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Abstract

The ability of commonsense reasoning (CR)
decides whether a neural machine translation
(NMT) model can move beyond pattern recog-
nition. Despite the rapid advancement of NMT
and the use of pretraining to enhance NMT
models, research on CR in NMT is still in its in-
fancy, leaving much to be explored in terms of
effectively training NMT models with high CR
abilities and devising accurate automatic evalu-
ation metrics. This paper presents a comprehen-
sive study aimed at expanding the understand-
ing of CR in NMT. For the training, we confirm
the effectiveness of incorporating pretrained
knowledge into NMT models and subsequently
utilizing these models as robust testbeds for
investigating CR in NMT. For the evaluation,
we propose a novel entity-aware evaluation
method that takes into account both the NMT
candidate and important entities in the candi-
date, which is more aligned with human judge-
ment. Based on the strong testbed and evalua-
tion methods, we identify challenges in train-
ing NMT models with high CR abilities and
suggest directions for further unlabeled data
utilization and model design. We hope that our
methods and findings will contribute to advanc-
ing the research of CR in NMT. Source data,
code and scripts are freely available at https:
//github.com/YutongWang1216/CR-NMT.

1 Introduction

Commonsense reasoning (CR; Davis and Marcus,
2015) is the ability to understand and navigate the
world using basic knowledge and understanding
that is shared by most people. In the context of
neural machine translation (NMT; Bahdanau et al.,
2015; Vaswani et al., 2017; Liu et al., 2019, 2020a),
CR is important because it allows the model to
move beyond simply recognizing patterns in the
data and instead make more informed, nuanced
translations. Recent studies have witnessed the
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Contextless Syntactic Ambiguity

SRC 3K A/Hunting &Z/is 7& A/hunter -
REF The hunter is hunting .

NMT The hunter was captured .

PT-NMT It was the hunter who caught it .

Contextual Syntactic Ambiguity

SRC FA/surgery FFJ)H/operated SE/is 2 ¥ /his
father, H/because 15 5% /his father 15 T &
Jifi/get serious illness »

REF It was his father who underwent surgery, because
his father was seriously ill.

NMT The operation was performed by his father, who
was seriously ill.

PT-NMT The operation was performed on his father, who
was seriously ill.

Lexical Ambiguity

"SRC  ZHschool BiE /mandates 2 /students F2/go

to school E/must T5/carry F3fl/school bag -

REF The school requires students to carry school bags.

NMT Schools require students to recite school bags.

PT-NMT The school requires students to carry their school-

bags at school.

Table 1: Translations of vanilla NMT and pretraining-
based NMT (PT-NMT). Highlights denote the parts
requiring commonsense knowledge for accurate transla-
tion. PT-NMT performs well in addressing both syntac-
tic and lexical ambiguities.

great success of adapting self-supervised pretrain-
ing to downstream language understanding and
generation tasks (Devlin et al., 2019; Song et al.,
2019; Floridi and Chiriatti, 2020; Ouyang et al.,
2022), and one of the major ingredients is the abun-
dant commonsense knowledge embedded in the
pretrained models (Zhou et al., 2020; Tamborrino
et al., 2020). As recent studies have been study-
ing pretraining-based neural machine translation
(PT-NMT) for model improvement (Conneau et al.,
2020; Liu et al., 2020b), a thorough understanding
of its CR ability helps to better explain the improve-
ment and beyond.

Despite some attempts to understand CR abil-
ity of NMT from various perspectives (e.g., word
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sense disambiguation (Rios Gonzales et al., 2017)
and pronoun resolution (Davis, 2016)), only a
few studies systematically examine the ability of
NMT (He et al., 2020). Furthermore, the evaluation
of CR ability of NMT is under-investigated. Cur-
rent evaluation methods for CR in NMT models
rely on contrastive evaluation techniques (Sennrich,
2017), which do not take into account the NMT can-
didates, resulting in suboptimal evaluation perfor-
mance. These make it difficult to conduct research
on CR in NMT. Despite the difficulties, this paper
aims to provide a systematic study of CR in NMT.

Training (§3) We investigate the potential ben-
efits of utilizing pretrained knowledge for NMT
training. We evaluate CR accuracy of PT-NMT
on a CR testset using both human and automatic
evaluation, and find that pretrained knowledge can
indeed assist the downstream NMT model in mak-
ing commonsensible predictions. Examples of the
translation are provided in Table 1.

