Understanding and Bridging the Modality Gap for Speech Translation

Qingkai Fang'?, Yang Feng':?*
'Key Laboratory of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)
2University of Chinese Academy of Sciences, Beijing, China
{fanggingkai2lb, fengyang}@ict.ac.cn

Abstract

How to achieve better end-to-end speech trans-
lation (ST) by leveraging (text) machine trans-
lation (MT) data? Among various existing
techniques, multi-task learning is one of the
effective ways to share knowledge between
ST and MT in which additional MT data can
help to learn source-to-target mapping. How-
ever, due to the differences between speech and
text, there is always a gap between ST and MT.
In this paper, we first aim to understand this
modality gap from the target-side representa-
tion differences, and link the modality gap to
another well-known problem in neural machine
translation: exposure bias. We find that the
modality gap is relatively small during train-
ing except for some difficult cases, but keeps
increasing during inference due to the cascad-
ing effect. To address these problems, we
propose the Cross-modal Regularization with
Scheduled Sampling (CRESS) method. Specif-
ically, we regularize the output predictions of
ST and MT, whose target-side contexts are de-
rived by sampling between ground truth words
and self-generated words with a varying proba-
bility. Furthermore, we introduce token-level
adaptive training which assigns different train-
ing weights to target tokens to handle difficult
cases with large modality gaps. Experiments
and analysis show that our approach effectively
bridges the modality gap, and achieves promis-
ing results in all eight directions of the MuST-C
dataset.!

1 Introduction

End-to-end speech translation (ST) aims to trans-

late speech signals to text in another language di-

rectly. Compared to traditional cascaded meth-

ods, which combine automatic speech recogni-

tion (ASR) and machine translation (MT) models

in a pipeline manner, end-to-end ST could avoid
* Corresponding author: Yang Feng.

!Code is publicly available at https://github.com/
ictnlp/CRESS.

error propagation and high latency (Sperber and
Paulik, 2020). Recently, end-to-end ST models
have achieved comparable or even better results
than cascaded ST models (Bentivogli et al., 2021;
Anastasopoulos et al., 2021, 2022).

However, due to the scarcity of ST data, it is diffi-
cult to directly learn a mapping from source speech
to the target text. Previous works often leverage
MT data to help the training with multi-task learn-
ing (Ye et al., 2022; Tang et al., 2021a). By shar-
ing encoder and decoder between ST and MT, the
model tends to learn similar representations from
different modalities. In this way, the auxiliary MT
task can help build the source-to-target mapping.
However, there remains a gap between ST and MT
due to the differences between speech and text. In
this paper, we measure the modality gap with rep-
resentation differences of the last decoder layer
between ST and MT, because the representation
of this layer will be mapped into the embedding
space to obtain the final translation. A significant
modality gap potentially causes different predic-
tions, which makes ST lag behind MT.

Thanks to multi-task learning, we observe that
when training with teacher forcing, where both ST
and MT use ground truth words as target-side con-
texts, the modality gap is relatively small except for
some difficult cases. However, the exposure bias
problem can make things worse. During inference,
both ST and MT predict the next token conditioned
on their previously generated tokens, which may
be different due to the modality gap. Moreover,
different predictions at the current step may lead to
even more different predictions at the next step. As
a result, the modality gap will increase step by step
due to this cascading effect.

To solve these problems, we propose the Cross-
modal Regularization with Scheduled Sampling
(CRESS) method. To reduce the effect of exposure
bias, we introduce scheduled sampling during train-
ing, where the target-side contexts are sampled be-
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tween ground truth words and self-generated words
with a changing probability. Based on this, we
propose to regularize ST and MT in the output
space to bridge the modality gap by minimizing the
Kullback-Leibler (KL) divergence between their
predictions. This will encourage greater consis-
tency between ST and MT predictions based on
partial self-generated words, which is closer to the
inference mode. Besides, to handle the difficult
cases, we introduce token-level adaptive training
for CRESS, where each target token is given a vary-
ing weight during training according to the scale
of the modality gap. In this way, those cases with
significant modality gaps will be emphasized. We
conduct experiments on the ST benchmark dataset
MuST-C (Di Gangi et al., 2019a). Results show that
our approach significantly outperforms the strong
multi-task learning baseline, with 1.8 BLEU im-
provements in the base setting and 1.3 BLEU im-
provements in the expanded setting on average.
Further analysis shows that our approach effec-
tively bridges the modality gap and improves the
translation quality, especially for long sentences.

