matching is insufficient for meaning similarity
assessment and fragile in concept synonym replace-
ment and structure deformation (Blloshmi et al.,
2020; Opitz et al., 2021).

S2MATCH To yield a better variable alignment,
Opitz et al. (2020) propose S2MATCH by allowing
soft semantic match instead of matching only iden-
tical triples in SMATCH. Accounting for cosine
similarity of concepts helps to assess the similarity
of graphs, however, computational limitations and
structure deformation confusion in SMATCH have
not been addressed.

SEMA SMATCH adds a TOP relation to the struc-
ture, but SEMA (Anchiêta et al., 2019) argues
that this addition can potentially distort the evalua-
tion. Therefore, they ignored triples identifying the
graph top. Furthermore, instead of computing the
maximum score like SMATCH, SEMA works as a
breadth-first search and produces a deterministic
result, making it faster than one-to-one matching
of variable employed by SMATCH.

SEMBLEU BLEU (Papineni et al., 2002), which
assesses text quality by comparing n-grams, is fre-
quently adopted in machine translation evaluation.
To extend BLEU for matching AMR graphs, SEM-
BLEU (Song and Gildea, 2019) linearizes AMR
graphs through breadth-first traversal and extracts
n-gram for comparison. The metric is alignment-
free and thus computationally efficient. Experimen-
tal results show that SEMBLEU achieved slightly
higher consistency with human judgment than
SMATCH.

WWLK Besides treating AMR graphs as triples
and linearized grams, Weisfeiler-Leman AMR sim-
ilarity metrics (Opitz et al., 2021) consider AMR
graphs as high-dimensional objects. They first
propagate node embeddings iteratively by incorpo-
rating contextualization and then employ Wasser-
stein Weisfeiler Leman kernel (WWLK) to calcu-
late the minimum cost of transforming one graph to
another. WWLK only considers node embeddings
(GloVe embeddings) in AMR graphs, while edge
labels have no corresponding embeddings. There-
fore, WWLKθ is extended to learn AMR edge la-
bels, which requires additional training data.

Considering embeddings of AMR edges im-
proves the performance of metrics. However, super-
vised learning methods require additional efforts
to collect human-labeled data. In contrast, our pro-
posed learned AMR similarity metric adopts self-
supervised learning and achieves higher correlation
performance.

3 The Proposed Approach

In this section, we introduce our proposed approach
for learning AMR graphs similarity evaluation.

3.1 Problem Formulations

AMR graph similarity metrics compute the graded
similarities of AMR graphs. Given a reference
AMR graph G = {V,E,R} where V , E and R
denote the node set, edge set, and relation set of
AMR graph G respectively, and a candidate AMR
graph Ĝ = {V̂ , Ê, R̂}, the primary motivation is
to automatically learn the similarity sim(G, Ĝ) be-
tween the two AMR representations. To do that,
we propose to use network structures to derive the
contextual embeddings of the two AMR graphs
and then compute their similarity score as the co-
sine similarity of the embeddings. More precisely,
we use sim(G, Ĝ) = sim(e, ê) = e⊤ê

∥e∥∥ê∥ , where
e and ê are the contextual embeddings of G and
Ĝ, respectively. Hence the key of our approach is
learning contextual embeddings.

3.2 AMRSim

The use of self-supervised methods is a well-
established approach in semantic text similarity
tasks (STS, Carlsson et al., 2021; Gao et al., 2021).
To assess AMR graph similarity efficiently and
well-correlated with human judgments, we propose
migrating the self-supervised training process in
STS to AMR similarity evaluation.
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Figure 1: Illustration of the pipeline of AMRSim. Graph Encoder 1 and 2 have the same network structure. The
training objective is to maximize dot products between contextual embeddings from positive instances and minimize
dot products between contextual embeddings from negative instances.

3.2.1 Self-supervised Training

In plain text applications, e.g., STS tasks and text
generation tasks, many learned metrics are trained
to optimize correlation with human annotations
(Lowe et al., 2017; Reimers and Gurevych, 2019).
However, AMR graph similarity data collection
is more time-consuming because AMR evaluation
has a learning cost of understanding the seman-
tics of graphs, which are not as straightforward as
plain text. Thus, self-supervised learning methods
are an alternative solution. We adopt an efficient
self-supervised approach Contrastive Tension (CT;
Carlsson et al., 2021) in AMRSim metrics. The
basic assumption is that AMR graphs with adjacent
distributions have similar meanings.

