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Abstract

Out-of-distribution (OOD) detection, a funda-
mental task vexing real-world applications, has
attracted growing attention in the NLP commu-
nity. Recently fine-tuning based methods have
made promising progress. However, it could
be costly to store fine-tuned models for each
scenario. In this paper, we depart from the clas-
sic fine-tuning based OOD detection toward a
parameter-efficient alternative, and propose an
unsupervised prefix-tuning based OOD detec-
tion framework termed PTO. Additionally, to
take advantage of optional training data labels
and targeted OOD data, two practical exten-
sions of PTO are further proposed. Overall,
PTO and its extensions offer several key advan-
tages of being lightweight, easy-to-reproduce,
and theoretically justified. Experimental results
show that our methods perform comparably
to, even better than, existing fine-tuning based
OOD detection approaches under a wide range
of metrics, detection settings, and OOD types.

1 Introduction

Detecting out-of-distribution (OOD) inputs is cru-
cial for real-world machine learning systems de-
ployed in the wild (Hendrycks and Gimpel, 2017).
For example, for a task-oriented dialogue system
designed for particular domains, it can be challeng-
ing to ensure that the system is only exposed to
utterances from the same distribution as the train-
ing utterances, i.e., in-distribution (ID) utterances.
Therefore, it would be desirable for the system to
detect OOD utterances and return safe responses.

Pretrained language models (PLMs) have been
a de facto choice for OOD detection in the NLP
community, and many fine-tuning based methods
have achieved promising results (Arora et al., 2021;
Podolskiy et al., 2021; Lang et al., 2022). Despite
being effective, these methods require storing fine-
tuned models for each scenario, which could be
prohibitively expensive. This begs the following

question: Can we achieve effective OOD detec-
tion in a parameter-efficient way, i.e., keep PLM
parameters frozen?

To achieve this goal, an unsupervised Prefix-
Tuning based OOD detection framework (PTO)
is proposed in this paper. The key idea of PTO
is intuitive: an in-distribution specific prefix, op-
timized with the training data via maximum like-
lihood, could steer PLMs to assign higher likeli-
hoods to ID samples than PLMs without the pre-
fix, while OOD samples should be assigned lower
likelihood. Thus we propose to use the likelihood
change triggered by the prefix to detect OOD —
samples whose improvement is not obvious (e.g.,
less than a predefined threshold). Note that the
training process of PTO does not involve the sam-
ple labels, expanding its application to situations
where obtaining labeled data is cost-prohibitive.

Going beyond the unsupervised setting, we ex-
tend our framework to fully leverage optional super-
vised data. Specifically, we design two extensions
to take advantage of training data labels and incor-
porate the accessible targeted OOD data encoun-
tered in the system deployment environment. These
practical and comprehensive extensions could fur-
ther improve the PTO performance.

In a nutshell, PTO and its extensions offer com-
pelling advantages of being: (1) lightweight (i.e.,
without tuning the PLM parameters), (2) easy-to-
reproduce (i.e., no additional hyper-parameters
other than prefix-tuning itself), and (3) theoreti-
cally justified (proofed in Section 3).

Experimental results reveal the effectiveness
of our methods in detecting both semantic shift
and background shift OOD sentences (Arora
et al., 2021). Especially for the background
shift, PTO surpasses the previous best baseline
by only tuning 10M parameters. Our code and data
will be available at https://github.com/
1250658183/PTO.

In summary, we make the following contribu-
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No. Text Label Dist.

1 The most cliche films i’ve ever seen Neg. In
2 This movie is a masterpiece Pos. In
3 I need a timer to be set Unk. S. Out
4 Waiters are very friendly Pos. B. Out
5 The food was salty beyond edibility Neg. B. Out

Table 1: Examples of ID and OOD sentences. S. Out
indicates semantic shift OOD, and B. Out indicates back-
ground shift OOD.

tions:

• To the best of our knowledge, we are the first to
explore lightweight OOD detection and propose
PTO, an unsupervised framework without tuning
PLM parameters.

• Two extensions of PTO are proposed to make
full use of optional training labels and targeted
OOD data to boost OOD detection performance.

• We show that our proposed parameter-efficient
methods could catch up to strong fine-tuned base-
lines and even surpass them in background shift
OOD detection.

