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Abstract
Although pre-trained language models (PLMs)
have shown impressive performance by text-
only self-supervised training, they are found
lack of visual semantics or commonsense. Ex-
isting solutions often rely on explicit images
for visual knowledge augmentation (requiring
time-consuming retrieval or generation), and
they also conduct the augmentation for the
whole input text, without considering whether
it is actually needed in specific inputs or tasks.
To address these issues, we propose a novel
Visually-Augmented fine-tuning approach that
can be generally applied to various PLMs or
NLP tasks, Without using any retrieved or gen-
erated Images, namely VAWI. Experimental
results show that our approach can consistently
improve the performance of BERT, RoBERTa,
BART, and T5 at different scales, and out-
perform several competitive baselines on ten
tasks. Our codes and data are publicly available
at https://github.com/RUCAIBox/VAWI.

1 Introduction

Recent years have witnessed the success of pre-
trained language models (PLMs) (Qiu et al., 2020;
Zhao et al., 2023), such as GPT-3 (Brown et al.,
2020) and T5 (Raffel et al., 2020), in a variety of
natural language process (NLP) tasks. Since these
PLMs are mostly trained on text-only corpus via
self-supervised pre-training, they have been shown
lack of visual commonsense (Liu et al., 2022) and
real-world knowledge (Zhang et al., 2022). As a
result, PLMs can’t well solve visually related lan-
guage tasks 1, e.g., answering the color and size of
common things, especially those requiring complex
commonsense knowledge.

To alleviate this problem, existing works mainly
enhance PLMs by infusing visual information. Typ-

∗ Equal contributions.
† Corresponding authors.

1In this work, we mainly focus on text-only NLP tasks
that may benefit from external visual information, rather than
visual-language tasks involving images.

ically, given a text input, these studies firstly aug-
ment the visual information from retrieved or gen-
erated images about the input and then leverage
their visual representations to improve PLMs on
NLP tasks. Such an approach leads to visually-
augmented pre-trained language models (VaLMs),
where they adopt either visually-augmented pre-
training (Tan and Bansal, 2020; Wang et al., 2022)
or visually-augmented fine-tuning (Lu et al., 2022).
Despite the effectiveness, there are two major short-
comings in these methods. First, these methods of-
ten rely on pre-learned complementary retrievers or
generators, and also require time-consuming infer-
ence to retrieve or generate proper images that are
paired with the input. The above costly conditions
largely limit the applicability of these approaches.
Second, the retrieved or generated images are in-
evitable to involve irrelevant or redundant visual in-
formation. If simply integrating them, the original
text representations might be affected.Increasing
evidence shows that the visual information is not
always useful for NLP tasks (Dai et al., 2022), and
sometimes leads to performance degradation.

Considering these issues, we aim to develop a
more efficient and effective way to visually aug-
ment the PLMs and the solution is twofold:

• Firstly, we don’t explicitly produce (re-
trieve or generate) the images but instead gener-
ate visually-aligned representations of the text on-
the-fly. Recent studies (Radford et al., 2021; Jia
et al., 2021) have shown that the vision-language
pre-trained models (VL-PTMs) can well learn the
alignment between the representations of texts and
images from large-scale text-image pairs. Thus,
our idea is to employ the output representations of
a text from VL-PTMs’ text encoders as a surrogate
for the visual representations of related images.

Such a way is simple and efficient: we can only
keep the text encoder of a VL-PTM to produce the
visually-aligned representations of texts, getting rid
of the complicated image retrieval or generation
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process. It is widely recognized that there is a large
semantic gap between different modalities (Liang
et al., 2022). Our method can alleviate this issue
to some extent since the visual augmentations are
derived from the text representation itself.

