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Abstract

Multimodal Emotion Recognition in Multi-
party Conversations (MERMC) has recently at-
tracted considerable attention. Due to the com-
plexity of visual scenes in multi-party conver-
sations, most previous MERMC studies mainly
focus on text and audio modalities while ignor-
ing visual information. Recently, several works
proposed to extract face sequences as visual
features and have shown the importance of vi-
sual information in MERMC. However, given
an utterance, the face sequence extracted by
previous methods may contain multiple peo-
ple’s faces, which will inevitably introduce
noise to the emotion prediction of the real
speaker. To tackle this issue, we propose a
two-stage framework named Facial expression-
aware Multimodal Multi-Task learning (Fa-
cialMMT). Specifically, a pipeline method is
first designed to extract the face sequence of the
real speaker of each utterance, which consists
of multimodal face recognition, unsupervised
face clustering, and face matching. With the
extracted face sequences, we propose a multi-
modal facial expression-aware emotion recog-
nition model, which leverages the frame-level
facial emotion distributions to help improve
utterance-level emotion recognition based on
multi-task learning. Experiments demonstrate
the effectiveness of the proposed FacialMMT
framework on the benchmark MELD dataset.
The source code is publicly released at https:
//github.com/NUSTM/FacialMMT.

1 Introduction

Multimodal Emotion Recognition in Multi-party
Conversations (MERMC) is a challenging task in
the field of multimodal research. The complexity of
the task arises from the dynamic and spontaneous
nature of human communication in multi-party con-
versations, which often involves multiple people
expressing a variety of emotions simultaneously.
In this task, the use of multiple modalities (e.g.,

∗Corresponding authors.

Methods #Col #Seg #Rec

MELD (Poria et al., 2019) ✗ ✗ ✗
UniMSE (Hu et al., 2022b) ✗ ✗ ✗
MMGCN (Hu et al., 2021) ✓ ✗ ✗
MESM (Dai et al., 2021) ✓ ✗ ✗
M3ED (Zhao et al., 2022b) ✓ ✗ ✗

FacialMMT (Ours) ✓ ✓ ✓

Table 1: Comparison between different models for face se-
quence extraction in the MERMC task. #Col represents col-
lection of all possible speakers’ face sequences; #Seg rep-
resents speaker segmentation, aiming to distinguish speaker
sequences; #Rec represents speaker recognition, aiming to
identify the real speaker.

text, audio, and vision) is essential as it allows for
a more comprehensive understanding of the emo-
tions being expressed. Among different modalities,
visual information usually plays a crucial role as it
often provides direct clues for emotion prediction.
For example, in Figure 1, without the information
from the visual modality, it is hard to determine the
anger emotion of the real speaker, i.e., Chandler.

In the literature, most previous MERMC stud-
ies primarily focus on the text and audio modal-
ities (Poria et al., 2019; Liang et al., 2020; Mao
et al., 2021; Chen et al., 2021), because the visual
context in MERMC often involves many people
and complex environmental scenes, which may
bring much noise to emotion recognition of the
real speaker. Owing to the indispensable role of
visual modalities, a number of studies explored the
potential of visual information in MERMC (Mai
et al., 2019; Wang et al., 2022a; Li et al., 2022b; Hu
et al., 2022a), which employ 3D-CNNs (Ji et al.,
2010; Tran et al., 2015) to extract video features
and model the interaction and dependency between
consecutive video frames. However, the visual in-
formation extracted by these methods still contains
much noise from environmental scenes.

To alleviate the visual noise from environmen-
tal scenes, several recent studies (Dai et al., 2021;
Liang et al., 2021; Hu et al., 2021; Zhao et al.,
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Figure 1: An example of MERMC task where an utterance contains two individuals with different facial expressions.
One (Joey on the left side of the frame) expresses disgust, while the other (Chandler on the right side of the frame)
expresses anger, and the latter is the real speaker whose emotion is annotated as the emotion of the utterance.

2022b) propose to detect all the faces in an ut-
terance based on face detection tools such as
MTCNN (Zhang et al., 2016), OpenFace (Bal-
trušaitis et al., 2016) or pre-trained active speaker
detection models (Tao et al., 2021). However, given
an utterance, the face sequence extracted by these
methods may still contain multiple people, which
may mislead the emotion prediction of the real
speaker. For example, in Figure 1, there are two
persons, Joey and Chandler, with distinct facial
expressions, i.e., disgust and anger. Previous meth-
ods use the face sequence containing both persons’
faces as visual features, which will inevitably have
a negative impact on predicting Chandler’s emo-
tion. Therefore, to fully leverage the visual modal-
ity for emotion recognition, it is crucial to extract
the face sequence of the real speaker of each utter-
ance.