2 Problem Setup

Given a collection of training sentences Xtrain and
corresponding labels Ytrain, we assume they are
sampled from in-distribution P in(X,Y ). The ob-
jective of OOD detection is to decide whether a
test sentence is from P in(X,Y ) (ID) or not (OOD)
(Hendrycks and Gimpel, 2017).

We follow Arora et al. (2021) to classify the
types of OOD data as either semantic or back-
ground shift based on whether the label space re-
mains the same. Semantic shift happens when we
encounter sentences with unknown labels, e.g., a
sentiment classifier trained with positive and neg-
ative movie reviews receiving a neutral text (Ex-
ample 3 in Table 1). While background shift is for
texts with known labels but different domains or
styles, e.g., the classifier for movie reviews receiv-
ing restaurant reviews (Example 4, 5 in Table 1).

The goal of all OOD detection methods is to
design a score function S(x) that maps each input
x to a single scalar that is distinguishable between
ID and OOD. Mathematically, the OOD detector
G can be described as:

G(S(x), δ) =

{
ID S(x) ≥ δ,

OOD S(x) < δ,
(1)

where δ is the predefined threshold, and can be
adjusted according to the user’s requirements. For
instance, the threshold is chosen to ensure that the
recall rate of ID is 95%.

3 Approach

In this section, we start by presenting our proposed
lightweight framework PTO (Section 3.1), then
introducing two extensions of PTO to leverage
optional training data (Sections 3.2 to 3.4). Finally,
we make a summary in Section 3.5.

3.1 Prefix-tuning based OOD detection (PTO)
Our motivation follows prefix-tuning that proper
prefix vectors can steer PLMs to generate the de-
sired sentences (Li and Liang, 2021), so we can
find in-distribution specific prefix θin to trigger
PLMs to be prone to generating ID sentences, i.e.,
assigning higher likelihoods to ID sentences than
before. Considering that the likelihood sum for
all sentences (including ID and OOD) is always 1,
θin would trigger PLMs to assign lower likelihood
to OOD sentences than before. Thus the likeli-
hood change caused by the prefix θin could detect
OOD sentences whose likelihood improvement is
insignificant.

In detail, we first follow Li and Liang (2021) to
prepend randomly initialized θ to all PLM layers
(pre-trained GPT-2 (Radford et al., 2019) in our
case). Then we optimize it by maximizing the like-
lihood of training sentences, whilst the parameters
of the PLM θplm remain frozen:

θin = argmaxθ
∑

xi∈Xtrain

log p(xi; θ, θplm). (2)

With θin, we define our PTO score function for
OOD detection as follows:

SPTO(x) = p(x; θin, θplm)/p(x; θplm), (3)

where p(x; θplm) is the likelihood of x from the
vanilla PLM, i.e., without the prefix vectors θin.
Lastly, we can identify whether x is OOD by re-
placing S(x) with SPTO(x) in Equation (1).

Theoretical insights of SPTO(x): according to
the Bayes’ rule, SPTO(x) is proportional to p(ID|x)
— x with a high SPTO can be interpreted as data
with a high probability of being ID. Specifically,
according to Bayes’ rule, we can rewrite p(ID|x)
as follows:

p(ID|x) = p(x|ID)p(ID)

p(x)
∝ p(x|ID)

p(x)
. (4)
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Figure 1: Overview of the proposed PTO framework. None means that no prefix is prepended. Two left dashed
modules indicate alternative extensions: yellow for label data and red for targeted OOD data. Best viewed in color.

We argue that p(x; θplm) (the denominator of
SPTO(x)) is to estimate p(x) as PLMs are trained
with various large corpora. With in-distribution spe-
cific prefix θin prepended, p(x; θin, θplm) (the nu-
merator of SPTO(x)) is to estimate p(x|ID). Thus
their quotient is proportional to p(ID|x).

3.2 PTO with labels (PTO + Label)
Using θin to guide the generation of all sentences
Xtrain would increase the difficulty of the optimiza-
tion. If training data labels Ytrain are available,
how can we use them to address this challenge?
An intuitive solution is to randomly initialize pre-
fix θyin for each training label y, and optimize θyin
with corresponding label sentences, so that θyin can
focus on guiding the generation of y sentences:

θyin = argmaxθ
∑

xi∈Xtrain∧yi=y

log p(xi; θ, θplm).