In CT, two independent encoders are initialized
identically. The training objective is to maximize
the dot product between positive embeddings and
to minimize the dot product between different en-
codings. CT constructs positive and negative pairs
in each batch. For each randomly selected AMR
graph G, copy G into an identical graph pair to
construct the positive instance, and sample other
K graphs to construct negative instances by pair-
ing G. The K + 1 instances are included in the
same batch. The training contrastive loss L is bi-
nary cross-entropy between the generated similar-
ity scores and labels.

L(G, Ĝ) =

{
− log σ(e · ê), if G = Ĝ

− log σ(1− e · ê), if G ̸= Ĝ

where σ refers to the Logistic function. Figure
1 demonstrates the pipeline of AMRSim. An in-
stance containing two AMR graphs is input to
graph encoders to generate contextual embeddings,
then the dot product of the embeddings is used to
compute the loss.

3.2.2 Network Structures
Compared to plain text, AMR graphs contain more
structural information. We propose to incorporate
graph neural networks into transformers to adapt to
AMR graph structures and derive more descriptive
contextual embeddings.

Transformers Transformer based neural net-
works have demonstrated exemplary performance
in the fields of natural language processing but they
only accept inputs as sequence data. Therefore, we
first convert AMR graphs to sequences. In AMR
graph G, the labeled edge (u, r, v) ∈ E, where
u, v ∈ V and r ∈ R is a relation type, means that
there is an edge labeled as r from node u to node
v. Similar to Ribeiro et al. (2022), we convert each
AMR graph G into an unlabeled graph by replac-
ing each labeled edge (u, r, v) with two unlabeled
edges {(u, r), (r, v)}. Unlabeled G′ = {V ′, E′}
where V ′ include original nodes as well as addi-
tional nodes converted from relations. This pre-
processing method facilitates BERT to learn word
embeddings for edges.

The unlabeled AMR graph is then linearized.
Position embeddings are crucial for modeling se-
quence order in transformers. The widely used
position embedding takes the advantage of abso-
lute positions of the input sequence. However, we
argue that the linearization order should not affect
AMR graph encoding, because of the inherent na-
ture of AMR graphs that the relationships between
nodes are mainly defined by the underlying seman-
tic connections rather than their linear positioning.
Therefore, instead of absolute position encoding,
the shortest path lengths between all nodes and the
root node are encoded as relative position embed-
dings.

In pre-trained language models like BERT, to-
kens may be split into smaller subwords due to
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the fixed vocabulary. We refuse to split AMR re-
lations and instead add them to the vocabulary as
new words. However, concept nodes are tokenized
as usual. The main reason is that relation words are
artificial, while nodes are always concepts, closer
to linguistic tokens in the vocabulary. For unla-
beled edge (u, r), if node u is split into subword
u1, . . . , uk in tokenization, we consider each sub-
word as a new node and connect each subword to
r, thus (u, r) is replaced by {(u1, r), . . . , (uk, r)}.

Graph Neural Networks Adapter To general-
ize transformers to capture the structural informa-
tion of AMR graphs, we incorporate graph neural
networks as adapter into transformer layers. In par-
ticular, we refer to the idea of the k-dimensional
Graph Neural Networks (k-GNN; Morris et al.,
2019), which are based on the k-dimensional We-
isfeiler and Leman algorithm (k-WL). For a given
k, a k-set in [G]k, s = {Vs, Es} is a k-element
subgraph over G, then the neighborhood of s is
N(s) = {t ∈ [G]k||s ∩ t| = k − 1}. The
GNN at layer t computes new features: htk(s) =
σ(ht−1

k (s) ·W t
1 +

∑
u∈N(s) h

t−1
k (u) ·W t

2), where
σ is the activation function, W t

1 and W t
2 are layer

parameters. Different from the graph adapter in
Ribeiro et al. (2022), we employ an adapter mod-
ule after the feed-forward sub-layer of the last layer
of BERT. The experimental results comparison can
be found in section 5.6. The normalization layer
before the GNN layer and the projection after the
GNN layer is kept, see figure 1. So given the hid-
den states hv for node v, the GNN adapter layer
computes: zv = W · GNN_layer(LN(hv)) + hv,
where W is the adapter parameters, LN(·) denotes
layer normalization and GNN_layer represents the
calculation process of GNN layers.