To this end, we propose a two-stage multimodal
multi-task learning framework named FacialMMT
for the MERMC task. In the first stage, we design a
pipeline solution to obtain the face sequence of the
real speaker, which contains three steps: 1) Extract
the face sequence containing all possible speak-
ers based on the combination of multimodal rules
and an active speaker detection model (Tao et al.,
2021); 2) Identify the number of face clusters in the
face sequence based on an unsupervised clustering
algorithm named InfoMap (Rosvall and Bergstrom,
2008); 3) Perform face matching and choose the
face sequence with the highest confidence as the
face sequence of the real speaker. Table 1 illustrates
the differences between our method and previous

methods.

Based on the extracted face sequence, in the sec-
ond stage, we further propose a Multimodal facial
expression-aware multi-task learning model named
MARIO. MARIO first resorts to an auxiliary frame-
level facial expression recognition task to obtain
the emotion distribution of each frame in the face
sequence. Next, the emotion-aware visual represen-
tation is then integrated with textual and acoustic
representations via Cross-Modal Transformer (Tsai
et al., 2019) for utterance-level emotion recogni-
tion.

Our main contributions can be summarized as
follows:

• To obtain the face sequence of the real speaker
in an utterance, we propose a face sequence ex-
traction method, which consists of three steps,
i.e., multimodal face recognition, unsupervised
face clustering, and face matching.

• We propose a Multimodal facial expression-
aware multi-task learning model named MARIO
for the MERMC task, which leverages an aux-
iliary frame-level facial expression recognition
task to obtain the frame-level emotion distribu-
tion to help utterance-level emotion recogntion.

• Experimental results on a benchmark dataset
MELD demonstrate the superiority of our pro-
posed FacialMMT framework over the SOTA
systems. Moreover, FacialMMT outperforms
a number of SOTA systems with a significant
margin when only visual modality is used.
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Figure 2: The overview of our FacialMMT framework. The first stage extracts the real speaker’s face sequence, and
the second stage proposes a multimodal facial expression-aware multi-task learning model (MARIO) for MERMC.

2 Method

2.1 Task Formulation

Given an MERMC corpus D, let us use {X1, X2,
. . . , X|D|} to denote a set of samples in the corpus.
Each sample contains a multimodal dialogue with
n utterances d = {u1, u2, . . . , un}, in which each
utterance ui = {uil, uia, uiv} contains information
from three modalities, i.e., text, audio, and vision,
denoted by {l, a, v}. The goal of the MERMC
task is to classify each utterance ui into one of C
pre-defined emotion types yi, and predict a label se-
quence y = {y1, y2, . . . , yn} for d. Note that each
utterance is only annotated with one speaker’s iden-
tity (real speaker) and his/her emotion is annotated
as the emotion of the current utterance.

2.2 Framework Overview

As shown in Figure 2, our FacialMMT framework
contains two stages. To obtain the face sequence of
the real speaker in each utterance, the first stage in-
troduces a pipeline method to perform multimodal
face recognition and unsupervised clustering, fol-
lowed by face matching. With the extracted face
sequences, the second stage resorts to an auxiliary
frame-level facial expression recognition task to
generate the emotion distribution for each frame in
the face sequence, and then employs Cross-Modal
Transformer to integrate the emotion-aware visual
representations with text and acoustic representa-
tions for multimodal emotion recognition.

We will present the details of the two stages in
the following two subsections.

2.3 Face Sequence Extraction
As shown in the left side of Figure 2, the first stage
extracts the face sequence of the real speaker based
on the following three steps:

Multimodal Face Recognition. First, we pro-
pose to combine multimodal rules and an active
speaker detection (ASD) model to extract face se-
quences of all possible speakers. Specifically, given
a video utterance, we use a pre-trained ASD model
TalkNet (Tao et al., 2021) to combine visual and
audio information for speaker detection. However,
TalkNet often fails to identify speakers for videos
with short duration or complex scenes (e.g., for a
video with multiple people, someone is laughing or
making noise instead of speaking). To obtain the
face sequence in these videos, we further design
several multimodal rules, including the opening
and closing frequency of mouth, movement of dif-
ferent people’s mouths between video frames, and
the alignment between the mouth movement and
audio signals. The details of these multimodal rules
are described in Appendix A.1.