2 Background

2.1 End-to-end Speech Translation

End-to-end speech translation (ST) directly trans-
lates speech in the source language to text in
the target language. The corpus of ST is usu-
ally composed of triplet data D = {(s,x,y)}.
Here s = (s1,...,8)g|) is the sequence of audio
wave, X = (T1,...,T|x|) is the transcription and
Y = (Y1, -+, YJy|) is the translation. Similar to pre-
vious work (Ye et al., 2021; Fang et al., 2022),
our ST model is composed of an acoustic encoder
and a translation model. The acoustic encoder is a
pre-trained HuBERT (Hsu et al., 2021) model fol-
lowed by two convolutional layers, which are used
to reduce the length of the speech sequence. The
translation model follows standard Transformer
(Vaswani et al., 2017) encoder-decoder architec-
ture, where the encoder contains /N Transformer
encoder layers, and the decoder contains /N Trans-
former decoder layers. We first pre-train the trans-
lation model with MT data, and then optimize the
whole model by minimizing a cross-entropy loss:

ly|

Lsp ==Y logp(uils, y<i), (1)

=1
p(yi’S7 y<l) X exp(W : f(S, Y<i))7 (2)

where f is a mapping from the input speech s and
target prefix y.; to the representation of the last
decoder layer at step .. W 1is used to transform the
dimension to the size of the target vocabulary.

2.2 Multi-task Learning for ST

Multi-task learning (MTL) has been proven useful
for sharing knowledge between text translation and
speech translation (Tang et al., 2021a), where an
auxiliary MT task is introduced during training:

ly|

Lur = - logp(yilx,y<i), (3
=1

P(Yilx,y<i) x exp(W - f(x,y<i)). (4

Note that both modalities (i.e., speech and text)
share all transformer encoder and decoder layers.
Finally, the training objective is written as follows:

Lyt = Lst + Lvr. (5

3 Preliminary Studies on Modality Gap

With multi-task learning, most of the knowledge of
MT can be transferred to ST. However, the perfor-
mance gap between ST and MT still exists. In this
section, we first conduct some preliminary stud-
ies with our multi-task learning baseline model to
understand where this gap comes from.

3.1 Definition of the Modality Gap

The gap between ST and MT is related to the pre-
diction difference at each decoding step, while the
prediction depends only on the representation of
the last decoder layer. Therefore, we define the
modality gap at the i-th decoding step as follows:

G(57 y<i”x7 Y<i) = 1—COS(f(S, Y<i)7 f(X7 y<i))7

(6)
where cos is the cosine similarity function
cos(a,b) = a'b/||a||||b]|. A larger cosine simi-
larity indicates a smaller modality gap.

To understand the extent of the modality gap, we
count the distribution of G(s,y<;||x,y<;) based
on all triples (s, X, y<;) in the MuST-C (Di Gangi
et al., 2019a) En—De dev set. As shown in Figure
1, the modality gap is relatively small (< 10%)
in most cases, which proves the effectiveness of
multi-task learning in sharing knowledge across
ST and MT. However, we also observe a long-tail
problem: there is a large difference between ST
and MT representations in some difficult cases.
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Figure 1: Distribution of the modality gap on MuST-C
En—De dev set with kernel density estimation (KDE).

3.2 Connection between Exposure Bias and
Modality Gap

Exposure bias, a discrepancy between training and
inference, is a well-known problem in neural ma-
chine translation (Bengio et al., 2015; Ranzato
et al., 2016; Wang and Sennrich, 2020; Arora et al.,
2022). During training with teacher forcing, both
ST and MT predict the next token conditioned on
the ground truth target prefix y ;. However, during
inference, the predictions of ST and MT depend
on their previously generated tokens by the model
itself (denoted as y? ;, and yZ, for ST and MT re-
spectively), which might be different due to the
modality gap. Furthermore, different predictions at
the current decoding step result in different target
prefixes for ST and MT, potentially causing even
more different predictions at the next step. Such
cascading effect will enlarge the modality gap step
by step during inference.

To prove our hypothesis, we present the curves
of the modality gap with decoding steps under
teacher forcing, beam search, and greedy search
strategies, respectively. As shown in Figure 2, with
teacher forcing, there is no significant difference in
the modality gap across steps, as both ST and MT
depend on the same target prefix at any step. Hence,
the modality gap G(s,y<;||x,y<;) only comes
from the difference between input speech s and text
x. However, when decoding with greedy search,
due to the cascading effect mentioned above, the
self-generated target prefix y2, and y2, become
increasingly different, making the modality gap
G(s,¥%,;]1x,¥%;) keep increasing with decoding
steps. A simple way to alleviate this problem is
beam search, which considers several candidate

1.01 —— Teacher Forcing
—— Beam Search
—— Greedy Search
0.8 y
Q.
©
O 0.6 1
2
3
O 0.4
S 0
0.2
0.0 1

0 25 50 75 100 125 150
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Figure 2: Curves of the average modality gap on MuST-
C En—De dev set with decoding steps under teacher
forcing, beam search, and greedy search strategies. For
beam search, we have several candidate translations.
The modality gap is calculated with the average repre-
sentation of all candidates. We set a beam size of 8.

tokens rather than a single one at each decoding
step. When there is an overlap between candidate
tokens of ST and MT, the cascading effect will
be reduced, thus slowing down the increase of the
modality gap.

4 Method: CRESS

Our preliminary studies in Section 3 show that:

* The modality gap will be enlarged during in-
ference due to exposure bias.

* The modality gap may be significant in some
difficult cases.