• Secondly, instead of directly feeding visual
augmentations into the PLM, we propose to use the
augmented visual information only when it is actu-
ally required. In fact, for a text input of a NLP task,
PLMs are not always hungry for the visual back-
ground knowledge to effectively understand it, es-
pecially for visually-irrelevant expressions. Unlike
previous works which inject visual information into
a text (Tan and Bansal, 2020; Wang et al., 2022)
from the whole, we consider identifying visually-
hungry words (those that require visual knowledge
to derive complete semantics) from the text input,
and only infuse the visual augmentations through
these trigger words. We conduct visual augmenta-
tions at the word level, because it is more flexible
and controllable, considering the augmented infor-
mation is often irrelevant or noisy.

To this end, in this paper, we propose a gen-
eral Visually-Augmented fine-tuning approach to
improving PLMs for NLP tasks Without Images,
namely VAWI. Our approach consists of three in-
gredients, namely visually-hungry words extrac-
tion, visual knowledge augmentation, and visually-
enhanced fine-tuning. Given the text input from
a NLP task, we first extract the visually-hungry
words (VH-words) from the input sentence. As the
annotations of VH-words are generally unavailable,
we propose three strategies to automatically extract
the VH-words, relying on the syntax trees, atten-
tion distributions of VL-PTMs, and an adaptive
learnable module, respectively. Then, based on the
extracted VH-words, we leverage the text encoder
of CLIP (Radford et al., 2021) (being fixed in our
approach), a VL-PTM that has been pre-trained
on millions of text-image pairs, to encode the VH-
words for obtaining their visually-aligned repre-
sentations. Finally, we infuse the visually-aligned
representations into PLMs, and consider the gen-
eral and parameter-efficient fine-tuning strategies
for small and large PLMs, respectively.

To verify the effectiveness of our framework
VAWI, we test it on four PLMs (i.e., BERT,
BART, RoBERTa, and T5) at different scales (i.e.,
110M, 340M, 3B), and conduct extensive experi-
ments in natural language understanding, common-
sense reasoning, and text generation tasks. Ex-

perimental results show that our VAWI can boost
the performance of these PLMs significantly, i.e.,
3.11%, 2.54%, and 2.16% absolute improvements
on the commonsenseQA task using RoBERTa-base,
RoBERTa-large, and T5-3b, respectively. Besides,
VAWI can outperform (or be on par with) sev-
eral competitive baselines that adopt complicated
visually-augmented methods.

2 Related Work

Pre-trained Language Models. Recent years have
witnessed the success of pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Radford et al.,
2019). After pre-trained on the large-scale corpus,
PLMs can be fine-tuned on multiple NLP tasks and
achieve remarkable performance. However, since
PLMs are just pre-trained with text-only data, they
may suffer from the reporting bias problem (Gor-
don and Van Durme, 2013; Paik et al., 2021; Zhang
et al., 2022), where the frequency distribution of
visual commonsense in the text may not fully re-
flect the real-world distribution of the common-
sense. Existing works have also found that such
a problem can not be well addressed by enlarging
the model or pre-training corpus (Paik et al., 2021;
Zhang et al., 2022). In this work, we aim to alle-
viate this problem by adding visual knowledge on
PLMs during fine-tuning.

Vision-Language Pre-Trained Models. To bet-
ter accomplish the vision-language tasks, vision-
language pre-trained models (VL-PTMs) (Su et al.,
2019; Lu et al., 2019) become a hot point in recent
years, which require large-scale image-text pairs
for pre-training. Existing VL-PTMs fall into two
categories based on the way of modeling vision-
language interaction. The first category of mod-
els (Lu et al., 2019; Li et al., 2021) adopts an ex-
plicit vision-language interaction layer to fuse the
text embeddings and image features. These models
are more suitable to capture fine-grained seman-
tic interactions between vision and language.The
second category of models (Radford et al., 2021;
Jia et al., 2021) incorporates separate encoders to
model the vision and language information, and
relies on pre-training tasks (e.g., cross-modal con-
trastive learning) to align their representations into
the same latent space. Such a way is capable of
producing enriched single-modal representations.