Unsupervised Clustering. Based on the raw
face sequence, we apply an unsupervised cluster-
ing algorithm InfoMap (Rosvall and Bergstrom,
2008) to identify the number of face clusters in the
sequence as follows:
• We first employ the K-Nearest Neighbors algo-

rithm to construct a graph of all potential speak-
ers’ faces, and then calculate the similarity be-
tween faces, followed by using the normalized
as the weight of edges.

• Random walks are then conducted on the graph
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to generate different face sequences.

• Lastly, we hierarchically encode the face se-
quences, and minimize the minimum average
encoding length to obtain the clustering result.

The minimization process includes minimizing
the average encoding length of classes, as well as
the average encoding length of each class’s in-class
objects. The formulation is defined as follows:

argmin
K,Y

L (P,K, Y ) = q↷

(
−

K∑

i=1

qi↷
q↷

log
qi↷
q↷

)

+
K∑

i=1

pi⟲

(
−qi↷
pi⟲

log
qi↷
pi⟲

−
∑

α∈i

pα
pi⟲

log
pα
pi⟲

) (1)

where Y is the predicted face sequence category,
K represents the number of face sequences, qi↷
represents the probability of the occurrence of cat-
egory i, q↷ =

∑K
i=1 qi↷, pα represents the prob-

ability of the occurrence of a face image α, and
pi⟲ = qi↷ +

∑K
α∈i pα.

Face Matching. Finally, we construct a face
library to determine the face sequence of the real
speaker. Because the benchmark dataset for the
MERMC task, i.e., MELD (Poria et al., 2019), con-
tains six leading roles occurring frequently in the
dataset, we manually select 20 different face im-
ages for each leading role based on the raw face
sequence extracted in Multimodal Face Recogni-
tion and regard these 120 images as the face library.
Next, we use a ResNet-50 model (He et al., 2016)
pre-trained on a face recognition dataset MS-Celeb-
1M (Guo et al., 2016) to extract visual features for
the images in the library and in different face clus-
ters. As each utterance provides the real speaker’s
identity, who is either one of six leading roles or a
passerby, we match the images in each face cluster
with six leading roles’ images in the library by cal-
culating the cosine similarity between their visual
representations. Specifically, if the identity of the
real speaker is one of the six leading roles, the face
sequence with the highest similarity is regarded
as the real speaker’s face sequence; otherwise, we
regard the face sequence with the lowest similarity
as the real speaker’s face sequence.

2.4 A Multimodal Facial Expression-Aware
Multi-Task Learning Model

After obtaining the real speaker’s face sequence in
each utterance, we further propose a Multimodal
facial expression-aware multi-task learning model
(MARIO), as shown in the right side of Figure 2.

Next, we introduce the details of MARIO, includ-
ing unimodal feature extraction, emotion-aware
visual representation, and multimodal fusion.

2.4.1 Unimodal Feature Extraction
In the MERMC task, given an utterance ui, we
extract unimodal features from three modalities
{uil, uia, uiv} to obtain the text, audio, and visual
representations as follows:

• Text: To efficiently utilize the dialogue context
and speaker’s emotional dynamics, we concate-
nate the input utterance and all its contextual
utterances as input, and feed it into a pre-trained
language model (e.g., BERT) for fine-tuning. We
then take out the hidden representation of the
first token as the text representation El ∈ Rdl ,
where dl = 512 is the size of text features.

• Audio: We obtain the word-level audio represen-
tation based on the Wav2vec2.0 model (Baevski
et al., 2020) pre-trained on the Librispeech-960h
dataset (Panayotov et al., 2015), denoted by
Ea ∈ Rda , where da = 768 is the dimension
of audio features.

• Vision: Given the real speaker’s face sequence
of the input utterance, we use an InceptionRes-
Netv1 model (Szegedy et al., 2017) pre-trained
on the CASIA-WebFace dataset (Yi et al., 2014)
to obtain the frame-level visual representation
Ev ∈ RL×dv , where L is the face sequence
length and dv = 512 is the size of visual fea-
tures.