(5)
With θyin, we define SPTO+Label as follows:

SPTO+Label(x) = max
y

p(x; θyin, θplm)/p(x; θplm).

(6)

Theoretical insights of SPTO+Label(x): it is pro-
portional to maxy p(y|x)— a high SPTO(x) in-
dicates x has a high probability of being one
of the training labels. In particular, with label-
specific prefix θyin prepended, p(x; θyin, θplm) is to
estimate p(x|y). Recall that p(x; θplm) is to es-
timate p(x). With the assumption that the label

distribution is uniform, SPTO+Label(x), the esti-
mation of maxy p(x|y)/p(x), is proportional to
maxy p(y|x).

3.3 PTO with targeted OOD data (PTO +
OOD)

If we can access some targeted OOD data Xood in
the training process, what can we do to incorporate
them into PTO to boost OOD detection perfor-
mance? This scenario has a realistic possibility,
such as in a data stream where the OOD data col-
lected by the current detector can be used to re-
fine it. Besides, some benchmark datasets, such
as CLINC150 (Larson et al., 2019), also provides
some OOD sentences for training.

Our hypothesis is that targeted out-of-
distribution specific prefix θout could trigger PLMs
to be less prone to generating ID sentences than
vanilla PLMs. So the likelihood improvement
between θin and θout is more obvious for ID
sentences. Accordingly, we update PTO with the
following statistic:

SPTO+OOD(x) = p(x; θin, θplm)/p(x; θout, θplm),
(7)

where θout is optimized with targeted OOD data:

θout = argmaxθ
∑

xi∈Xood

log p(xi; θ, θplm). (8)

Theoretical insights of SPTO+OOD(x): it is
proportional to p(ID|x)/p(TOOD|x) — a high
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SPTO+OOD(x) can be interpreted that compared
with TOOD (targeted OOD), x is more likely to
belong to ID. Specifically, with θout prepended,
p(x; θout, θplm) is to estimate p(x|TOOD). Re-
member that p(x; θin, θplm) is to estimate p(x|ID).
Rewriting p(x|ID)/p(x|TOOD), we obtain:

p(x|ID)

p(x|TOOD)
=

p(x|ID)

p(x)

p(x)

p(x|TOOD)

∝ p(ID|x)
p(TOOD|x) . (9)

3.4 PTO with both label and targeted OOD
data (PTO + Label + OOD)

The proposed two extensions are orthogonal. We
can use them simultaneously in practice if we can
access both of them:

SPTO+Label+OOD(x) =

max
y

p(x; θyin, θplm)/p(x; θout, θplm).

(10)

Theoretical insights of SPTO+Label+OOD(x):
combining SPTO+Label(x) and SPTO+OOD(x), it is
simple to prove that SPTO+Label+OOD(x) is pro-
portional to maxy p(y|x)/p(TOOD|x). A high
SPTO+Label+OOD(x) can be interpreted that com-
pared with targeted OOD, x is more likely to be-
long to one of the training labels.

3.5 Summary

The advantages of PTO and its extensions are nu-
merous:

• Lightweight: All of them require only a small
number of continuous prefix vectors to be tuned
and stored, without modifying PLM parameters.

• Easy-to-reproduce: Besides the hyper-
parameters of prefix-tuning (e.g., the prefix
length), the training and inference process
of all methods do not introduce any new
hyper-parameters.

• Theoretically justified: Through the lenses of
Bayes’ rule, we provide theoretical insights to
understand their effectiveness.

An overview of PTO is depicted in Figure 1. We
also summarize the training and inference for PTO
and its extensions in Algorithm 1.