Visually-Augmented Language Model. To in-
troduce visual information into PLMs, visually-
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augmented language model (VaLM) (Wang et al.,
2022) has become an emerging research topic. Ex-
isting VaLMs can be categorized into visually-
augmented pre-training and fine-tuning. Visually-
augmented pre-training approaches (Tan and
Bansal, 2020; Zhu et al., 2022) continually pre-
train PLMs with the retrieved visual information
related to input tokens or sentences and also revise
the masked language model task for better cap-
turing the visual semantics. Visually-augmented
fine-tuning method (Lu et al., 2022) introduces the
visual information into PLMs during fine-tuning.
These methods also leverage the image retrieval or
generation models to augment the visual informa-
tion and design a special fusion module to inject it
into PLMs. However, existing VaLM approaches
mostly need to retrieve or generate visual informa-
tion for utilization. Such a way is time-consuming,
and may involve unrelated or noisy information
into PLMs, leading to performance degradation. In
this work, we aim to first detect the visually-hungry
words from the text, and then utilize a VL-PTM
to generate their visually-aligned representations
without the usage of external images or generation
models. As a comparison, our approach is more
flexible and efficient to leverage visual information
for enhancing text-based PLMs.

3 Method

In this section, we firstly introduce the task setting,
and then describe our proposed visual augmenta-
tion approach for infusing visual knowledge into
PLMs during fine-tuning.

3.1 Task Setting and Solution Overview

This work aims to improve the fine-tuning perfor-
mance of pre-trained language models (PLMs) on
NLP tasks by leveraging the related visual infor-
mation without images. For a NLP task, a set of n
labeled texts {⟨xi, yi⟩} are available, where xi is
the i-th text data consisting of a sequence of words,
denoted as xi = {w1, w2, ..., wm}, and yi is the
ground-truth output, which can be a discrete la-
bel (classification), a continuous value (regression)
or a text sequence (generation).

To solve the target task, we assume that a text-
based PLM is given (either for understanding or
generation). Let f denote a PLM parameterized by
θPLM that has already been pre-trained on general-
purpose large-scale text data. Given the labeled
training data, we can train the PLM using a specific

loss function (e.g., cross-entropy loss) and further
solve the target task. However, existing works (Tan
and Bansal, 2020; Zhang et al., 2022) have revealed
that PLMs may be unaware of visual knowledge
that is not explicitly mentioned in the pre-trained
text-only data (e.g., the shape of coins and the color
of the sky), leading to the lack of world common-
sense and generating wrong statements.

In this work, we focus on devising an efficient
and effective way to infuse such visual knowledge
into PLMs during fine-tuning. Our approach is
based on visually-hungry words (abbreviated as
VH-words), which require visual information to de-
rive complete semantic representations. The over-
all illustration of our approach is shown in Fig-
ure 1. Given the input text xi and its label yi, we
first detect and extract a set of VH-words. Then,
we adopt a visual knowledge augmentation mod-
ule to enhance the visual background knowledge
of their tokens and generate their visually-aligned
representations. Finally, we infuse the visually-
aligned text representations into the PLM to im-
prove its fine-tuning performance, where we con-
sider both the general fine-tuning of small PLMs
and the parameter-efficient fine-tuning of large-
scale PLMs.

3.2 Visually-Hungry Words Extraction

In our approach, visually-hungry words (VH-
words) are the trigger units for visual augmenta-
tions, requiring visual knowledge for deriving com-
plete semantic representations (e.g., color, shape,
and object). Therefore, we propose to first de-
tect the VH-words from the input text, and then
inject the proper visual knowledge that they are
hungry for into the PLM. However, the annotations
about VH-words are generally not available in NLP
datasets. To address this problem, we devise three
different strategies to extract the VH-words from
the input text, including two feature-based strate-
gies based on syntax tree and attention distribution
of PLMs, and a learnable model-based strategy.

Syntax-based Strategy. In natural language, en-
tity words and descriptive words usually convey
more visual semantics than others. For exam-
ple, for the sentence “He is eating a green apple”,
where underlined words are more related to visual
semantics. Such words are mostly nouns or adjec-
tives in the input text, which can be detected by syn-
tactic analysis. Therefore, we design a rule-based
strategy that leverages the syntactic information for
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Figure 1: The illustration of our VAWI approach, consisting of visually-hungry words extraction, visual knowledge
augmentation and visually-enhanced fine-tuning.