2.4.2 Emotion-Aware Visual Representation
Because the goal of MERMC is to predict the emo-
tion of all the utterances in a dialogue, we pro-
pose to enhance the frame-level visual representa-
tion with the emotion distribution of each frame.
To achieve this, we introduce an auxiliary frame-
level facial expression recognition task, which is
known as Dynamic Facial Expression Recognition
(DFER) in the computer vision community (Li
and Deng, 2020). Formally, let Ds be another set
of samples for the DFER task. Each sample is
a face sequence containing m faces, denoted by
s = {s1, s2, . . . , sm}. The goal of DFER is to
predict the label sequence z = {z1, z2, . . . , zm},
where each label zi belongs to one of C pre-defined
facial expressions (i.e., emotion categories).

Auxiliary DFER Module. As shown in the top
right of Figure 2, we employ a well-known Swin-
Transformer model (Liu et al., 2021) pre-trained
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on the Ms-Celeb-1M dataset (Guo et al., 2016) to
obtain the representation of each frame in the face
sequence as follows:

Hs = {hs
1, · · · ,hs

m} = Swin-Transformer(s)
(2)

where Hs ∈ Rm×du is the generated facial features.
Next, we feed Hs into a multi-layer perceptron
(MLP) layer for facial expression recognition. Dur-
ing the training stage, we use cross-entropy loss to
optimize the parameters for the DFER task:

p(zi) = softmax(MLP(hs
i )) (3)

LDFER = − 1

M

M∑

i=1

m∑

j=1

log p(zij) (4)

where M is the number of samples in Ds.
Facial Expression Perception for MERMC.

Based on the auxiliary DFER module, a direct
solution to obtain the emotion-aware visual rep-
resentation is to convert the predicted emotion of
each frame to an one-hot vector and concatenate it
with its original representation as the frame-level
visual representation. However, as we all know, the
one-hot vector derived from the argmax function is
not differentiable, which will affect the parameter
optimization in our multi-task learning framework.

To tackle this issue, we apply Gumbel Softmax
Jang et al. (2017), which has a continuous relaxed
categorical distribution, to obtain an approximated
emotion distribution for each frame. By using soft-
max as the differentiable approximation of argmax
and adding a temperature function τ , it can achieve
gradient updates during backpropagation:

gi = softmax((g + hs
i )//τ) (5)

where gi ∈ RC , g = − log(− log(u)) is a noise
sampled from the Gumbel distribution, and u ∼
Uniform(0, 1). As τ → 0, the softmax compu-
tation smoothly approaches the argmax, and the
sample vectors approximate one-hot vectors.

Moreover, if the emotion distribution of the i-th
frame in the face sequence concentrates on certain
emotion, it shows that this frame reflects the clear
emotion; otherwise if the emotion distribution is
uniform, it implies the emotion in this frame is
blurred and may bring noise to our MERMC task.
To alleviate the noise from the emotion-blurred
frames, we design a gating mechanism to dynami-
cally control the contribution of each frame in the
face sequence for the MERMC task. Specifically,

the emotion clarity of the i-th frame can be com-
puted as δi = gi · g⊤

i , where · denotes the dot
product. Based on this, we can obtain the emotion
clarity of all the frames in the face sequence:

δ = {δ1, δ2, · · · , δm} (6)

We then apply δ to the original visual represen-
tation Ev to filter out the emotion-blurred frames,
in which δi is less than a predetermined threshold.

Finally, we concatenate the filtered visual repre-
sentation E

′
v and the emotion distributions of all

the frames Ee to obtain the emotion-aware visual
representation as follows:

Êv = E
′
v ⊕Ee, Ee = {g1, · · · ,gm′} (7)

where Êv ∈ Rm
′×(dv+C), m

′
is the number of

filtered frames, and ⊕ is the concatenation operator.

2.4.3 Multimodal Fusion
Intra-Modal Interactions. We feed Ea and Êv

to two separate self-attention Transformer lay-
ers (Vaswani et al., 2017) to model the intra-modal
interactions within audio features and visual fea-
tures as follows:

Ha = Transformer(Ea),Hv = Transformer(Êv)

Inter-Modal Interactions. To achieve interac-
tions between different modalities, we apply the
Cross-Model Transformer (CMT) layer (Tsai et al.,
2019). Firstly, we fuse the text and audio modal-
ities, alternating the two modalities as the query
vector, then concatenating them to obtain the text-
audio fused representation Hl−a. Similarly, Hl−a

is then fused with visual modality to obtain the
utterance-level text-audio-visual fused representa-
tion Hl−a−v below:

Hl−a = CM-Transformer(El,Ha) (8)

Hl−a−v = CM-Transformer(Hl−a,Hv) (9)