Algorithm 1 OOD detection using PTO

Input: Training dataset Xtrain, test sample x.
Optional: training label Ytrain, targeted

OOD Xood.
# Training process

1: if Ytrain is available then
2: for each label y do
3: Train θyin using Equation (5)
4: end for
5: else
6: Train θin using Equation (2)
7: end if
8: if Xood is available then
9: Train θout using Equation (8)

10: end if
# Inference process

11: if both θout and θyin are unavailable then
12: Calculate SPTO using Equation (3)
13: else if only θyin is available then
14: Calculate SPTO+Label using Equation (6)
15: else if only θout is available then
16: Calculate SPTO+OOD using Equation (7)
17: else
18: Calculate SPTO+Label+OOD using Equa-

tion (10)
19: end if

4 Experimental Setup

4.1 Datasets
We evaluate our methods for detecting semantic
shift and background shift OOD:

• For semantic shift, we follow Podolskiy et al.
(2021) to use the challenging CLINC150
dataset (Larson et al., 2019). CLINC150 covers
utterances across various intents in voice assis-
tants. OOD utterances are those with unknown
intents. As aforementioned before, it also pro-
vides OOD utterances for training.

• For background shift, we follow Arora et al.
(2021) to use IMDB (Maas et al., 2011) as ID
and Yelp Polarity (Zhang et al., 2015) as OOD.
IMDB is a long movie review dataset and Yelp
Polarity is a business review dataset. Since both
IMDB and Yelp Polarity do not provide the val-
idation dataset, to perform early stopping, we
sample 10000 sentences from IMDB unlabeled
dataset and 10000 sentences from Yelp as the
validation dataset.

Table 2 provides the summary statistics.
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Statistics CLINC150 IMDB-Yelp

Train-ID 15000 25000
Train-Label 150 2
Train-OOD 250 -

Validation-ID 3000 10000
Validation-OOD 100 10000

Test-ID 4500 25000
Test-OOD 1000 38000

Table 2: Statistics of datasets used in our experiment.

4.2 Baselines

We introduce the strong supervised method Maha-
lanobis (Podolskiy et al., 2021; Lee et al., 2018b),
Energy and Energy + OOD (Liu et al., 2020;
Ouyang et al., 2021), MLS (Vaze et al., 2022) as
baselines. With a classifier trained with ID sen-
tences and labels,

• Mahalanobis defines a score function based
on the Mahalanobis distance between the input
representation and the nearest class-conditional
Gaussian distribution.

• Energy uses the sum of the exponential of the
classifier logit to detect OOD.

• Energy + OOD uses targeted OOD sentences
to shape the energy gap between ID and OOD
sentences during the training stage.

• MLS uses the maximum logit of the classifier to
detect OOD.

We also introduce competitive unsupervised
method IMLM + BCAD + MDF (Xu et al., 2021),
PPL (Arora et al., 2021), LLR (Gangal et al., 2020;
Ren et al., 2019):

• IMLM + BCAD + MDF also utilizes Maha-
lanobis distance as features, and two domain-
specific fine-tuning approaches are explored to
boost the performance.

• PPL uses ID sentences to fine-tune the pre-
trained GPT-2 model and uses the perplexity to
detect OOD.

• LLR trains a left-to-right LSTM language model
(Sundermeyer et al., 2012) with ID sentences and
trains a second language model with perturbed
ID sentences. The likelihood ratio between these
two language models is used to detect OOD.

4.3 Metrics

We follow Podolskiy et al. (2021); Liu et al. (2020)
to use four common OOD detection metrics to mea-
sure the performance:

• AUROC refers the area under the true positive
rate-false positive rate curve.

• FPR95 refers the false positive rate(FPR) when
the true positive rate(TPR) is 95%.

• AUPR refers the area under the precision-recall
curve. AUPR In (or Out) indicates ID (or OOD)
data are treated as positive samples.

4.4 Implementation details

For all methods, the selection of hyper-parameters
and early stop strategy are based on AUROC on
the validation set.

For our framework, we use the huggingface im-
plementation of GPT2-base (Wolf et al., 2020)
as the PLM and the prefix-tuning implementa-
tion is derived from OpenPrompt (Ding et al.,
2022). All results are averaged over 5 differ-
ent seeds. The prefix length has an essential
impact on the results, so we search it from
{10, 50, 100, 200, 300, 400, 500}. For PTO + La-
bel, the total prefix length 300 is equally allocated
to each label. For PTO + OOD, the OOD prefix
length is also set to 300. The hyper-parameters of
PTO + Label + OOD are consistent with PTO +
OOD and PTO + Label.