Inspired by these, we propose the Cross-modal
Regularization with Scheduled Sampling (CRESS)
method to bridge the modality gap, especially in
inference mode (Section 4.1). Furthermore, we
propose a token-level adaptive training method for
CRESS to handle difficult cases (Section 4.2).

4.1 Cross-modal Regularization with
Scheduled Sampling (CRESS)

To bridge the modality gap during inference, we
adopt scheduled sampling for both ST and MT to
approximate the inference mode at training time.
After that, we add a regularization loss between the
predictions of ST and MT based on the part of their
self-generated words as context. This allows for
more consistent predictions between ST and MT
during inference, thus reducing the performance
gap between ST and MT. Figure 3 illustrates the
main framework of our method.
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Figure 3: Overview of our proposed CRESS. Note that the step of selecting predicted words has no gradient

calculation and is fully parallelized.

Scheduled Sampling Scheduled sampling (Ben-
gio et al., 2015), which samples between ground
truth words and self-generated words, i.e., pre-
dicted words, with a certain probability as target-
side context, has proven helpful in alleviating ex-
posure bias. In general, the input at the {¢ + 1}-th
decoding step should be the ground truth word y;
during training. With scheduled sampling, it can
also be substituted by a predicted word. Next, we
describe how to select the predicted word ¥y} for
ST and ¥ for MT. For ST, we follow Zhang et al.
(2019) to select the predicted word 77 by sampling
from the word distribution p(y;|s, y<;) in Equation
(2) with Gumbel-Max technique (Gumbel, 1954;
Maddison et al., 2014), a method to draw a sample
from a categorical distribution:

n = —log(—logu), (7)
y; = argmax (W - f(s,y<i) +n), (8)

where 77 is the Gumbel noise calculated from the
uniform noise v ~ U(0,1). Similarly, for MT,
there is:

yi = argmax (W - f(x,y<i) +n). (9

Note that we may omit the superscript and denote
the predicted word for both ST and MT by ; in the
following.

How to select between the ground truth word y;

and the predicted word 7;? Similar to Bengio et al.

(2015); Zhang et al. (2019), we randomly sample

from both with a varying probability. We denote
the probability of selecting from the ground truth
word as p*. At the beginning of training, since
the model is not yet well trained, we select more
from the ground truth words (with larger p*) to
help the model converge. In the later stages of
training, we select more from the predicted words
(with smaller p*), which is closer to the situation
during inference. To achieve this, we decrease p*
with a function of the index of training epochs e:

. 1t

R — 10
J+ oxp(e/ ) (10

b

where p is a hyper-parameter. With scheduled
sampling, the target-side context becomes y =

(Y1, -+ Yjy|)» where

~ i
Yi=1q~
{yz-,

where p is sampled from the uniform distribution
U(0,1). Using y* and y” to denote the target-
side context of ST and MT respectively, the loss
functions of ST and MT become:

< >k
b=r (11)
p>p

lyl

LGS == logp(uils, ¥%,),  (12)
=1
lyl

LSS = = logp(yilx.¥%,),  (13)
=1
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Cross-modal Regularization To bridge the
modality gap in inference mode, we expect the
predictions of ST and MT with scheduled sam-
pling to be consistent. Inspired by recent works
of consistency training (Liang et al., 2021; Guo
et al., 2022), we regularize ST and MT in the out-
put space. Specifically, we minimize the bidirec-
tional Kullback-Leibler (KL) divergence between
the output distributions of ST and MT at each step:

Iyl
1 _ -
LEaEsS = Zi(DKL(P(?Ji’&ys<z')Hp(yi’X7 yZi)
=1
+ DxL(p(yilx, y2;) Ip(vils, y2:)))-
(14)

With the translation loss in Equation (12) and
(13), the final training objective is:

ﬁCRESS — E(S?%Ess + 'CI(\:/IRIESS + )\‘C%’ggss7 (15)

where A is the hyper-parameter to control the
: CRESS
weight of L™

4.2 Token-level Adaptive Training for CRESS

As mentioned above, the modality gap might be sig-
nificant in some difficult cases. Inspired by the idea
of token-level adaptive training (Gu et al., 2020; Xu
et al., 2021b; Zhang et al., 2022a), we propose to
treat each token adaptively according to the scale of
the modality gap. The training objectives in Equa-
tion (12), (13), and (14) are modified as follows:

ly|
LGS == w;-logp(uils, y%;),  (16)
i=1
lyl
LSS = = w; - log p(yilx, ¥%,), (17
=1
lyl
Lheg™ = Ziwi(DKL(P(yz‘\Sa?‘Z)HP(%\X’?Z))
i=1
+ Dr(p(yilx, ¥2:) Ip(vils, ¥2:))),
(18)

where w; is the token-level weight defined by a
linear function of the modality gap:

w; =B+ 5-G(s, %%, ¥%;), (19)

where B (base) and S (scale) are hyper-parameters
to control the lower bound and magnitude of
change of w;. In this way, cases with a large modal-
ity gap will be assigned a larger weight and thus
emphasized during training. Note that the modality
gap is computed on-the-fly during training.