Finally, Hl−a−v is fed to a softmax layer for
emotion classification:

q(y) = softmax(W⊤Hl−a−v + b) (10)

The standard cross-entropy loss is used to opti-
mize the parameters for the MERMC task:

LMERMC = − 1

N

N∑

i=1

log q(yi) (11)

where N is the number of utterance samples.
The pseudocode for training the MARIO model

is provided in Appendix A.2.
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3 Experiments and Analysis

3.1 Dataset
To verify the effectiveness of our FacialMMT
framework, we conduct experiments with two
datasets. One is the dataset for the main MERMC
task, and the other is the dataset for the auxiliary
DFER task. The descriptions are as follows:
Dataset for MERMC: We use the MELD
dataset (Poria et al., 2019), which is a publicly avail-
able dataset for MERMC. MELD contains 13,707
video clips extracted from the sitcom Friends,
which contain information such as utterance, au-
dio, video, and speaker identity. It also provides
emotion annotations on each utterance with seven
classes, including neutral, surprise, fear, sadness,
joy, disgust, and anger.
Dataset for DFER: For the auxiliary DFER
task, we use the Aff-Wild2 dataset (Kollias and
Zafeiriou, 2019; Kollias, 2022), which contains
548 video clips collected from YouTube in real-
world environments. Each clip has several frames
of aligned faces and each frame is annotated with a
facial expression. It has eight classes of emotions
(six basic emotions, neutral, and other). Because
the goal is to leverage Aff-Wild2 to guide the emo-
tion prediction on our main dataset, we removed
samples annotated with the other emotion.

3.2 Compared Systems
We compare FacialMMT against the following
systems: DialogueRNN (Majumder et al., 2019)
models the speaker identity, historical conversa-
tion, and emotions of previous utterances with
RNNs. ConGCN (Zhang et al., 2019) proposes
a Graph Convolutional Network (GCN)-based
model, which constructs a heterogeneous graph
based on context-sensitive and speaker-sensitive
dependencies. MMGCN (Hu et al., 2021) builds
both long-distance dependency and dependencies
between speakers with GCNs. DialogueTRM (Hu
et al., 2021) proposes to consider the temporal and
spatial dependencies and models local and global
context information. DAG-ERC (Shen et al., 2021)
models the information flow between the conversa-
tion background and its surrounding context. MM-
DFN (Hu et al., 2022a) introduces a dynamic fu-
sion module to fuse multimodal context features.
EmoCaps (Li et al., 2022b) extracts the emotional
tendency and fuses modalities through an emotion
capsule. UniMSE (Hu et al., 2022b) unifies mul-
timodal sentiment analysis and ERC tasks with a

unified framework based on T5 (Raffel et al., 2020).
GA2MIF (Li et al., 2023) proposes a graph and
attention based two-stage multi-source multimodal
fusion approach.

3.3 Implementation

For our FacialMMT framework, we employ either
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019) as the textual encoder and use tiny version
of Swin Transformer 1. The maximum length of
input text is set to 512. The intercept operation is
to remove the last word of the longest utterance in
a dialogue and loop until the condition is met. The
maximum length of visual and audio is set to the
average plus 3 times the standard deviation. The
batch sizes for MERMC task and DFER task is set
to 1 and 150, respectively. The size of hidden layers
is 768. The number of heads in self-attention layers
and cross-modal transformer layers is 12, and the
learning rates for MERMC and DFER is set to 7e-6
and 5e-5, respectively. The dropout rate is 0.1. The
threshold for filter out the emotion-blurred frames
is set to 0.2.

Following previous works, we use the weighted
average F1-score as the evaluation metric for the
MERMC task. For the DFER task, the macro F1-
score on the validation set is reported. Our model is
trained on a GeForce RTX 3090Ti GPU and param-
eters are optimized through an AdamW optimizer.

3.4 Main Results on the MERMC task

We report the results of different methods on the
MERMC task in Table 2 and Table 4. The results
of baselines are retrieved from previous studies.

First, we compare the multimodal emotion recog-
nition results of each method. As shown in Ta-
ble 2, FacialMMT-RoBERTa outperforms all the
compared systems with a significant margin, indi-
cating the effectiveness of our proposed approach.
Additionally, we find that using BERT instead of
RoBERTa as the text encoder leads to a slight de-
crease in performance. Although it performs rel-
atively than the T5-based UniMSE model, it still
outperforms all the other baseline systems that ei-
ther use BERT or RoBERTa as the text encoder.