Evaluation (§4&5) Based on the strong testbed
PT-NMT, we introduce how to conduct a more
rigorous evaluation of CR in NMT, which is the
prerequisite for conducting related research such
as improving CR ability of NMT. We discuss the
limitation of the existing evaluation method (He
etal., 2020), and reveal the necessity of considering
NMT candidates in evaluating CR ability of NMT.
Furthermore, we propose a novel entity-aware auto-
matic evaluation method, which takes into account
the importance of certain words in the translation
candidates that require commonsense knowledge
to be translated accurately.

Challenge (§6) Our findings indicate that the
arbitrary integration of extra knowledge, such as
forward-translation (FT; Zhang and Zong, 2016)
and back-translation (BT; Sennrich et al., 2016)
does not always lead to an improvement in CR
ability of NMT models and may even introduce
negative effects. To address this challenge, we sug-
gest potential research directions, including the en-
hancement of NMT encoder and the better utiliza-
tion of target monolingual data. We also conduct a
preliminary experiment to validate this hypothesis
and hope that our methods and findings will pro-
vide new insights into the field of CR in NMT and
inspire further advancements in this area.
Our main contributions are as follows:

* We demonstrate the effectiveness of incorpo-
rating pretrained knowledge into NMT mod-

els, and establish these models as robust
testbeds for investigating CR in NMT.

* We reveal the limitation of the existing eval-
uation method for CR in NMT, and propose
the use of candidate-aware metrics as a more
effective and reliable alternative.

* We propose a novel entity-aware evaluation
method, which is more aligned with human
judgment and provides a more reliable evalua-
tion of CR ability of NMT models.

* We identify challenges in improving CR abil-
ity of NMT, and suggest directions for fur-
ther research, e.g., utilizing target monolin-
gual data and enhancing the encoder module.

2 Background

Commonsense Reasoning Testset in NMT We
first provide a brief overview of the CR testset
investigated in He et al. (2020)!. Each instance
of the testset is a triple (x, y", y¢), where z stands
for a source sentence, and two English references
(i.e., a right one 3" and a contrastive one ) are
created for each source sentence with the intention
to demonstrate how different interpretations of an
ambiguity point would affect the translation results,
and therefore forming an instance as follows:

z FRWE & L EE B
y" The school requires students to carry school bags.

y¢ The school requires students to recite school bags.

where “recite” forms the ambiguous translation.
Three subsets of source sentences are created
according to three main categories: contextless
syntactic ambiguity (CL-SA) with 450 instances,
contextual syntactic ambiguity (CT-SA) with 350
instances, and lexical ambiguity (LA) with 400
instances. For more details, refer to Appendix A.1.

Automatic Evaluation of CR in NMT The
vanilla evaluation method proposed by Sennrich
(2017); He et al. (2020) evaluates CR accuracy of
NMT by comparing the prediction probability of a
right reference y” to that of its corresponding con-
trastive reference y°. If an NMT model assigns a
higher prediction score to the right reference than
to the contrastive one, the model is considered to

1https: //github.com/tjunlp-1lab/CommonMT
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Prob Human
Type
NMT PT-NMT NMT PT-NMT
CL_SA 67.1 711440 71.8 742194
CT_SA 563 594499 55.7 623146
LA 61.5 633118 62.5 65.5130
ALL 62.1 65.1430 64.0 67.81338

Table 2: CR accuracy measured by human evaluators
and automatic evaluation metrics. PT-NMT gets consis-
tently higher CR accuracy than NMT.

have made a commonsensible prediction. The final
CR accuracy is calculated over the whole testset:

1

1
ACCprop = f Z ]IPNMT(yiT\xi)>PNMT(yf\$i) (D
i=1
where I denotes the number of instances in the
testset. We name this evaluation as PROB in the fol-
lowing part. PROB is a widely-used metric to evalu-
ate contrastive evaluation of sequence-to-sequence
learning tasks (Vamvas and Sennrich, 2021a,b).

3 Commonsense Reasoning in PT-NMT

This section aims to answer the question of whether
the incorporation of pretrained knowledge can im-
prove CR ability of NMT models.

3.1 Setup

Experimental Data To make a fair comparison,
we follow He et al. (2020) to use the CWMT
Chinese-English corpus as the training set (about
9M)?. The validation set is newstest2019 and the
in-domain testset is newstest2020. We use the CR
testset mentioned in He et al. (2020) to evaluate CR
ability of NMT, and compare the performance of
existing automatic evaluation metrics. We use the
mBART tokenizer (Liu et al., 2020b) to directly to-
kenize the raw text and split the text into sub-words
for both Chinese and English.