5 Experiments

5.1 Datasets

ST Datasets We conduct experiments on MuST-
C (Di Gangi et al., 2019a) dataset, a multilingual
ST dataset containing 8 translation directions: En-
glish (En) to German (De), French (Fr), Spanish
(Es), Romanian (Ro), Russian (Ru), Italian (It),
Portuguese (Pt) and Dutch (NI). It contains at least
385 hours of TED talks with transcriptions and
translations for each direction. We use dev set for
validation and tst-COMMON set for evaluation.

External MT Datasets We also introduce exter-
nal MT datasets to pre-train our translation model
in the expanded setting. For En—De/Fr/Es/Ro/Ru
directions, we introduce data from WMT (Buck
and Koehn, 2016). For En—It/Pt/NIl, we introduce
data from OPUS100? (Zhang et al., 2020). Table 4
in Appendix A lists the statistics of all datasets.

5.2 Experimental Setups

Pre-processing For speech input, we use the raw
16-bit 16kHz mono-channel audio wave. For text
input, all sentences in ST and external MT datasets
are tokenized and segmented into subwords using
SentencePiece’. For each translation direction, the
vocabulary is learned from the source and target
texts from the ST dataset, with a size of 10K. For
the external MT datasets, we filter out parallel sen-
tence pairs whose length ratio exceeds 1.5.

Model Setting We use the pre-trained HuBERT
model* to encode the input audio. Two 1-
dimensional convolutional layers after HuBERT
are set to kernel size 5, stride size 2, and padding 2.
For the translation model, we employ Transformer
architecture with the base configuration, which con-
tains 6 encoder layers and 6 decoder layers, with
512 hidden states, 8 attention heads, and 2048 feed-
forward hidden states for each layer. The transla-
tion model is first pre-trained with MT task using
transcription-translation pairs from the ST dataset
(base setting), and also sentence pairs from the
external MT dataset (expanded setting).

During MT pre-training, each batch has up to
33k text tokens. The maximum learning rate is set
to 7e-4. During fine-tuning, each batch contains up
to 16M audio frames. The maximum learning rate

2http: //opus.nlpl.eu/opus-100.php

3https: //github.com/google/sentencepiece

4ht’cps: //dl.fbaipublicfiles.com/hubert/hubert_
base_1s5960.pt
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Models BLEU

En—De En—Fr En—Es En—Ro En—Ru En—It En—Pt En—NI | Avg.

Base setting (w/o external MT data)
XSTNet (Ye et al., 2021) 25.5 36.0 29.6 25.1 16.9 25.5 31.3 30.0 27.5
STEMM (Fang et al., 2022) 25.6 36.1 30.3 24.3 17.1 25.6 31.0 30.1 27.5
ConST (Ye et al., 2022) 25.7 36.8 30.4 24.8 17.3 26.3 32.0 30.6 28.0
MTL 25.3 35.7 30.5 23.8 17.2 26.0 31.3 29.5 27.4
CRESS 27.2%%  37.8%k  31.9%F  259%k 187 27.3%F  33,0%*  31.6%* | 29.2
Expanded setting (w/ external MT data)

Chimera (Han et al., 2021) 27.1 35.6 30.6 24.0 17.4 25.0 30.2 29.2 274
XSTNet (Ye et al., 2021) 27.1 38.0 30.8 25.7 18.5 26.4 324 31.2 28.8
STEMM (Fang et al., 2022) 28.7 374 31.0 24.5 17.8 25.8 31.7 30.5 28.4
ConST (Ye et al., 2022) 28.3 38.3 32.0 25.6 18.9 27.2 33.1 31.7 29.4
fSTPT (Tang et al., 2022) - 39.7 33.1 - - - - - -
fSpeechUT (Zhang et al., 2022b) 30.1 41.4 33.6 - - - - - -
MTL 27.7 38.5 32.8 24.9 19.0 26.5 32.0 30.8 29.0
CRESS 29.4%%  40.1%%  33.2% 26.4%*  19.7**  27.6%*% 33.6%* 32.3%F | 30.3

Table 1: BLEU scores on MuST-C tst-COMMON set. The external MT datasets are only used in the expanded
setting. * and ** mean the improvements over MTL baseline are statistically significant (p < 0.05 and p < 0.01,
respectively). }: speech-text jointly pre-trained models whose training costs are much higher than our models.

is set to le-4. We use Adam optimizer (Kingma and
Ba, 2015) with 4k warm-up steps. We set dropout
to 0.1 and label smoothing to 0.1. The training will
early stop if the BLEU score on the dev set did
not increase for 10 epochs. During inference, we
average the checkpoints of the last 10 epochs for
evaluation. We use beam search with a beam size
of 8. The length penalty is set to 1.2, 1.8, 0.6, 1.4,
0.8, 1.0, 1.4, and 1.0 for En—De, Fr, Es, Ro, Ru,
It, Pt and NI, respectively. We use scareBLEU>
(Post, 2018) to compute case-sensitive detokenized
BLEU (Papineni et al., 2002) scores and the statis-
tical significance of translation results with paired
bootstrap resampling® (Koehn, 2004). We imple-
ment our model with fairseq” (Ott et al., 2019). All
models are trained on 4 Nvidia RTX 3090 GPUs.