VH-words extraction. Concretely, we first delete
all stop words in a text and then adopt an open-
resource toolkit SPACY 2 to convert the input text
into a syntax dependency tree. Based on the syntax
tree, we extract the words that have a particular part
of speech (POS), e.g., nouns or adjectives, as the
VH-words denoted by W(V H). In this way, we can
efficiently extract the VH-words from input text by
using a fast parser toolkit.

Visually-enhanced Attention Based Strategy.
The attention-based strategy utilizes the attention
distribution of a VL-PTM to detect the VH-words.
Since VL-PTMs (Radford et al., 2021) are pre-
trained on large-scale image-text pairs, their text
encoders can focus more on the words correspond-
ing to some specific visual concepts in an image,
which are likely to be VH-words. Inspired by it, we
use the attention scores calculated by the text en-
coder of VL-PLMs to select the VH-words. Specif-
ically, we adopt the text encoder of CLIP (Radford
et al., 2021), a VL-PTM that has been pre-trained
on millions of image-text pairs, to help extract the
VH-words. As CLIP adopts an autoregressive GPT-
2 model as the text encoder, we calculate the av-
erage attention scores between each token and the
“[EOS]” token on the self-attention layer, denoted
as swi . Then, we select the top-K ranked words
according to {swi} as the VH-words W(V H).

Learning-based Strategy. Considering that di-
verse PLMs and NLP tasks may be hungry for
different complementary visual information, we

2https://spacy.io/

devise a learning-based strategy that can adaptively
extract VH-words according to task requirements.
Concretely, we add a parameterized VH-words ex-
tractor layer for the PLM, which can be updated by
gradient-based optimization algorithms to fit the
need for some specific task. Given the input text
xi, we first leverage the PLM and a text encoder
of a VL-PTM (i.e., CLIP (Radford et al., 2021)) to
produce the contextualized representations of the
contained words in xi. Then, we concatenate the
representations of each word from the two models
and utilize a MLP layer to obtain the score swi :

swi = MLP([h(P )
wi

;h(V )
wi

]) (1)

where h
(P )
wi and h

(V )
wi are the output word represen-

tations from the PLM and VL-PTM, respectively,
and scores swi are calculated by the learned model
based on the supervision information from down-
stream tasks. Based on the scores of all words,
we incorporate the gumbel-softmax function (Jang
et al., 2016) to extract the top-k words as the VH-
words in a differentiable way. In this way, the gradi-
ents of the fine-tuned tasks can be back-propagated
to the extractor layer, which learns to adaptively
select the more suitable VH-words.

3.3 Visual Knowledge Augmentation
Existing works (Lu et al., 2022; Wang et al., 2022)
mainly utilize image retrieval or generation module
to augment related visual knowledge. Such a way
is time-consuming and may also involve noisy im-
ages.Inspired by recent works that show the effec-
tive visual-language alignment in VL-PTMs (Rad-
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ford et al., 2021; Li et al., 2021), we utilize the
visually-aligned text encoders to generate the vi-
sual augmentation representations of VH-words.
As the text encoders have been aligned to the image
encoders during pre-training, their output textual
representations can be used as surrogates of visual
augmentations based on real images related to the
input text. As will be shown in experiments (Sec-
tion 4), this approach is not only efficient but very
effective for downstream NLP tasks.