Translation Models We mainly compare two
model types: vanilla and pretraining-based. For
NMT, we train it using the setting of the scale
Transformer (Ott et al., 2018) with large-batch
training of nearly 460K tokens per batch. This
setting of using large batch size helps to enhance
model training. One notable setting is that the
dropouts for hidden states/attention/relu are set to
0.3/0.1/0.1, and the training step is SOK. For PT-
NMT, we use the pretrained sequence-to-sequence

2http: //nlp.nju.edu.cn/cwmt-wmt

model mBART (Liu et al., 2020b)? as our testing
ground due to its high reliability and reproducibil-
ity (Tang et al., 2021; Liu et al., 2021b). All the
settings follow the mBART paper, except we use a
batch size of 32K and fine-tune the mBART model
on the CWMT corpus for 100K steps. The training
process of mBART takes more steps than that of
the vanilla transformer. The reason is that this pro-
cess can be seen as a fine-tuning process of a large
language model. A small learning rate is necessary
to achieve optimal learning performance, which
in turn makes the overall training process longer.
For both models, we select the checkpoint with the
lowest validation perplexity for model testing. The
beam size is 4 and the length ratio is 1.0.

3.2 Results

To start with, we compare the in-domain transla-
tion performance of the NMT and PT-NMT models.
The two models achieve comparable BLEU scores
of 25.9 and 26.2, respectively. These results are in
line with previous studies (Liu et al., 2020b), which
have shown that pretrained knowledge does not
lead to significant improvements in high-resource
settings. However, as our following human and au-
tomatic evaluations will show, there is a noticeable
difference in CR abilities of the two models.

Human Evaluation To evaluate the impact of
pretrained knowledge on CR ability of NMT mod-
els, we first conduct a human evaluation of the
NMT candidates of NMT and PT-NMT. The evalua-
tion involves two bilingual experts who are asked to
label whether an NMT candidate is commonsensi-
ble, with the assistance of the right and contrastive
references in the testset. In case of conflicting la-
bels provided by the two experts, they engage in a
discussion to arrive at a final decision on the appro-
priate label to be assigned.

PT-NMT Is Better in CR  Table 2 illustrates CR
accuracy of NMT and PT-NMT measured by human
and automatic evaluation. The results indicate that
PT-NMT achieves substantial enhancements in CR
compared to NMT across all the subsets. This sug-
gests that the knowledge obtained from large-scale
pretraining assists the downstream NMT model in
making commonsensible predictions.

3ht’cps: //github.com/pytorch/fairseq/blob/main/
examples/mbart/README . md
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Type  Metric NMT PT-NMT
XZ T « X2 T [e]

BLEU 1077 0430 1248 959 0413 1232

CL sa PROB 1156 0419 1381 795 0391 1219
-7 BLEURT 1156 0474 2173 1156 0431 161.2
BERTS. 1541 0.507 2525 158.6 0.486 225.9
”””” BLEU 841 0450 959 843 0468 1257
cr sa PROB 80.1 0401 845 564 0372 667
-7 BLEURT 1249 0498 1346 1017 0466 111.1
BERTS. 1138 0.501 178.7 129.8 0.500 154.0
”””” BLEU 908 0484 1297 860 0496 1245
LA PROB 1529 0502 189.6 1562 0485 173.0
BLEURT 204.0 0.568 3284 1825 0.571 347.0

BERTS. 1767 0535 278.5 1592 159.2 2574
”””” BLEU 28385 0458 3157 2745 0451 3294
AL, PROB 3513 0455 4140 2894 0429 3597
BLEURT 4453 0519 608.6 3965 0493 5498
BERTS. 4485 0.525 6919 4498 0.502 613.7

Table 3: Meta-evaluation of the sentence-level met-

rics. %2, 7 and « represents the chi-square test,

Kendall’s 7 and ANOVA, respectively. BERTS. denotes
BERTScore. All the p-values obtained are < 0.01.

4 Improving Automatic Evaluation of
Commonsense Reasoning

Based on the strong testbed of PT-NMT, in this
section, we re-examine the existing automatic eval-
uation methods, and further enhance the evaluation.

4.1 Candidate-Aware Metrics

Limitation of PROB We begin by discussing the
limitations of the existing metric PROB. We argue
that PROB is a suboptimal metric for evaluating CR
in NMT, as it ignores the most important and direct
aspect of NMT: the candidates. The fact that an
NMT model gives a high prediction score to the
right reference does not guarantee that it will pro-
duce a commonsensible candidate, due to the bias
or errors of the NMT search algorithm (Stahlberg
and Byrne, 2019). A more suitable approach for
evaluating CR would be to consider the NMT can-
didate ¢/ as part of the evaluation process, to align
it more closely with human judgement.