For scheduled sampling, the decay parameter
is set to p = 15. For cross-modal regularization,
the weight parameter is set to A = 1.0. For token-
level adaptive training, we did a grid search for
base and scale parameters on MuST-C En—De
dev set with B € {0.6,0.7,0.8,0.9,1.0} and S €
{0.05,0.10,0.20,0.50, 1.00}. Finally, we set B =
0.7 and S' = 0.05 for all translation directions. We
start applying token-level adaptive training after
the 20th epoch during training.

Shttps://github.com/mjpost/sacrebleu

®sacreBLEU signature: nrefs:1 | bs:1000 | seed:12345 |
case:mixed | eff:no | tok:13a | smooth:exp | version:2.0.0

7https://gi’chub.com/pytorch/fair‘seq

Baseline Systems We include several strong end-
to-end ST models for comparison: Chimera (Han
et al., 2021), XSTNet (Ye et al., 2021), STEMM
(Fang et al., 2022), ConST (Ye et al., 2022), STPT
(Tang et al., 2022), and SpeechUT (Zhang et al.,
2022b). Besides, the multi-task learning baseline
in Section 2.2 is also included as a strong baseline,
which is denoted as MTL. We use CRESS to de-
note our method with token-level adaptive training.

Among these models, Chimera, XSTNet,
STEMM, and ConST combine pre-trained
Wav2vec 2.0 (Baevski et al., 2020) and pre-trained
translation model together, and then fine-tune the
whole model on ST datasets. Our implemented
MTL and CRESS follow a similar design, but we
use HuBERT instead of Wav2vec 2.0 as we find
HuBERT gives a stronger baseline (See Table 5 for
details). STPT and SpeechUT jointly pre-train the
model on speech and text data from scratch, which
achieve better performance but also bring higher
training costs®.

5.3 Main Results on MuST-C Dataset

Table 1 shows the results on MuST-C tst-COMMON
set in all eight directions. First, we find that our
implemented MTL is a strong baseline compared
with existing approaches. Second, our proposed
CRESS significantly outperforms MTL in both set-
tings, with 1.8 BLEU improvement in the base set-

8For example, the pre-training of SpeechUT takes 3 days
with 32 V100 GPUs.
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Adaptive Scheduled

# Training Regularization Sampling BLEU
1 v v v 29.4
2 X v v 29.0
3 X v X 284
4 X X v 28.0
5 v X X 27.5
6 X X X 27.7
Table 2: BLEU scores on MuST-C En—De

tst-COMMON set with different combinations of train-
ing techniques.

ting and 1.3 BLEU improvement in the expanded
setting on average, demonstrating the superiority
of our approach. Besides, we report ChrF++ scores
on MuST-C in Appendix E, and we also provide
results on CoVoST 2 (Wang et al., 2020a) En—De
dataset in Appendix C.

6 Analysis and Discussion

Results in Section 5.3 show the superiority of our
method. To better understand CRESS, we explore
several questions in this section. All analysis exper-
iments are conducted on MuST-C En—De dataset
in the expanded setting.

(1) Do scheduled sampling, cross-modal reg-
ularization, and token-level adaptive training
all matter? Scheduled sampling, regularization,
and token-level adaptive training are effective tech-
niques to improve the performance of translation
models. To understand the role of each, we con-
duct ablation experiments in Table 2. When only
applying token-level adaptive training (#5), we ob-
serve a performance decline of 0.2 BLEU since
only adaptive training can not bridge the modal-
ity gap. When training with scheduled sampling
only (#4), we observe a slight improvement of 0.3
BLEU, probably due to the alleviation of exposure
bias. When training with cross-modal regulariza-
tion only (#3), which encourages the consistency
between predictions of ST and MT with ground
truth target contexts, we observe an improvement
of 0.7 BLEU. If we combine both (#2), we obtain a
much more significant boost of 1.3 BLEU, proving
that both scheduled sampling and cross-modal reg-
ularization play a crucial role in our method. Fur-
thermore, with token-level adaptive training (#1),
the improvement comes to 1.7 BLEU, which shows
the benefit of treating different tokens differently
according to the modality gap.

(2) Does CRESS successfully bridge the modal-

1 MTL
127 [ Cress

0.0 0.2 0.4 0.6 0.8
Modality Gap

Figure 4: Distributions of the modality gap on MuST-
C En—De dev set of MTL and CRESS with kernel
density estimation (KDE).
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Figure 5: Curves of the average modality gap with de-
coding steps under three strategies. The dotted line
refers to MTL, and the solid line refers to CRESS.

ity gap? To validate whether our approach success-
fully bridges the modality gap between ST and MT,
we revisit the experiments in Section 3. Figure
4 shows the distribution of the modality gap with
teacher forcing. We observe a general decrease in
the modality gap compared with MTL. We also
plot the curves of the modality gap with decod-
ing steps of CRESS under teacher forcing, greedy
search, and beam search strategies. As shown in
Figure 5, our approach significantly slows down
the increase of the modality gap compared with
MTL baseline, suggesting that the predictions of
ST and MT are more consistent during inference,
demonstrating the effectiveness of our method in
bridging the modality gap.