4 Experiments

4.1 Data Construction
A major advantage of the self-supervised method
is that no human-annotated data is required for
training. Following data preparation in AMR-DA
(Shou et al., 2022), AMRSim utilized SPRING
(Bevilacqua et al., 2021) to parse one-million sen-
tences randomly sampled from English Wikipedia2

to AMR graphs. Generated silver AMR graphs
were linearized by a depth-first traversal algorithm

2The one-million sentences sampled from Wikipedia is
taken from datasets for SimCSE (Gao et al., 2021), which can
be downloaded from https://huggingface.co/datasets/
princeton-nlp/datasets-for-simcse/tree/main.

(the choice of linearization method does not have
impact on embeddings, refer to section 5.1), mean-
while, all edges were recorded as pairs (u, r).
Computing relative positions of tokens was imple-
mented by Dijkstra’s Method 3.

4.2 Experimental Setups

We implemented AMRSim with sentence trans-
formers (Reimers and Gurevych, 2019). During
training, we set the positive ratio to be 4/16. In
a batch of 16, there were 4 positive graph pairs
and 12 negative pairs. This indicates that we sam-
pled 4 graphs and created one positive pair and
three negative pairs for each graph. The trans-
former parameters were initialized from uncased
BERT base model (Devlin et al., 2019), and pa-
rameters for graph adapters were initialized ran-
domly. We carried out a search of sequence length
∈ {64, 128, 256} and determined the length of lin-
earized AMR graphs as 128. Other hyperparam-
eters were set as follows: learning rate as 1e-5,
dropout rate as 0.1, and graph adapter size as 128.
GNN embeddings from k layers were concatenated
and input to a projection function to generate final
embeddings. Our experiments were done using
GeForce RTX 2080 Ti GPU. We trained our mod-
els for one epoch, which took approximately two
and a half hours and reported in the table the aver-
age performance of our models over five repeated
experiments with different seeds.

4.3 Main Results

We compared AMRSim with other AMR similar-
ity metrics on evaluation datasets modified from
semantic textual similarity datasets, STSB (Baudiš
et al., 2016) and SICK (Marelli et al., 2014). Orig-
inal datasets contain a set of pairs of sentences
with a human-labeled similarity score. Opitz et al.
(2021) utilized a strong parser to construct AMR
graph pairs from sentence pairs and normalized
similarity scores to the range [0, 1] to facilitate
standardized evaluation. There are 1379 and 4927
test instances in the two datasets, respectively. Over
95% randomly selected data from generated AMR
graphs were assessed as gold or with minor errors.

The best performance of baseline metrics on the
test dataset was included in the comparison. For
example, k = 2 achieved superior performance
in STS and SICK than the default value k = 3

3The implementation code comes from networkx: https:
//networkx.org.
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in SEMBLEU, so we included SEMBLEUk=2 as
SEMBLEU.

Metrics STSB SICK

Baselines

SMATCH 58.45 59.72
S2MATCH 58.82 60.42

SEMA 55.90 55.32
SEMBLEU 60.62 59.86

WWLK 63.15 65.58
WWLKθ 66.94 67.64

Ours

AMRSim1 69.61±0.31 72.17±0.49
AMRSim2 70.10±0.31 71.95±0.79
AMRSim3 70.59±0.64 72.82±0.46
AMRSim4 70.88±0.61 73.10±0.42
AMRSim5 70.94±0.74 72.64±0.44

Table 1: Comparison of different AMR metrics. Results
are Pearson correlation (x100) on STSB and SICK test
set. We repeated our experiments five times and reported
the average score with the standard variance. AMRSimk

indicates that the graph encoder adopts k-GNN as the
adapter.