CR Accuracy Calculation To achieve this goal,
we propose to evaluate CR prediction by directly
comparing the similarities between a candidate and
a pair of right and contrastive references. If the
NMT candidate is more similar to the right refer-
ence than the corresponding contrastive one (i.e.,
sim(y",y") > sim(y°,y)), the NMT model is con-
sidered to have made a correct prediction.

We choose three representative automatic met-
rics (i.e., the sim(-) function) for calculating
the similarity: the most widely-used BLEU (Pa-

pineni et al., 2002) and the two powerful PT-
based metrics BLEURT (Sellam et al., 2020) and
BERTSCORE (Zhang et al., 2020). The final accu-
racy is a statistic of the whole testset. For example,
the CR accuracy of BLEU is:

I
1
ACCgry = 7 Z IsLEU@r v)>BLEUGSy)  (2)
=1

where I denotes the number of instances in the
testset. Similar equations are used for BLEURT and
BERTSCORE. We believe that these metrics can
better reflect CR ability of an NMT model as they
take into account the NMT candidates, which is
a critical aspect of NMT. Appendix A.2 gives CR
accuracy of each metric in NMT and PT-NMT.

4.2 Meta-Evaluation

Settings The above human evaluation enables the
meta-evaluation of the metric performance in evalu-
ating CR ability. We conduct chi-square tests, anal-
ysis of variance (ANOVA) and calculate Kendall
rank correlation coefficients (Kendall’s 7) between
labels given by human evaluators and evaluation
results of each metric. (1) In the chi-square test,
we aim to determine the presence of a significant
association between labels assigned by human eval-
uators and those predicted by our metrics. We use
a binary classification approach, by comparing the
scores of the right references against those of the
contrastive references. Examples with a higher
score on the right side are classified as positive,
while those with an equal or lower score on the
right side are classified as negative. We then con-
struct contingency tables using the human labels
and the predicted labels and conduct the chi-square
test on these tables to determine the significance
of the association between the two sets of labels.
(2) In the ANOVA and Kendall’s 7, we treat the
difference in scores between the two sides as a
continuous feature and the human labels as a cat-
egorical variable, where positive is represented as
1 and negative as 0. The ANOVA and Kendall’s 7
tests aim to determine if there is a strong correlation
between the feature and the category. For Kendall’s
7, we calculate the T, statistic which makes adjust-
ments for tied pairs in the data. All the test results
are reported in a way that a higher value indicates
a stronger correlation to human judgement.

BERTSCORE Wins The results are shown in Ta-
ble 3. BLEU underperforms the other metrics since
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z 2i/When Hb E/earthquake 7%ifi/hit H Z%/Japan K,
& B K/ assisting f&/is H[E/China -

3

Y When the earthquake hit Japan, China has assisted .
e’ {assisted}

y° When the earthquake hit Japan, China was aided .
e {aided}

Table 4: Examples of commonsense entities in the test-
set. Highlights denote the ambiguous points, of which
the meanings decide the correctness of the translations.

its design principle is at the corpus-level instead of
the sentence-level, besides it fails to handle seman-
tic and syntactic variants. Encouragingly, the two
PT-based candidate-aware metrics BLEURT and
BERTSCORE consistently achieve better correla-
tions than the widely-used metric PROB. The abun-
dant commonsense knowledge embedded in pre-
trained language models helps them to judge cor-
rectly. This observation confirms our assumption
that CR evaluation can benefit from being aware
of the NMT candidates. Overall, the results of the
ALL testset indicate that BERTSCORE achieves
superior performance in comparison to BLEURT
in terms of correlation. However, the undesired
performance of BERTSCORE in the LA testset
motivates us to further investigate the automatic
evaluation metrics for CR in NMT.

5 Entity-Aware BERTSCORE

In this section, we will further investigate
BERTSCORE and propose a novel method for en-
hancing its correlation to human judgement by in-
troducing the commonsense entity in CR of NMT.

5.1 Method

Commonsense Entity Upon examination of the
instances in the CR testset, as depicted in Table 4,
it is evident that the majority of the differences be-
tween the right and contrastive references are minor.
These variations often pertain to the ambiguous el-
ements in the source sentence, which play a crucial
role in determining the commonsense nature of a
translation generated by an NMT model. To en-
hance the correlation of BERTSCORE with human
judgement, we propose to increase the weight of
these elements during the calculation of the metric
by leveraging their significance in the evaluation
of commonsense in translations. We define these
elements as commonsense entities.* The sets of

*We exclude stopwords and punctuation from our defini-
tion of commonsense entities.

commonsense entities in the right and contrastive
references are defined as follows:

e"={tltey" ANt ¢y} 3)
e“={tlt ¢ y" Nt €y} “4)

where y" and y° indicate the right and contrastive
references of the source sentence x;, respectively.
Specifically, the commonsense entities in the right
set are the words that only appear in the right refer-
ence. Similarly, the contrastive set contains words
that only appear in the contrastive reference.