(3) How base and scale hyper-parameters in-
fluence token-level adaptive training? B (base)
and S (scale) are two important hyper-parameters
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Figure 6: The heat map of BLEU scores on MuST-C
En—De dev set with different combinations of B and S.
The BLEU score without token-level adaptive training
is 28.0.

in token-level adaptive training. We investigate
how different combinations of B and S influence
performance. As shown in Figure 6, token-level
adaptive training can bring improvements in most
cases. In particular, it usually performs better with
smaller B and smaller S, leading to a boost of up
to 0.4 BLEU. We conclude that treating different
tokens too differently is also undesirable. We use
B =0.7and S = 0.05 for all translation directions.

(4) Does CRESS successfully reduce the per-
formance gap between ST and MT? As shown in
Table 3, our method not only brings improvements
to ST, but also gives a slight average boost of 0.3
BLEU to MT. We suggest that this may be due to
the effect of regularization. More importantly, we
find that the performance gap between ST and MT
for CRESS is significantly reduced compared to the
MTL baseline (6.0—5.0), which further demon-
strates that the improvement in ST is mainly due to
the effective reduction of the modality gap.

(5) Is CRESS more effective for longer sen-
tences? The autoregressive model generates the
translation step by step, making the translation of
long sentences more challenging. We divide the
MuST-C En—De dev set into several groups ac-
cording to the length of target sentences, and com-
pute the BLEU scores in each group separately, as
shown in Figure 7. We observe that CRESS achieve
significant improvements over the baseline in all
groups, especially for sentences longer than 45,
which shows the superiority of our method when
translating long sentences.

(6) How the decay parameter in scheduled

= MTL 3L0
=1 CRESS
30.01 19
29.0
28.4 28.3 28.3
2 28.0
w 11 1la
m 27.3
26.9 26.8 sl
1{2
26.0 1 557
25.3
24.0 ‘ ‘ ‘ ‘ ‘
(0,15] (15,301 (30,45] (45,60] (60,100]

Target Sentence Length

Figure 7: BLEU scores on MuST-C En—De dev set at
different target sentence lengths.

28.0. 27.9 28.0 27.9
27,07
w
-
o

26.1
26.0
25.0 :
5 10 15 20

u

Figure 8: BLEU scores on MuST-C En—De dev set
(expanded setting) with different p. Here token-level
adaptive training is not used for training.

sampling influence the performance? In sched-
uled sampling, the probability of selecting the
ground truth word p* keeps decreasing during train-
ing as the function in Equation (10). Here, the
hyper-parameter p is used to control the shape of
the function. As y increases, the probability p* de-
creases more slowly, and vice versa. We investigate
the impact of p in Figure 8, and find that (1) the
model performs worse when p* drops too quickly,
and (2) when p is within a reasonable range, there
is not much impact on the final BLEU score. We
use 1 = 15 in our experiments.

7 Related Work

End-to-end Speech Translation End-to-end
speech translation (Bérard et al., 2016; Weiss et al.,
2017) has shown great potential for overcoming
error propagation and reducing latency compared
to traditional cascaded ST systems (Salesky et al.,
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Models | Task BLEU
En—De En—Fr En—Es En—Ro En—Ru En—It En—Pt En—NI ‘ Avgt A
MTL ST 27.7 38.5 32.8 24.9 19.0 26.5 32.0 30.8 29.0 6.0
MT 33.5 46.6 38.3 30.9 22.1 33.0 38.6 36.7 35.0 ’
CRESS ST 29.4 40.1 33.2 26.4 19.7 27.6 33.6 323 30.3 5.0
MT 34.1 46.6 38.1 31.1 22.4 333 39.5 37.6 353 ’

Table 3: BLEU scores of both ST and MT on MuST-C tst-COMMON set (expanded setting). A indicates the average

gap in BLEU between ST and MT.

2019; Di Gangi et al., 2019c,b; Bahar et al., 2019a).
One challenge in training end-to-end ST models is
the scarcity of ST data. To address this problem, re-
searchers employed MT data to help training with
techniques like pre-training (Bansal et al., 2019;
Stoian et al., 2020; Wang et al., 2020b,c; Aline-
jad and Sarkar, 2020; Le et al., 2021; Dong et al.,
2021a; Zheng et al., 2021; Xu et al., 2021a; Tang
et al., 2022), multi-task learning (Le et al., 2020;
Dong et al., 2021b; Ye et al., 2021; Tang et al.,
2021a,b; Indurthi et al., 2021), knowledge distilla-
tion (Liu et al., 2019; Inaguma et al., 2021), and
data augmentation (Jia et al., 2019; Bahar et al.,
2019b; Lam et al., 2022; Fang and Feng, 2023).
However, due to the modality gap between speech
and text, it is still difficult to fully exploit MT data
with the above techniques. To overcome the modal-
ity gap, Han et al. (2021) projects features of both
speech and text into a shared semantic space. Fang
et al. (2022); Zhou et al. (2023) mixes up features
of speech and text to learn similar representations
for them. Ye et al. (2022) brings sentence-level
representations closer with contrastive learning.
Bapna et al. (2021, 2022); Chen et al. (2022); Tang
et al. (2022); Zhang et al. (2022b) jointly train on
speech and text and design methods to align two
modalities. Different from previous work, in this
work, we understand the modality gap from the
target-side representation differences, and show
its connection to exposure bias. Based on this,
we propose the Cross-modal Regularization with
Scheduled Sampling (CRESS) method to bridge
the modality gap.