Moreover, we compare the emotion recognition
results in a single visual modality. As shown in Ta-
ble 4, previous methods such as EmoCaps and
MM-DFN directly employ 3D-CNN to extract
the visual features, which introduce environmental

1https://github.com/JDAI-CV/FaceX-Zoo
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Models Neutral Surprise Fear Sadness Joy Disgust Anger F1

DialogueRNN (Majumder et al., 2019) 73.50 49.40 1.20 23.80 50.70 1.70 41.50 57.03
ConGCN (Zhang et al., 2019) 76.70 50.30 8.70 28.50 53.10 10.60 46.80 59.40
MMGCN (Hu et al., 2021) - - - - - - - 58.65
DialogueTRM∗ (Hu et al., 2021) - - - - - - - 63.50
DAG-ERC∗ (Shen et al., 2021) - - - - - - - 63.65
MM-DFN (Hu et al., 2022a) 77.76 50.69 - 22.94 54.78 - 47.82 59.46
EmoCaps⋆ (Li et al., 2022b) 77.12 63.19 3.03 42.52 57.50 7.69 57.54 64.00
UniMSE▲ (Hu et al., 2022b) - - - - - - - 65.51
GA2MIF (Li et al., 2023) 76.92 49.08 - 27.18 51.87 - 48.52 58.94

FacialMMT-BERT 78.55 58.17 13.04 38.51 61.10 30.30 53.66 64.69
FacialMMT-RoBERTa 80.13 59.63 19.18 41.99 64.88 18.18 56.00 66.58

Table 2: Comparison results of the MERMC task on the MELD dataset. The baselines with italics only use textual
modality. ▲ indicates the model uses T5 (Raffel et al., 2020) as the textual encoder. The baselines tagged with ⋆ and
∗ respectively use BERT and RoBERTa as textual encoders. The best results are marked in bold.

Savchenko (2022) FacialMMT

F1 40.67 42.19

Table 3: Results of the DFER task based on F1 score.

noise and thus obtain relatively poor emotion recog-
nition results. By extracting the face sequence of
all possible speakers in a video, MMGCN achieves
the best performance among the baseline systems.
Moreover, we can observe our FacailMMT frame-
work significantly outperforms all the compared
systems, mainly due to the accurate extraction of
the real speaker’s face sequence.

Lastly, we conduct ablation studies of Face Se-
quence Extraction in Section 2.3. First, after remov-
ing unsupervised clustering (UC) and face match-
ing (FM), the emotion recognition result decreases
by 2.12%, which demonstrates the usefulness of the
two modules. Furthermore, if all the three steps are
removed, meaning that video frames are directly
used as visual features, the performance drops sig-
nificantly.

3.5 Results on the DFER task

Table 3 shows the comparison of our method and
one of the state-of-the-art methods (Savchenko,
2022) on the DFER task. For a fair comparison,
we re-implement the compared system and run ex-
periments based on the same setting as ours. In
Table 3, we can clearly observe that our framework
outperforms the compared system by 1.52 absolute
percentage points on the Aff-Wild2 dataset, which
demonstrates the effectiveness of our model on the
auxiliary DFER task.

Models Composition of visual information F1

EmoCaps Video frames 31.26
MM-DFN Video frames 32.34
MMGCN Possible speakers’ face sequences 33.27

FacialMMT
Real speaker’s face sequence 36.48

- w/o UC, FM 34.36
- w/o MFR, UC, FM 32.27

Table 4: Comparison of single visual modality emotion
recognition results. MFR represents multimodal face
recognition, UC represents unsupervised clustering, and
FM represents face matching.

3.6 Ablation Study

We conduct ablation studies of FacialMMT, and
show the results in Table 5. It is obvious that any
removal of one or two modality leads to a perfor-
mance drop, indicating that any modality plays an
essential role in emotion recognition. Specifically,
we can infer that the visual modality plays a more
important role than the audio modality, which dif-
fers from the observations in previous studies. This
suggests that enhancing multimodal emotion recog-
nition from the perspective of visual representa-
tion is effective. Moreover, removing the auxiliary
DFER module also drops the performance, indicat-
ing that introducing frame-level facial expression
supervision signals can indeed provide important
clues for utterance-level emotion recognition.