Integrating Weight into BERTScore We first

briefly introduce the original BERTScore:

1
= — ) max d(t,t) (5)
| tey LY

SperT(Y,Y')
where y and y’ represent the reference and NMT
candidate, respectively, and d(¢,t') denotes pair-
wise similarity between word embeddings of ¢ and
t’. In this original method, every word in the refer-
ence sentence is given equal weight while calculat-
ing the average similarity score, without consider-
ing the crucial words related to ambiguous points
(i.e., commonsense entities).

To address this limitation, we propose the entity-
aware BERTSCORE. For the score between the
right reference and NMT candidate, the right com-
monsense entities are assigned a greater weight:
ey m(t) maxd(t, t')

EtEyT m(t)

where m(t) represents the score weight for word
t. Ift € ", m(t) is set to a value greater than
1, otherwise it is set to 1. This approach ensures
that candidates that can accurately translate com-
monsense entities will receive a higher score on the
right side. Similarly, for the score calculated on the
contrastive reference, if ¢ € e, the weight m(t) is
also set to a value greater than 1. Candidates that
translate commonsense entities incorrectly will also
receive a higher score on the contrastive side.

(6)

SentBERT (YY) =

Calculation Filtering In certain instances of the
testset, the right and contrastive reference may
have different syntactic structures or wording, even
though they convey similar meanings. This issue
can lead to a large number of words in both com-
monsense entity sets, many of which may not be
directly related to the ambiguous point in the cur-
rent instance. To address this, we propose to only
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Figure 1: Chi-square test results y? between labels given by human evaluators and predicted by BERTSCORE when
commonsense entities are assigned different weights. The original BERTScore can be seen as setting A = 1 that the

weights of all words are treated equally.

apply commonsense entity weights on those sen-
tences whose commonsense entity set contains no
more than 3 words. This approach helps filter out
sentences for which our proposed metric may not
be suitable and also avoids assigning unnecessary
weight to unrelated words.

5.2 Correlations with Human Judgments

Settings To determine the optimal weight for
commonsense entities, we conduct experiments
on the testset, varying the weight from 1 to 1.5.
For each weight, we calculate the corresponding
BERTSCORE between the candidates and refer-
ences and then determine the predicted labels by
comparing the scores for the right and contrastive
references. We then perform a chi-square test on
these predicted labels human labels. The baseline
for this experiment is a commonsense entity weight
of 1.0, where all words in the candidates are treated
equally without considering their importance.

Results The results are shown in Figure 1. It
is observed that by increasing the commonsense
entity weight from 1.0, there is an overall improve-
ment in the performance of evaluating CR abilities
of NMT and PT-NMT. The performance reaches
its peak when the weight is around 1.4. As a result,
1.4 is set as the weight for commonsense entities,
and 1 is for other trivial words. The entity-aware
BERTSCORE on the contrastive side is calculated
in a similar manner, only replacing the right com-
monsense entity set e” with the contrastive com-
monsense entity set e. The results validate the ef-
fectiveness of our method. Based on these results,
in the following part, we mainly use the entity-
aware BERTScore with A = 1.4 as the default
automatic evaluation metric for CR in NMT.

6 Challenge in Commonsense Reasoning

The above results sufficiently validate the positive
impact of CR ability brought by pretraining. In

ENMT s NMT+FT NMT+BT sPT-NMT

Accuracy (%)

50 L MET S
CL_SA

i

CT SA

LA

e

All

Figure 2: CR accuracy of combining NMT with FT and
BT. Both variants underperform NMT and PT-NMT.

this section, we prob the use of unlabeled data to
improve NMT performance, with a focus on deter-
mining their impact on CR ability and identifying
potential areas for improvement.

6.1 Probing of Monolingual Data Utilization

This experiment aims to study the research ques-
tion: How do the additionally learned monolingual
(unlabeled) data impact CR ability? We compare
the results of mainstream data augmentation meth-
ods: forward-translation (FT) and back-translation
(BT), making use of source and target monolin-
gual data respectively. In general, the process of
incorporating monolingual data for NMT training
involves translating source monolingual data into
the target language (i.e., FT) and back-translating
target monolingual data (i.e., BT). This synthetic
data is then combined with the original bilingual
data for training the NMT model.