Exposure Bias Exposure bias indicates the dis-
crepancy between training and inference. Several
approaches employ Reinforcement Learning (RL)
(Ranzato et al., 2016; Shen et al., 2016; Bahdanau
et al., 2017) instead of Maximum Likelihood Esti-
mation (MLE) to avoid this problem. However, Wu
et al. (2018) shows that RL-based training is unsta-

ble due to the high variance of gradient estimation.
An alternative and simpler approach is scheduled
sampling (Bengio et al., 2015), which samples be-
tween ground truth words and self-generated words
with a changing probability. Zhang et al. (2019) ex-
tends it with Gumbel noise for more robust training.
In this paper, we adopt this approach to approxi-
mate the inference mode due to its training stability
and low training cost.

Output Regularization for MT Regularization
in the output space has proved useful for MT. Liang
et al. (2021) proposes to regularize the output pre-
dictions of two sub-models sampled by dropout.
Guo et al. (2022) regularizes the output predictions
of models before and after input perturbation. In
this paper, we regularize the output predictions
across modalities, which encourages more consis-
tent predictions for ST and MT.

Token-level Adaptive Training Token-level
adaptive training for MT is first proposed in Gu
et al. (2020), which assigns larger weights to low-
frequency words to prevent them from being ig-
nored. Xu et al. (2021b); Zhang et al. (2022a)
computes the weight with bilingual mutual infor-
mation. In this paper, we compute the weights with
the modality gap between ST and MT.

8 Conclusion

In this paper, we propose a simple yet effective
method CRESS to regularize the model predictions
of ST and MT, whose target-side contexts contain
both ground truth words and self-generated words
with scheduled sampling. Based on this, we further
propose a token-level adaptive training method to
handle difficult cases. Our method achieves promis-
ing results on MuST-C benchmark. Further analy-
sis shows that our method can effectively bridge the
modality gap and improve the translation quality,
especially for long sentences. In the future, we will
explore how to apply our method to other tasks.
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Limitations

Although our proposed method achieves promising
results and outperforms most baseline systems on
the ST benchmark, it still has some limitations: (1)
the performance of our method still lags behind
a recent work SpeechUT, although our approach
has the advantage of consuming less time and re-
sources; (2) we observe that the modality gap is
still not eliminated and the effect of exposure bias
on the modality gap still exists; (3) the performance
of our approach on larger datasets and larger mod-
els remains to be explored; (4) how to apply our
approach to other tasks also needs to be further
investigated.

Ethics Statement

In this paper, we present an effective method
CRESS for speech translation. While our model
achieves superior performance on the widely used
ST benchmark MuST-C, applying it directly to real
scenarios is still risky. This is due to the fact that
our training corpus only contains hundreds of hours
of audio recordings from TED talks, which is far
from covering all domains of the real world. Be-
sides, the datasets we used in this paper (MuST-C,
WMT, and OPUS-100) are all publicly available.
We also release the code implemented with a well-
known framework fairseq. These guarantee the
reproducibility of our work.
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A Statistics of all datasets

ST (MuST-C) External MT

En— | hours #sents name #sents
De 408 234K | WMTI16 3.9M
Fr 492 280K | WMT14 31.2M
Es 504 270K | WMT13 14.2M
Ro 432 240K | WMT16 0.6M
Ru 489 270K | WMTI16 1.9M
It 465 258K | OPUS100 0.7M
Pt 385 211K | OPUS100 0.7M
NI 442 253K | OPUS100 0.7M

Table 4: Statistics of all datasets. #sents refers to the
number of parallel sentence pairs.

B Impact of Different Acoustic Encoders

Our model is composed of an acoustic encoder and
a translation model. To investigate the impact of
different acoustic encoders, we also conduct exper-
iments using Wav2vec 2.0° (Baevski et al., 2020)
as the acoustic encoder. As shown in Table 5, we
find that (1) HuBERT performs slightly better than
Wav2vec 2.0 with an improvement of 0.5 BLEU,
and (2) our proposed CRESS achieves consistent
improvements with different acoustic encoders. In
practice, we use HuBERT to build our systems,
since we believe that developing on a strong base-
line will make our results more convincing and
demonstrate the robustness of our approach.