3.7 Case Study

To better understand the two main contributions
of our work, we present two examples in Figure
3. As our work is the first to use enhanced visual
representations to help the MERMC task, we only
compare FacialMMT with its variants: 1) Toolkit-
based FacialMMT represents using face detection
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Golden [ neutral ] [ joy ]

Input

Toolkit-
based
FacialMMT

[ neutral ] ✓ [ neutral ] ✗

FacialMMT
-w/o UC,FM [ joy ] ✗ [ joy ] ✓

FacialMMT [ neutral ] ✓ [ joy ] ✓

Figure 3: Prediction comparison between different methods on two test samples for the MERMC task.

FacialMMT 66.58

- w/o Audio 66.20
- w/o Vision 65.55
- w/o Audio, Vision 63.98
- w/o Text, Vision 38.02

- w/o Auxiliary DFER Module 66.08

Table 5: Ablation study of FacialMMT based on F1 score.

toolkits to detect the face sequence, as in previous
methods; 2) FacialMMT -w/o UC, FM represents
face sequences extracted by multimodal face recog-
nition. As shown in Figure 3, the face sequences ex-
tracted by two variants of our model contain much
noise, which may mislead the emotion prediction
of the input utterance. In contrast, our FacialMMT
model correctly extracts the face sequence of the
real speaker in both cases, and leverages the frame-
level emotion distribution to help correctly predict
the utterance-level emotions.

4 Related Work

4.1 Emotion Recognition in Conversations
Recently, Emotion Recognition in Conversations
(ERC) has gradually become a hot topic in the
field of emotion analysis. According to the in-
put form, ERC is classified into text-based ERC
and multimodal ERC. Text-based ERC mainly fo-
cuses on research in modeling context, modeling
speaker relationships, and incorporating common-
sense knowledge (Majumder et al., 2019; Li et al.,
2020; Shen et al., 2021; Liu et al., 2022c; Li et al.,
2022a; Ong et al., 2022).

To better mimic the way of human thinking, mul-

timodal ERC has rapidly developed in recent years.
Multimodal ERC mainly focuses on multimodal
feature extraction, interaction, and fusion. First,
some studies (Mao et al., 2021; Joshi et al., 2022;
Li et al., 2022a) consider context information in
conversations and utilize pre-trained language mod-
els such as BERT (Devlin et al., 2019) and BART
(Lewis et al., 2020) to obtain dialogue-level text
representations. Some works (Dai et al., 2021;
Liang et al., 2021; Hu et al., 2021; Zhao et al.,
2022b) also extract facial representations using var-
ious tools, such as MTCNN (Zhang et al., 2016).
For multimodal interactions, exiting studies (Tsai
et al., 2019; Lv et al., 2021) propose a Cross-Modal
Transformer model and a progressive modality re-
inforcement approach for unaligned multimodal
sequences. For modality fusion, Jin et al. (2020)
propose a localness and speaker aware transformer
to capture local context and emotional inertia. Li
et al. (2022b) design an emotion capsule to fuse
sentence vectors through multimodal representa-
tions, and Zou et al. (2022) propose to use a main
modal Transformer to improve the effectiveness of
multimodal fusion. In this work, due to the specific
nature of multi-party conversations, we extract the
face sequence of the real speaker from a video, and
use frame-level facial expressions to help utterance-
level emotion recognition.

4.2 Dynamic Facial Expression Recognition

The value of understanding facial expressions lies
in collecting direct impressions from others during
a conversation. Thus, there has been a significant
amount of research conducted on the Dynamic Fa-
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cial Expression Recognition (DFER) task. Early
DFER datasets were mainly collected from labo-
ratory environments, such as CK+ (Lucey et al.,
2010), MMI (Valstar et al., 2010), Oulu-CASIA
(Zhao et al., 2011). Since 2013, Emotion Recog-
nition in the Wild (EmotiW) competition has been
held, researchers have begun to shift their focus
from laboratory-controlled environments to more
realistic and complex wild scenarios. Some works
(Sümer et al., 2021; Delgado et al., 2021; Mehta
et al., 2022) focus on predicting student engage-
ment, while others focus on mental health issues
(Yoon et al., 2022; Amiriparian et al., 2022; Liu
et al., 2022a). Moreover, there are also several stud-
ies proposing new datasets or methods for facial
expression recognition of characters in movies and
TV shows (Jiang et al., 2020; Zhao and Liu, 2021;
Toisoul et al., 2021; Wang et al., 2022b; Liu et al.,
2022b).