Setup and In-domain BLEU All the synthetic
data is generated by vanilla NMT. We do not utilize
PT-NMT to avoid mitigating any potential biases
that may be introduced from pretrained knowledge.
The FT data is generated by NMT using the samples
from the combination of WMT19 and WMT20 Chi-
nese News monolingual data. The BT data is gen-
erated by a reversed NMT using the samples from
WMT16 English News monolingual data. The
sampling ratio to the original training data is 1:1.
The text preprocessing and model training keep
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Testset NMT

PT-NMT

Vanilla +FT +BT Vanilla +FT +BT +TagBT +LAttn

In-domain 25.9 26.7 264

262 268 268 26.8 26.5

Table 5: BLEU scores of the trained NMT models on the in-domain newstest2020 testset. Combining NMT and
PT-NMT with the other methods can gain in-domain model improvements.

®NMT ®PT-NMT+FT = PT-NMT+BT = PT-NMT

75 -
o lallE -
65 —E .. .
60 L

55 1. :
50 -

Accuracy (%)

/////%////%

CLSA CT.SA LA All
Figure 3: CR accuracy of combining PT-NMT with
FT and BT. Combining PT-NMT with BT improves

the accuracy of syntactic ambiguity but decreases the
accuracy of lexical ambiguity.

unchanged. The in-domain BLEU scores of the
models in the following sections are shown in Ta-
ble 5. Overall, combining NMT and PT-NMT with
the other data augmentation methods can gain in-
domain improvement, but their CR abilities show
large differences, further accentuating the necessity
of broadening the understanding.

PT-NMT vs. FT and BT Figure 2 shows that
solely using FT and BT underperform NMT and
PT-NMT. One possible reason is the unexpected
noises/errors during the generation of synthetic
data, hindering the model from learning common-
sense knowledge. Differently, pretraining utilizes
monolingual data in an end-to-end manner, allevi-
ating the risk of error propagation and thus bring-
ing more benefits to the CR ability. Pretraining
is superior to other data augmentation methods in
enhancing CR ability of NMT.

PT-NMT with FT and BT PT-NMT has learned
abundant semantic and syntactic knowledge during
pretraining, which is competent to learn synthetic
data. This experiment investigates the effect of
combing PT-NMT with FT and BT, as shown in
Figure 3. (1) When combining PT-NMT with FT,
we observe that the model fails to demonstrate any
improvement in all cases. One potential expla-
nation for this is that FT primarily enhances the
understanding of source sentences, as per previous
research, whereas PT also primarily improves the
understanding of source sentences, as reported in
Liu et al. (2021a). This implies that these two meth-

uNMT & PT-NMT+Fusion » PT-NMT+TagBT s PT-NMT

75 -

SEIEET] | § T —— -
3 65 +- § . § § ,,,,,,
S 60 LB § . \ 8. §
< 5 . L

CLSA CT.SA LA All

Figure 4: CR accuracy of preliminary validation. Both
enhancements of the encoder module (+Fusion) and tar-
get monolingual data utilization (+TagBT) can improve
CR accuracy of PT-NMT.

ods may not be complementary in nature. (2) When
combining PT-NMT with BT, the model gains satis-
factory improvements on the two syntactic ambigu-
ity testsets, indicating that target data contributes
to overcoming such ambiguities. The pity is the de-
creased performance in LA, but this is reasonable
since the BT process indeed hurts the lexical di-
versity of source data (Nguyen and Chiang, 2018),
leading to noisy signals that worsen the learning of
source features. Overall, combining PT-NMT with
BT helps alleviate syntactic ambiguity but worsens
the ability to address lexical ambiguity.

6.2 Potential Directions

This part provides a preliminary study to validate
the above findings. The scope of this paper is not to
exhaustively explore the entire space, but to demon-
strate that the findings are convincing and can guide
future studies related to CR in NMT.

Encoder Module Enhancement The encoder
module can play a greater role in improving CR
of NMT. PT mainly improves the encoder module
of NMT and has shown consistent improvement.
Therefore, if we continue to leverage the encoder
module, for example, by augmenting it with other
types of knowledge or further enhancing its en-
coding ability, CR ability of NMT should also be
improved. This is supported by previous studies in
the area of word sense disambiguation (Tang et al.,
2019), which also highlights the importance of en-
hancing the encoder module (Liu et al., 2021c).
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Preliminary Validation: we further evaluate the
effectiveness of a simple and effective encoder
layer fusion method (Bapna et al., 2018) that aims
to improve the learning of source representations.
Specifically, this method differs from the vanilla
NMT approach, which connects each decoder layer
only to the topmost encoder layer, by allowing
each decoder layer to extract features from all en-
coder layers, including the encoder embedding
layer. This strengthens the model ability to learn
and utilize encoder features. The results in Figure 4
show that this simple method can improve the over-
all CR ability, which confirms the effectiveness of
this method in improving the encoder. It is likely
that incorporating additional useful knowledge may
yield even more significant benefits (Wang et al.,
2022b; Li et al., 2022).