Acoustic Encoder ‘ MTL CRESS
HuBERT (Hsu et al., 2021) 27.5 294
Wav2vec 2.0 (Baevski et al., 2020) | 27.0 28.9

Table 5: BLEU scores on MuST-C En—De
tst-COMMON set (expanded setting) with different acous-
tic encoders.

C Results on CoVoST 2 En—De

We also conduct experiments on CoVoST 2 (Wang
et al., 2020a) to examine the performance of our
approach on large datasets. CoVoST 2 is a large-
scale multilingual speech translation corpus that
covers translations from 21 languages into English
and from English into 15 languages. It is one of the

9https ://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_small.pt

largest open ST datasets available currently. In this
paper, we evaluate our approach on the En—De
direction, which contains 430 hours of speech with
annotated transcriptions and translations. We use
dev set for validation and test set for evaluation.

We use the same pre-processing, model configu-
ration, and hyper-parameters as MuST-C (see de-
tails in Section 5.2). The results are shown in Table
6. First, we find our CRESS significantly outper-
forms the MTL baseline, with 1.8 BLEU improve-
ment in the base setting and 1.6 BLEU improve-
ment in the expanded setting, which demonstrates
the effectiveness and generalization capability of
our method across different datasets, especially
on the large-scale dataset. Second, our result is
competitive with previous methods, although they
use larger audio datasets (>60K hours) and larger
model size (>300M), while we only use 960 hours
of audio data and 155M model parameters.

D Discussion about the Training Speed

During training, our approach requires an addi-
tional forward pass to select predicted words com-
pared with the baseline, which will impair the train-
ing speed. Practically, we find the training time for
1 epoch of CRESS is 1.12 times longer than MTL,
which is actually negligible. This is because the
step of selecting predicted words is fully parallel
and has no gradient calculation, which does not
incur a significant time overhead.

E ChrF++ Scores on MuST-C Dataset

We also report ChrF++ score (Popovi¢, 2017) using
sacreBLEU toolkit!® on MuST-C dataset in Table
7. We observe that CRESS outperforms MTL with
1.4 ChrF++ improvement in the base setting and
1.0 ChrF++ improvement in the expanded setting.

sacreBLEU signature: nrefs:1 | bs:1000 | seed:12345 |
case:mixed | eff:yes | nc:6 | nw:0 | space:no | version:2.0.0
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Models ‘ Audio Datasets #Params BLEU

wav2vec-2.0 (LS-960) (Wang et al., 2021b) LS-960 300M 20.5
wav2vec-2.0 (LV-60K) (Wang et al., 2021b) LV-60K 300M 25.5
wav2vec-2.0 + Self-training (LV-60K) (Wang et al., 2021b) LV-60K 300M 27.1
LNA (Joint Training) (Li et al., 2021) LV-60K 1.05B 25.8
SLAM-TLM (Bapna et al., 2021) LV-60K 600M 27.5
XLS-R (0.3B) (Babu et al., 2022) VP-400K, MLS, CV, VL, BBL 317M 23.6
XLS-R (1B) (Babu et al., 2022) VP-400K, MLS, CV, VL, BBL | 965M 26.2
XLS-R (2B) (Babu et al., 2022) VP-400K, MLS, CV, VL, BBL | 2162M 28.3
MTL (base setting) LS-960 155M 21.4
CRESS (base setting) LS-960 155M 23.2 (+1.8)
MTL (expanded setting) LS-960 155M 25.1
CRESS (expanded setting) LS-960 155M | 26.7 (+1.6)

Table 6: BLEU scores on CoVoST 2 En—De test set. LS-960: LibriSpeech (Panayotov et al., 2015) (960 hours).
LV-60K: Libri-Light (Kahn et al., 2020) (60K hours). VP-400K: VoxPopuli (Wang et al., 2021a) (372K hours).
MLS: Multilingual LibriSpeech (Pratap et al., 2020) (50K hours). CV: CommonVoice (Ardila et al., 2020) (7K
hours). VL: VoxLingualO7 (Valk and Alumie, 2021) (6.6K hours). BBL: BABEL (Gales et al., 2014) (1K hours).

ChrF++

Models En—De En—Fr En—Es En—Ro En—Ru En—It En—Pt En—NI ‘ Avg.

Base setting (w/o external MT data)
MTL 524 60.4 56.4 50.9 41.7 52.6 57.3 56.1 53.5

CRESS | 54.0%*  62.0%* 57.6%*  52.4%*  43.1%* 53.8%* 5§58.5%* 5§7.6%* | 54.9

Expanded setting (w/ external MT data)
MTL 54.9 62.6 58.6 51.9 44.2 53.4 57.9 56.9 55.0

CRESS | 56.1%*  63.7%*  58.9%  53.1%* 44.5%  54.2%*% 59.3%*  58.3%* | 56.0

Table 7: ChrF++ scores on MuST-C tst-COMMON set. The external MT datasets are only used in the expanded
setting. * and ** mean the improvements over MTL baseline are statistically significant (p < 0.05 and p < 0.01,
respectively).
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