5 Conclusion

In this paper, we proposed a two-stage framework
named Facial expression-aware Multimodal Multi-
Task learning (FacialMMT) for the MERMC task.
FacialMMT first extracts the real speaker’s face
sequence from the video, and then leverages an
auxiliary frame-level facial expression recognition
task to obtain the emotion-aware visual representa-
tion through multi-task learning, followed by mul-
timodal fusion for the MERMC task. Experiments
on the MELD dataset show the effectiveness of
FacialMMT.

Limitations

Our work has the following limitations. First,
our proposed FacialMMT approach is a two-stage
framework that is not fully end-to-end. We plan
to propose an end-to-end framework in the future,
which integrates face sequence extraction and mul-
timodal emotion recognition in a joint learning
manner. Second, this work primarily focuses on
the visual modality, and has not yet delved into
other aspects of the MERMC task. Therefore, in
the future, we plan to leverage the extracted face
sequences to explore better cross-modal alignment
and multimodal fusion mechanisms to improve the
performance of the MERMC task.
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individual or community.

If applying our framework to real-world sce-
narios in the future, it could potentially involve
some ethical issues such as user privacy and ethical
biases, as pointed out by Stark and Hoey (2021)
and Stark and Hutson (2021). While the ethical
issues faced in emotion recognition are common,
we will engage with the concerns raised about emo-
tion recognition in the references and strictly com-
ply with relevant regulations and ethical standards.
Specifically, our work is based on publicly avail-
able datasets, and if we construct new MERMC
datasets in the future, we will carefully consider
user privacy issues, anonymize or obfuscate facial
data, and ensure that the framework is only used
in contexts where explicit consent for facial data
processing has been obtained. Moreover, we will
refer to the recommendations in Stark and Hoey
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committed to being transparent about our research
methods, data sources, and potential limitations.
Regarding potential biases, we plan to evaluate our
framework on more diverse datasets in the future,
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A Appendix

A.1 Multimodal Rules

We design several multimodal rules to obtain pos-
sible speakers’ face sequences from a video. The
detailed steps are as follows: 1) using the FFmpeg
4 tool to sample frame-level images from a video;
2) using the OpenFace 5 library to detect all the
people in the frame-level images, and obtain differ-
ent FaceID, confidence, 68 feature landmarks, and
aligned facial images; 3) using the FFmpeg tool to
extract the audio from the video; 4) determining the
number of possible speakers in the current video
based on three rules as follows:

• “Mouth open-close” count. For different FaceID
candidates, count their mouth open and close
times respectively. If the sum of the distance
between the upper and lower lips of a person is
greater than a certain threshold at a certain time,
we will record that the mouth of this FaceID is
open at the current time.

• Mouth movement. Count which person’s mouth
moves the most during the time period by con-
sidering the movement of the lips between two
consecutive frames of facial images, the differ-
ence in width between the inner corners of the
mouth between these two frames, and the dif-
ference in height between the upper and lower
inner lips between these two frames.

• Voice Activity Detection algorithm. Following
Zhao et al. (2022a), we identify which frames
in the current video have sound by considering
whether the visual movement of the lips matches
the audio signal. The better the matching is, the
higher the probability that it is the speaker.
4https://ffmpeg.org/
5https://github.com/TadasBaltrusaitis/OpenFace
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A.2 Pseudo-code of MARIO
We provide the pseudocode for training the pro-
posed MARIO model, where θSwin, θT , θself−attn,
and θCMT represent the parameters of Swin-
Transformer, the text encoder, self-attention Trans-
former, and Cross-Modal Transformer, respec-
tively.

Algorithm 1: Multitask training procedure
of MARIO
Input: DFER dataset; MERMC dataset.
Output: θSwin; θT ; θself−attn; θCMT .

1 repeat
2 for all batches in the DFER dataset do
3 Forward face sequences through

Swin-Transformer ;
4 Compute loss LDFER ;
5 Finetune θSwin using ∇LDFER

6 for all batches in the MERMC dataset
do

7 Forward text through text encoder ;
8 Forward face sequences through

Swin-Transformer ;
9 Obtain facial expression-aware

visual representation ;
10 Audio and vision are sent to

self-attention Transformer layer
respectively ;

11 Conduct cross-modal fusion of text
and audio ;

12 Conduct cross-modal fusion of
text-audio and vision ;

13 Compute loss LMERMC ;
14 Update θself−attn and θCMT and

finetune θSwin and θT using
∇LMERMC ;

15 until epoch reaches its maximum;
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