Utilization of Target Monolingual Data Previ-
ous sections have shown that combing PT-NMT
with BT brings both positive and negative impacts
on the CR ability, and one of the possible reasons
for the negatives is that the source-side BT data
contains too many noises and lower lexical rich-
ness. Since BT is a popular line of research in
NMT, digging it more in the future might bring an
efficient improvement of CR in NMT.
Preliminary Validation: we improve BT by
adding a tag to the BT data (TagBT; Caswell et al.,
2019) to make the model can selectively learn more
syntactic knowledge and less lexical knowledge
from the BT data. Figure 4 shows that the result
of this simple method meets our expectation that
the CR ability of each type has been strengthened,
especially the ability to solve lexical ambiguity.

7 Related Work

7.1 Pretraining in NMT

Pretraining learns abundant syntactic and semantic
knowledge from large-scale unlabeled data, which
has been sufficiently validated to be useful for var-
ious downstream tasks (Peters et al., 2018; Rad-
ford et al., 2018; Devlin et al., 2019). This kind of
knowledge can also boost the performance of NMT,
especially for those translation directions whose la-
beled data (i.e., parallel corpus) are scarce.

The first research line investigates how to bet-
ter model the interdependency between knowledge
embedded in pretrained models and NMT mod-
els, such as introducing downstream task-aware: 1)
pretraining architectures (Song et al., 2019; Con-

neau et al., 2020; Lewis et al., 2020b,a); 2) pre-
training strategies (Liu et al., 2020b; Yang et al.,
2020b; Lin et al., 2020; Ren et al., 2021; Sadeq
et al., 2022; Wang et al., 2022a); and 3) knowledge
extractors (Yang et al., 2020a; Zhu et al., 2020).
These studies continuously strengthen the useful
pretrained knowledge for NMT models.

Previous studies have attempted to understand
the improvements in NMT models resulting from
pre-training. Understandings at the model level
investigate the contribution of different NMT mod-
ules to the improvement (Rothe et al., 2020;
Cooper Stickland et al., 2021; Gheini et al., 2021).
Insights at the data level compare pretraining with
BT and find that pretraining is a nice complement
to BT (Liu et al., 2021a; Huang et al., 2021; Deng
et al., 2022). Liu et al. (2021b) explore the copying
ability of vanilla NMT and PT-NMT, and reveal
the importance of understanding model ability. Our
work builds on this research by providing a system-
atic examination of CR ability of NMT and propos-
ing potential directions for further enhancement.

7.2 Commonsense Reasoning in NMT

CR is an important task for NLP, whose design
principle is investigating whether a model goes be-
yond pattern recognition or not. Translation models
equipped with commonsense are expected to bet-
ter deal with word sense disambiguation (WSD),
complex linguistic structures, and other challeng-
ing translation tasks (Bar-Hillel, 1960). WSD is a
major source of translation errors in NMT, and the
solution of which relies heavily on the model abil-
ity of context understanding or CR. Rios Gonzales
et al. (2017) introduce a testset for WSD, and Rios
et al. (2018) enhance the testset and propose a
novel semi-automatic human evaluation. Tang et al.
(2019) find that the NMT encoder is highly relevant
to the ability of WSD. Emelin et al. (2020) attribute
the unsatisfactory WSD performance to not only
model learning but also the data bias of the training
set. Additionally, pronoun resolution in sentences
with complex linguistic structures is another task
of CR (Levesque et al., 2012). Davis (2016) in-
troduce how to evaluate pronoun resolution in MT
and explains the difficulty in its evaluation.

While previous works mainly focus on studying
one specific type of CR, He et al. (2020) introduce
a customized benchmark covering the above types
to directly evaluate CR ability of NMT. Based on
this benchmark, Huang et al. (2021) observe the
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CR ability enhancement by utlizing PT knowledge.
However, the internal cause of the improvement is
still unclear and the evaluation part of CR in NMT
can be further improved. In the presenting paper,
we provide rational explanations for the improve-
ment based on evaluation and probing methods,
which can inform the development of future trans-
lation systems with stronger CR capabilities.

8 Conculsion

This paper expands on the understanding of com-
monsense reasoning in NMT. We confirm the supe-
rior commonsense reasoning ability of pre-training
enhanced NMT models through both automatic and
human evaluations. We introduce a novel entity-
aware evaluation metric that takes into account the
NMT candidates to alleviate the limitations of ex-
isting metrics. Based on the enhanced evaluation
metric, we identify the challenges and potential
research directions for further enhancing the com-
monsense reasoning ability of NMT, including the
further enhancement of the encoder module and
utilization of target monolingual data.