Table 1 shows the comparison of the evaluation
results of various metrics on two test datasets. Base-
line results are from Opitz et al.’s (2021) work. We
conducted five experiments for each different k-
GNN setups and reported the mean and standard
deviation of Pearson correlation scores. Our pro-
posed AMRSim significantly outperformed previ-
ous AMR metrics and achieved the highest score
on correlation with human annotation. Specifically,
AMRSim5 with 5-GNN adapter improved the pre-
vious best Pearson score from 66.94% to 70.94%
on STSB, and AMRSim4 with 4-GNN adapter im-
proved the score from 67.64% to 73.10% on SICK
dataset. When k increased from one to four, the
average performance of AMRSim in both datasets
increased, however, when increasing from four to
five, the average performance of the model de-
creased. More parameters to optimize made the
model harder to train without more improvement.
Considering the average Pearson score and stan-
dard deviation, we took AMRSim4 as our final met-
ric. It is worth mentioning that WWLKθ learned
edge encodings through supervised learning meth-
ods. By contrast, our proposed AMRSim adopted
self-supervised learning, and no human-labeled
data was required.

5 Analysis

AMRSim shows a high correlation with human
annotations. In this section, we further analyze the

robustness and efficiency of AMRSim.

5.1 Robustness Analysis
At first, we explore in depth how AMRSim per-
forms under various challenges.

Reification Challenges Reification challenges
import AMR rephrasing, which means changing
the structure of graphs, but not its meaning (Ba-
narescu et al., 2013; Goodman, 2019; Opitz et al.,
2021). The reification rule is that edge (u, r, v)
in the original graph induced (u, r1, insr) ∧
(insr, r2, v), where insr is r’s reification and rns
are new generated edges. For example, in the fol-
lowing AMR graph:

(xv0 / brush-01
:ARG0 (xv1 / girl

:part xv2)
:ARG1 (xv2 / hair))

Edge label :part has its reification :have-part-91, so
for the above AMR graph, (girl, :part, hair) can
be replaced by (girl, :ARG-of, have-part-91) ∧
(have-part-91, :ARG2, hair). The modified AMR
graph keeps the meaning displayed as:

(xv0 / brush-01
:ARG0 (xv1 / girl

:ARG1-of (nn / have-part-91
:ARG2 xv2))

:ARG1 (xv2 / hair))

Metrics STSB ∆ SICK ∆

SMATCH 57.98 -0.47 61.81 2.09
S2MATCH 58.08 -0.74 62.25 1.83

SEMA 55.51 -0.39 56.16 0.84
SEMBLEU 54.84 -5.78 57.70 -2.16

WWLK 59.78 -3.37 65.53 -0.05
WWLKθ 64.34 -2.60 65.49 -2.15

AMRSim 70.54 -0.34 73.42 0.32

Table 2: Comparison of AMR metrics for reification
challenges. Results are Pearson correlation (x100) on
reified STSB and SICK test dataset. ∆ means the differ-
ence in score before and after reification.

Reification challenges require that metrics have
the capacity to handle structure variants. Table 2
shows the comparison of AMR metrics under reifi-
cation challenges. AMRSim ranked first on both
reified datasets. On reified STSB test set, AMR-
Sim achieved the highest score of 70.54% and the
lowest loss of 0.43% compared with performance
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on STSB dataset. Similar results were presented on
SICK dataset. AMRSim achieved the highest score
of 73.42% and the second lowest loss of 0.31%.
Encoding the entire AMR graph and comparing
contextual embeddings is a contributing factor that
improves robustness under reification challenges.

Synonym Challenges Another challenge is syn-
onym challenge, which is conceptual synonym sub-
stitution while preserving meaning. AMR nodes
are iterated over and replaced by their (near-)
synonyms in PropBank, or their synset in Word-
Net (Opitz et al., 2021). The synonym transfor-
mation is not trivial for the reason that the sin-
gle node may be replaced by a graph substruc-
ture. For example, instance(x, tofu) can be
extended as (x, :mod, y) ∧ instance(x, curd) ∧
instance(y, bean) , so the AMR graph

(xv0 / cut-01
:ARG0 (xv2 / woman)
:ARG1 (xv1 / tofu))

is transformed as:

(xv0 / cut-01
:ARG0 (xv2 / womanhood)
:ARG1 (xv1 / curd

:mod (nn52 / bean)))

Metrics STSB ∆ SICK ∆

SMATCH 56.14 -2.31 57.39 -2.33
S2MATCH 56.70 -2.12 57.92 -2.50

SEMA 50.16 -5.74 48.87 -6.45
SEMBLEU 52.82 -7.80 53.47 -6.39

WWLK 59.40 -3.75 59.98 -5.60
WWLKθ 60.11 -4.23 62.29 -5.35

AMRSim 66.50 -4.38 67.73 -5.37

Table 3: Comparison of AMR metrics for synonym
challenges. Results are Pearson correlation (x100) on
transformed STSB and SICK test dataset. ∆ means the
score difference before and after concept node transfor-
mation.