For supervised-based baselines, we use pre-
trained BERT (Devlin et al., 2019) as the encoder,
and tune it with cross-entropy loss. For Energy, we
follow Liu et al. (2020) to set T as 1. We adopt
mean pooling to obtain the sentence representation
as we empirically find that mean pooling is better
than [CLS] with MLP used in Ouyang et al. (2021).

For IMLM + BCAD + MDF, we obtain the re-
sults from their open-source implementation. For
PPL, we also use GPT2-base as the backbone. For
LLR method, we follow Gangal et al. (2020) and
use an LSTM with 1 layer and 300 hidden size. Em-
beddings are initialized with 100D Glove (Penning-
ton et al., 2014). To train the background model,
we permute 50% of every sentence by replacing
the word with the random one in the vocabulary.

5 Main Results

Table 3 shows all method results on OOD detection.
We can observe that:

1537



Dataset Method AUROC ↑ FPR95 ↓ AUPR In ↑ AUPR Out ↑ #Params

CLINC150

Unsup.

IMLM + BCAD + MDF 83.7± 0.4 62.9± 1.5 95.3± 0.2 54.6± 1.8 110M
PPL 90.7± 0.3 32.3± 2.2 97.8± 0.1 65.9± 1.2 124M
LLR 90.2± 0.3 37.1± 1.5 97.5± 0.1 66.4± 1.3 3.7M
PTO (ours) 92.8± 0.1 27.8± 0.9 98.3± 0.1 73.8± 0.5 10M

Sup.

Mahalanobis 97.4± 0.1 10.5± 0.6 99.4± 0.0 89.6± 0.6 110M
Energy 97.6± 0.0 10.2± 0.4 99.4± 0.0 92.0± 0.3 110M
Energy + OOD 98.1± 0.1 8.2± 0.6 99.5± 0.0 93.9± 0.3 110M
MLS 97.5± 0.1 10.4± 0.3 99.4± 0.0 91.6± 0.3 110M
PTO + Label + OOD (ours) 96.7± 0.4 17.6± 1.6 99.2± 0.1 89.3± 0.8 20M

IMDB-
Yelp

Unsup.

IMLM + BCAD + MDF 97.4± 0.0 9.2± 0.1 97.2± 0.0 97.8± 0.0 110M
PPL 88.9± 0.1 41.7± 0.2 85.9± 0.2 91.6± 0.1 124M
LLR 90.8± 0.4 40.5± 1.0 87.9± 0.4 93.7± 0.3 71M
PTO (ours) 99.3± 0.1 2.8± 0.4 99.2± 0.1 99.6± 0.1 10M

Sup.

Mahalanobis 97.0± 0.2 11.7± 2.7 96.4± 0.8 97.6± 0.5 110M
Energy 76.5± 1.2 53.8± 2.8 75.6± 1.2 77.0± 1.6 110M
MLS 76.5± 1.3 53.8± 2.8 75.5± 1.3 77.1± 1.2 110M
PTO + Label (ours) 99.6± 0.1 2.0± 0.2 99.4± 0.1 99.3± 0.0 10M

Table 3: OOD detection performance on CLINC150 and IMDB-Yelp datasets. #Params indicates the tuning
parameter number. The best results of each setting are in bold. All results are in percentages. Since IMDB-Yelp
does not provide OOD training sentences, we only report the OOD extension performance (i.e., PTO + Label +
OOD) on CLINC150.
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Figure 2: Histogram of the OOD detection score from
PPL (left) and PTO (right) on IMDB-Yelp.

• PTO works better than unsupervised base-
lines on all datasets and metrics. For
CLINC150, PTO reduces the FPR95 by 4.5%
compared to the best unsupervised baseline, and
PTO consistently outperforms the baseline by
6.4% on IMDB-Yelp. Figure 2 shows the PTO
and PPL score histogram distributions. We can
see that PTO is more distinguishable between
ID and OOD than PPL, resulting in more effec-
tive OOD detection. To gain further insights,
we also test prefix-equipped PPL, and its perfor-
mance is also inferior to PTO (38.4% FPR95 on
CLINC150).