Limitations

Research on commonsense requires a good under-
standing of bilingual knowledge. While this arti-
cle focuses on evaluating commonsense reasoning
ability of vanilla NMT and pretraining-based NMT
models on a Chinese-English testset, testing com-
monsense reasoning ability on more language pairs
would provide a more comprehensive understand-
ing of the commonsense reasoning ability of NMT
models, to further enhance the research of com-
monsense reasoning in NMT.
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Contextless Syntactic Ambiguity (CL-SA; 450 Instances)

Source IR/ Hunting /2/is 75 A/hunter o
Right The hunter is hunting .
Contrast The hunter is hunted .

Contextual Syntactic Ambiguity (CT-SA; 350 Instances)

Source  FAR/surgery FFJ]f/operated &/is fih L ¥ /his
father, H/because 5 /his father 15 T &
Jpi/get serious illness o

Right It was his father who underwent surgery, because
his father was seriously ill.

Contrast It was his father operated the surgery, because his

father was seriously ill.

Lexical Ambiguity (LA; 400 Instances)

Source 2£H/school FLAE /mandates %4 /students _F2%/go
to school E/must F/carry 5 f/school bag -

Right The school requires students to carry school bags.

Contrast The school requires students to recite school bags.

Table 6: Examples of the three kinds of ambiguities
on the commonsense reasoning testset. Highlights de-
notes the ambiguity part requiring commonsense knowl-
edge for accurate translation.

A Appendix

A.1 Commonsense Reasoning Testset

He et al. (2020) construct a testset for test-
ing the commonsense reasoning in automatic
Chinese=English translation task, and the three
rules by which the testset is constructed are as fol-
lows: 1) Target candidates are intended to be tested
since the commonsense knowledge of NMT will be
in this case more identifiable; 2) The testset covers
three types of ambiguity point, which are context-
less syntactic ambiguity (CL_SA), contextual syn-
tactic ambiguity (CT_SA), and lexical ambiguity
(LA); 3) Two English translations are created for
each source sentence with the intention to demon-
strate how different interpretations of the ambiguity
point would affect the translation results. The con-
struction of these test instances is based on the true
cases that might cause ambiguities in Chinese and
English. The polysemous words contained in the
LA set are chosen from a Chinese polysemy dictio-
nary (Yuan, 2001). As for the CT_SA and CL_SA
subsets, the test instances are based on adopted
12 Chinese structures (Feng et al., 1995) that may
result in ambiguities in English.

Table 6 shows some examples of the testset.
Each English translation that correctly rendered the
Chinese source sentence is combined with a con-
trastive (incorrect) translation to form a test sample.
Specifically, the first source sentence, which is re-
trieved from the testset of CL_SA, requires the

NMT

Type

Human BLEU PROB BLEURT BERTS.
CL_SA 71.8 59.6 67.1 67.1 71.3
CT_SA 55.7 494 56.3 53.4 57.4
LA 62.5 48.8 61.5 65.8 69.5
ALL 64.0 53.0 62.1 62.7 66.7

PT-NMT

Human BLEU PROB BLEURT BERTS.
CL_SA 74.2 63.6 71.1 67.8 73.1
CT_SA 62.3 49.7 59.4 57.7 58.3
LA 65.5 51.5 63.3 67.5 72.3
ALL 67.8 55.5 65.1 64.8 68.5

Table 7: Commonsense reasoning accuracy measured
by different metrics. PT-NMT gets higher commonsense
reasoning accuracy than NMT.

NMT to possess commonsense knowledge about
the relation between “hunter” and “prey”. In the
CT_SA, to understand the semantic relation be-
tween “operation” and “his father”, the model has
to know the commonsense knowledge that an ill
person needs surgery from the sentence context.
And in the last LA set, the source sentence and
the translations are constructed on the basis of dif-
ferent interpretations of the polysemy like “H (to
recite/to carry on one’s back)”, where the model
needs commonsense knowledge to know “school
bag” is used for carrying.

A.2 Commonsense Reasoning Accuracy

In addition to the human evaluation and model
probability evaluation shown in Table 2, more met-
rics of evaluating commonsense reasoning accu-
racy and their corresponding results can be found
in Table 7. It can be seen that the pretrained NMT
model (PT-NMT) outperforms the vanilla NMT
model across all given metrics and subsets in terms
of commonsense reasoning. This suggests that PT-
NMT demonstrates a significant improvement in
commonsense reasoning ability compared to NMT.
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