Table 3 shows the performance of various AMR
metrics on synonym challenges. From the results,
synonym challenges are more complex than reifi-
cation challenges. Nevertheless, AMRSim still
ranked first on both test datasets, with 66.50% and
67.73% respectively. SEMBLEU that matches n-
gram of linearized AMR graphs is the most vulner-
able under this challenge. Besides, WWLKθ and

AMRSim suffer more loss than reification chal-
lenges. One possible reason is that both WWLKθ

and AMRSim are learned metrics, and they have
a common generalization problem to some extent.
However, our proposed AMRSim outperformed
WWLKθ by a large margin, but with a close score
loss.

Linearization Challenges The basic assumption
of AMRSim is that the similarity score is concerned
with the entire AMR graph and will not be affected
regardless of the linearization of the AMR graph.
As the transformer model treats each token as in-
dependent, position embedding is added to retain
the order information of tokens. To test AMR-
Sim’s ability to handle the linearization challenge,
we compared model outputs for different inputs:
(i) A pair of AMR graphs that are isomorphic but
have different linearization sequences; (ii) a pair
of different AMR graphs with the same linearized
sequence after adopting the original position em-
bedding strategy in BERT; (iii) a pair of different
AMR graphs with the same linearized sequence
after adopting relative position embedding strategy
in AMRSim. For example, four AMR graphs are
listed below:

AMR A:
(xv0 / play-01

:ARG0 (xv2 / group
:consist-of (xv4 / boy))

:ARG1 (xv1 / soccer)
:location (xv3 / beach))

AMR B:
(xv0 / play-01

:location (xv3 / beach)
:ARG0 (xv2 / group

:consist-of (xv4 / boy))
:ARG1 (xv1 / soccer))

AMR C:
(xv0 / play-01

:ARG0 (xv2 / group
:consist-of (xv4 / boy

:ARG1 (xv1 / soccer
:location (xv3 / beach)))))

AMR D:
(xv0 / play-01

:ARG0 (xv2 / group)
:ARG1 (xv1 / soccer)
:location (xv3 / beach

:consist-of (xv4 / boy)))
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AMR graphs A and B are isomorphic but the po-
sition of :location beach differs in the linearized
sequences. Graphs A and C are different, how-
ever, token positions ranked by the ascending algo-
rithm in BERT are the same. Graphs A and D are
also inconsistent, but the relative positions of all
tokens are consistent. For example, the distance be-
tween :consist-of and the root play-01 is 4 on both
graphs. To demonstrate the effectiveness of GNN
adapters in AMRSim, we compare AMRSim with
the original BERT and BERT with relative position
embeddings (AMRSim without GNN). Table 4 con-

Metrics sim(A,B) sim(A,C) sim(A,D)

Expected =1 ̸=1 ̸=1
BERT 0.98 1 0.99

BERTrelative 1 0.97 1
AMRSim 1 0.97 0.98

Table 4: Similarity scores for graph pairs. A,B,C,D
are four AMR graphs listing earlier where A = B ̸=
C ̸= D. Expected denotes the expected similarity
scores for graph pairs. BERT means BERT with origi-
nal position encoding, and BERTrelative means BERT
with relative position encodings. AMRSim adds GNN
adapters to BERTrelative.

cluded similarity scores from BERT, BERT with
relative position embedding, and AMRSim. BERT
was confused by various linearizations of the same
graph whereas BERTrelative has a shortage of cap-
turing structure information. With GNN adapters,
AMRSim can handle the linearization challenge.
In terms of the other metrics, only SemBleu re-
quires linearization, and it exhibits a high level of
sensitivity towards the chosen linearization.