• PTO + Label (+ OOD) outperforms super-
vised baselines on background shift by a large
margin and achieves competitive performance
on semantic shift. Note that all supervised meth-
ods require tuning pretrained language models,

Figure 3: AUROC under different epochs on the
CLINC150 validation set.

whereas our methods do not, so they provide ef-
fectiveness while still being lightweight (PTO
+ Label + OOD only tunes 20M parameters,
less than 20% of the supervised methods). We
also generalize PTO + Label + OOD to GPT2-
medium, and it can achieve better performance
(14.8% FPR95 on CLINC150).

6 Discussion

6.1 Effect of the label extension
PTO + Label provides a performance boost over
PTO with the same tuning parameter number.
As we can observe from Table 4, the improvement
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Figure 4: AUROC and FPR95 of PTO under different
prefix lengths on the IMDB-Yelp validation set.

Method CLINC150 IMDB-Yelp

PTO 92.8± 0.1 99.3± 0.1
PTO + Label 94.3± 0.2 99.6± 0.1
PTO + OOD 95.4± 0.3 -

Table 4: Comparison of PTO with its extensions. Values
are AUROC on the test set.

is more pronounced on the challenging dataset
CLINC150, where we show a 1.5% improvement
on the AUROC. Notably, PTO + Label has the
same tuning parameter number with PTO (i.e.,
both are equipped with 300 prefix vectors).

PTO + Label can trigger the GPT-2 to as-
sign higher likelihoods to ID sentences than
PTO. Specifically, equipped with the label exten-
sion for PTO, the average log PPL of ID sentences
on the validation set degrades from 3.01 to 2.23 on
CLINC150, and from 3.72 to 3.70 on IMDB-Yelp.
The more pronounced effect on CLINC150 is due
to the larger label number (150 versus 2).

PTO + Label can also lead to faster conver-
gence. As empirically shown in Figure 3, the best
epoch for PTO + Label is 9, while for PTO is 16.
The reason is intuitive that with the label extension,
each label sentences can focus on optimizing its
own prefix.

6.2 Effect of the OOD extension

PTO + OOD is more effective than PTO + Label
on CLINC150. Table 4 shows that PTO + OOD
outperforms PTO + Label by 1.1% (AUROC) on
CLINC150. We conjecture that equipping training
data with targeted OOD data leads to a smaller
distribution gap between training and test data than
with labels.

PTO + OOD keeps being easy-to-reproduce.

Figure 5: The average logSPTO score for each position
token in ID and OOD sentences. We only list the posi-
tion from 1 to 10 due to space constraints.

The hyper-parameters of training OOD prefixes
are consistent with ID prefixes, so PTO + OOD
does not require any new hyper-parameter. In con-
trast, using Energy + OOD requires great effort in
hyper-parameter tuning, such as two margin hyper-
parameters for the auxiliary hinge loss and the loss
weight (Liu et al., 2020).

6.3 Effect of the prefix length

The prefix length is a key hyper-parameter of PTO,
and previous work shows that the optimal prefix
length varies from task to task (Li and Liang, 2021).
Inspired by this, we evaluate how the prefix length
affects the OOD performance by setting it from
10 to 500. Results from Figure 4 show that as a
whole, performance increases as the prefix length
increases up to 300 and then decreases. We think
this is reasonable, as longer prefixes tend to overfit
the training data, and further degrade the validation
performance.

6.4 Error analysis

The OOD sentences misclassified by PTO always
have the same preceding tokens as ID sentences.
Specifically, when examining OOD sentences un-
detected by PTO on CLINC150 (i.e., those with
higher SPTO), we observe that their first two tokens
at the sentence beginning are often found in the
ID sentences (see Table 5). The first two tokens
further lead to higher OOD sentence scores *, as
shown in Figure 5.

The underlying reason is that PTO leverages the
left-to-right GPT-2 to estimate the sentence like-

*The logSPTO score of sentence x is summed over
the score of each token wi in x: logSPTO(x) =∑

wi∈x log p(wi|w<i; θin, θplm)− log p(wi|w<i; θplm)
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Distribution 2-gram / percent

ID can you/6.1, i need/4.8, what is/4.5, what ’s/3.6, tell me/3.1, i want/2.0, how do/2.0, how much/1.8, how many/1.8, how long/1.6

OOD can you/6.6, what is/5.9, what ’s/5.3, how many/4, tell me/4, how do/3.6, what are/3.1, how much/2.7, look up/2.1, find out/1.8

Table 5: Top 10 2-grams and their percents extracted from ID and OOD sentence beginning. The overlap 2-grams
between ID and OOD are marked as blue.

Method AUROC ↑ FPR95↓ AUPR In↑ AUPR Out↑
MLS 92.22 36.95 97.41 78.07
Energy 92.41 33.75 97.57 78.14

Table 6: Effect of using Energy and MLS derived from
the prefix-tuning based classifier.

lihood. The following tokens are invisible when
inferring the likelihood of preceding tokens. There-
fore, there is no difference between ID and OOD
in such case, and PTO will assign OOD preceding
tokens higher scores as it does to ID. We leave its
solution to future work.

6.5 Effect of the prefix-tuning based classifier
for OOD detection

To thoroughly investigate the potential of prefix-
tuning on OOD detection, we also carried out
an experiment based on the prefix-tuning based
classifier (Ding et al., 2022; Liu et al., 2021) on
CLINC150 dataset. Particularly, we use the utter-
ance’s intent as its label words to construct the man-
ual verbalizer (Schick and Schütze, 2021). Mean-
while, we modify the original input x to the form
of template T (x) = [PREFIX]x[MASK], then
classify x based on the probabilities of [MASK]
being each label words. Table 6 shows the perfor-
mance of Energy and MLS scores based on the
classifier. We can observe that they perform less
well than PTO + Label. We argue that a limitation
of this strategy is its dependence on the design of
the template and verbalizer, while our method PTO
+ Label does not require them.

7 Related Work

7.1 Out-of-distribution detection

Out-of-distribution has gained increasing attention
in both NLP and CV recently (Lang et al., 2022;
Yang et al., 2022; Sun et al., 2022; Sehwag et al.,
2021; Arora et al., 2021). Promising unsupervised
(Xu et al., 2021; Arora et al., 2021; Gangal et al.,
2020; Ren et al., 2019), supervised with ID labels
(Podolskiy et al., 2021; Liu et al., 2020; Vaze et al.,
2022), and supervised with OOD data (Liu et al.,
2020; Lee et al., 2018a) methods have been pro-

posed. Curious readers may refer to some well
established surveys (Yang et al., 2021; Salehi et al.,
2022). Unlike prior works, our work focuses on
exploring lightweight OOD detection, i.e., without
modifying PLM parameters. We propose PTO to
fulfill this aim and demonstrate its effectiveness
through comprehensive experiments.

7.2 Prefix-tuning

Prefix-tuning, a member of the prompt-based tun-
ing family (Liu et al., 2022a), can trigger the de-
sired generation of PLMs by only optimizing small
continuous prefix vectors (Li and Liang, 2021). It
has achieved desirable performance in many nat-
ural language generation tasks (Liu et al., 2022b;
Zhao et al., 2022; Ma et al., 2022), and natural lan-
guage understanding tasks (Liu et al., 2021; Yang
and Liu, 2022). However, it still remains a mystery
whether prefix-tuning can detect OOD inputs as
other fine-tuned models. To the best of our knowl-
edge, we are the first to explore the potential of
prefix-tuning for the OOD detection task, and pro-
pose approaches for both unsupervised and super-
vised settings.

8 Conclusion

In this paper, we shed light on lightweight OOD
detection, which was largely overlooked in the lit-
erature. Our work bridges the gap by proposing
PTO, an unsupervised prefix-tuning based frame-
work. Moreover, we extend PTO to fully lever-
age the optional training labels and targeted OOD
sentences. Our methods have the key advantages
of being lightweight, easy-to-reproduce, and the-
oretically justified. We reveal the effectiveness of
PTO and its extensions on both semantic and back-
ground shift OOD detection. We hope our work
could serve as a valuable starting point for future
work and inspire them to explore more possibilities
of lightweight OOD detection.

Limitations

We consider the current work has the following two
limitations:
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• We design our lightweight OOD detection frame-
work based on the prefix-tuning paradigm. Never-
theless, there may be other techniques to achieve
this goal, which requires further exploration.

• For PTO + Label, each label focuses on its own
prefixes, suffering from prefix redundancy prob-
lem. One can design share prefixes across dif-
ferent labels to trigger label-invariant sentence
features.
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