5.2 Scatter Plot Analysis

To visually analyze the distribution patterns and the
relationship between human annotations and scores
obtained from different metrics, we utilize scatter
plots to show instances distributions and best fit
lines to depict the trend. All scores are normalized
to the range [0,1]. In figure 2, the y-axis of each
subplots represents human annotated scores, while
the x-axis represents the scores calculated using
various metrics. By plotting individual examples
on scatter plots, we observed that WWLK-related
metrics and our AMRSim outperform other met-
rics significantly, with higher concentration around
the fit and fewer outlier. However, they exhibit bi-
ases towards instances with distinct human scores.
WWLK-related metrics tend to underrate examples

with higher human scores while AMRSim tends to
overrate examples with lower human scores.

Figure 2: Scatter plots showing the relationship between
human annotated scores (y-axis) and scores obtained
using various metrics (x-axis). The lines represent the
best fit lines, and the color scale indicates the distance
away from the best fit lines.

5.3 Case Study
Disagreements in preference for AMR graphs can
affect the ranking of AMR parsers. Thus we em-
ploy a case study to study metrics’ preference for
parsed results. Here is an example from Opitz
et al.’s (2020) paper. CAMR and JAMR are two
AMR parsers.

::snt: Legally, there are two remedies.
Gold AMR:
(t / thing :quant 2

:ARG2-of (r / remedy-01)
:mod (l / law)

CAMR Parsed Result:
(x6 / remedy-01

:quant 2)

JAMR Parsed Result:
(l / legally
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:manner-of (r / remedy-01
:quant 2))

The scores obtained from different metrics are as
follows: SMATCH (0.2, 0.167); S2MATCH (0.2,
0.252); SEMA (0, 0); SEMBLEU (0.215, 0.215);
WWLK (0.335, 0.352); WWLKθ (0.329, 0.345);
AMRSim (0.81, 0.92). Among these metrics,
SMATCH gives higher scores to CAMR parsed re-
sults. Conversely, SEMBLEU and SEMA assign the
identical score to both parsed results. SEMA em-
ploys a more strict evaluation method as it assesses
not only the individual node but also its dependen-
cies. However, S2MATCH, WWLK, WWLKθ and
AMRSim grant higher scores to the second parsed
results. In this particular example, legally is indis-
pensable information of semantics. Our preference
leans towards the second parsed results.

5.4 Computational Time

In this section, we emphasize the importance of
computational time as a crucial factor to consider
for practical use. While the time complexity of
AMRSim is O(n), it is necessary to consider that
the processing with transformers possibly impact
the overall time required. We provide an analysis
of various metrics’ reference time based on SICK
test dataset consisting of 4927 samples. The ref-
erence time is listed as follows: SMATCH: 5.24s,
S2MATCH: 37.51s, SEMA: 1.132s, SEMBLEU:
0.67s, WWLK: 46.60s, WWLKθ: 48.13s. Our
AMRSim differs slightly from other metrics as we
employ neural networks to predict graph similar-
ity, allowing us to utilize both CPU and GPU for
the task. When using CPU, the reference time is
approximately 67.66s. However, this is not the
most optimal choice, as matrix computations can
be accelerated by GPUs. By utilizing a single GPU
(RTX2080ti in our experiments), for instance, with
a batch size of 16, the reference time reduces to
around 14.20s. Scaling up to a batch size of 256
further reduces the reference time to 8.04 seconds.
Further increasing the batch size has limited ben-
efits as the processing time for input and output
becomes the dominant factor. In term of O(n) time
complexity, the advantages of our AMRSim be-
come more pronounced as the graph sizes increase.

5.5 Multilingual Metrics

The lack of multilingual AMR evaluation metrics
becomes an obstacle to developing cross-lingual
AMR parsers. It is common practice to translate

other languages into English or use multilingual
embeddings for matching, which does not take
into account that the source language may affect
the structure of the AMR (Wein and Schneider,
2022). AMRSim has the potential to be extended
to multilingual cases given the generic nature of
our pipeline: encoding AMR graphs and comput-
ing the cosine similarity of graph embeddings, not
limited to specific languages. However, annotat-
ing the similarity of a multilingual dataset is more
challenging and subject due to varying levels of
language proficiency. So we performed a prelim-
inary test by collecting a small-scale test dataset
comprising 20 Chinese-English AMR pairs, then
adopting a well trained multilingual model4 to en-
code the corresponding text and calculating cosine
similarity of text embeddings as the graph similar-
ity score. To train our multilingual AMRSim, we
employed the multilingual version of BERT base
model and added a Chinese AMR dataset contain-
ing about 2,500 Chinese AMR graphs from Li et al.
(2016) to English training data in Section 4.1. Re-

SMATCH S2MATCH SEMBLEU WWLK AMRSim

Pearson 42.02 52.72 40.08 30.25 63.87

Table 5: Pearson correlation (x100) on 20 Chinese-
English AMR Pairs.

sults of metrics are concluded in table 5. SEMA
lacks support for multilingual cases, resulting in it
returning 0 for any multilingual inputs. Addition-
ally, due to the absence of a multilingual dataset
for WWLKθ supervised training, we exclude them
from our comparison. A specific example is illus-
trated in Figure 3. The predicted similarity score
for these two graphs needs to be close to 1 because
they correspond to the same sentence in the Chi-
nese and English versions of The Little Prince. We

SMATCH S2MATCH SEMBLEU WWLK AMRSim

Score 0.174 0.252 0.101 -0.055 0.576

Table 6: Similarity scores for AMR graphs in Figure 3.

used different metrics to evaluate the similarity of
these two graphs and concluded the score in table
6. While AMRSim surpasses other metrics, its per-
formance is poor compared to the English version
of AMRSim. The possible explanation is the lim-

4The multilingual encoding model is downloaded from
https://huggingface.co/sentence-transformers/
paraphrase-multilingual-MiniLM-L12-v2.
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Figure 3: AMR graphs for the same sentence from The
Little Princes in Chinese and English.

ited training data hinders effective self-supervised
learning. A comprehensive study on multilingual
applications is considered to be a future work.

5.6 Ablation Studies

We investigated the impact of GNN adapters’ po-
sition. Comparison of models’ performance is in-
cluded in table 7. GNN represents that the model
only contains GNN layers; GNN-Each means that
one GNN adapter is included in each transformer
layer, same as Ribeiro et al. (2022); GNN-Before
denotes that GNN adapter is before transformer
layers and AMRSim indicates that GNN adapters
are incorporated after transformer layers. Models
other than GNN-Each come with 4-GNN. GNN

GNN GNN-Each GNN-Before AMRSim

STSB 33.26 62.46 69.63 70.88

Table 7: Comparison of different neural networks. Re-
sults are Pearson correlation (x100) on STSB test set.

achieved the worst correlation score because it is
notoriously hard for GNN to train (Li et al., 2019).
However, setting transformers as the backbone and
incorporating GNN as adapters are more acceptable
in our experimental settings. GNN-Each underper-
formed in the experiments, possibly because too
many GNN parameters appear in each layer to be
optimized for self-supervised training. AMRSim
achieved superior performance, which is intuitive
because BERT encoded sequence information, and
then GNN captured structural information.

6 Conclusion

We have proposed a learning based AMR graph
similarity metric called AMRSim. Its underlying
network structure incorporates GNNs into a trans-
former network and employs self-supervised learn-
ing. Our proposed similarity metric addresses two
common pitfalls of existing metrics: firstly, a low
correlation with human annotations due to lack of
considering the entire structures of AMR graphs.
AMRSim effectively encodes AMR graphs, exhibit-
ing the highest correlations with human evaluations
and maintaining robust against various challenges.
The second is computational inefficiency associ-
ated with matching or alignment of AMR graphs.
AMRSim is alignment-free, allowing for a signif-
icant reduction in inference time when utilizing
GPUs. We also show the potential of extending
AMRSim to multilingual AMR similarity metrics.

Limitations

AMRSim has high prediction efficiency but the
training process is time-consuming. In our ex-
periments, one epoch training on one GeForce
RTX2080Ti took about two and a half hours. Self-
supervised learning requires a large amount of train-
ing data. Parsing wiki sentences into graphs re-
quires time, but the advantage is that it can be pro-
cessed offline. Another issue is the length limit.
Transformers can only handle limited sequence
lengths due to the computational and memory com-
plexity of attention calculation. Therefore, encod-
ing large AMR graphs is challenging. Possible so-
lutions include applying sliding window algorithm
to split a large AMR graph into several subgraphs
and merge the scores.
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