Based on the extracted VH-words, we first add
a prefix text in the image caption style before
the VH-words, e.g., “a photo of: ”, to compose
the input text x′. Then, we utilize the text en-
coder of CLIP (Radford et al., 2021) to encode
x′ and obtain the contextualized word representa-
tions as the visually-aligned representations Hx ∈
Rk×d, where k is the sequence length of x′ and
d is the embedding size. Next, we incorporate a
reformulation layer to aggregate and strengthen
the visually-aligned representation Hx into the
visually-augmented representations of these VH-
words. As the positions of the VH-words vary
from sentence to sentence, we design a position-
aware attention mechanism in the reformulation
layer to inject position information into Hx for ob-
taining the visual representation of each VH-word.
Specifically, we first leverage a soft position em-
bedding matrix E ∈ Rl×d to reserve the position
information of VH-words, where l is the number of
VH-words. Then, we perform the cross-attention
between it and the visual representations as:

Q = E, K = HxW
K + bK , (2)

V = HxW
V + bV , (3)

Hv = softmax(
QK⊤
√

d
)V, (4)

H⊤
v = [h1,h2, ...,hl], (5)

where hi ∈ Rd, K,V ∈ Rk×d. Hv ∈ Rl×d is
the obtained visually-augmented representations of
VH-words, which is leveraged for augmenting the
visual knowledge of the PLM. hi is the visual repre-
sentation of the i-th VH-word in W(V H). Note that
in Eq. 2 and 3, we adopt an efficient way that only
uses the position information to set the query matrix
Q, and the visual semantics are mainly captured
and injected through the key and value matrices.

3.4 Visually-Enhanced Fine-tuning
After obtaining the visually-augmented representa-
tions of VH-words (i.e., Hv in Eq. 5), we propose

a visually-enhanced fine-tuning strategy to inject
the captured visual knowledge. Here, we consider
two cases: (1) full-parameter fine-tuning for small
PLMs, and (2) parameter-efficient prompt-tuning
for large-scale PLMs. Before introducing the learn-
ing method, we simply review the parameters of
our approach, consisting of the parameters in the
underlying PLM (Θplm), the VL-PTM (Θvlp) and
the parameters of the reformulation layer (Θref ).
Note that we will always fix Θvlp in our approach.

Fine-tuning for Small PLMs. For small PLMs,
we can perform full-parameter fine-tuning, which
updates both Θplm and Θref . Specifically, given
the visually-augmented representations Hv of VH-
words, we directly incorporate them into the em-
bedding layer of the PLM. For each VH-word, we
insert its visually-augmented representation after
the original word embedding, to leverage the visual
semantics to enrich the word representations.

Prompt-tuning for Large-Scale PLMs. For
large-scale PLMs, we fix the parameters in it, i.e.,
Θplm, and employ a parameter-efficient prompt-
tuning way to optimize it on downstream NLP
tasks. Concretely, given the visually-augmented
representations Hv of VH-words, we directly in-
sert them before the input representations of every
layer of PLMs. Then, following the typical prompt-
tuning paradigm (Li and Liang, 2021), we only
tune the parameters of the reformulation layer (i.e.,
Θref ) as the soft prompts to adapt all the model
into the fine-tuning task.

Our approach can be generally applied to var-
ious PLMs (e.g., BERT (Devlin et al., 2019),
BART (Lewis et al., 2020), T5 (Raffel et al., 2020))
and NLP tasks (natural language understanding and
text generation). Unlike other complicated visually-
augmented methods (Tan and Bansal, 2020; Wang
et al., 2022), it is more efficient, without the ex-
plicit need of external images or generation model;
and meanwhile, it only introduces a small number
of parameters (Eq. 3), which are easier to learn.

4 Experiments

4.1 Experimental Setup

Datesets. We conduct experiments on four types of
tasks. (1) Natural Language Understanding (NLU):
we extract 6 datasets from the GLUE bench-
mark (Wang et al., 2018); (2) Commonsense rea-
soning: we select CommonsenseQA (Talmor et al.,
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Base Model Method SST-2 QNLI QQP MNLI MRPC STS-B Avg.

CLIP +None 73.3 74.5 72.8 68.4 74.3 73.8 72.85
BLIP +None 76.3 77.4 78.8 72.5 77.8 76.4 76.53

ALBEF14M +None 78.9 78.2 79.4 73.4 76.5 77.5 77.31

BERTbase

+None 89.3 87.9 87.2 79.4 81.7 84.4 84.98
+VOKEN 92.2 88.6 88.6 82.6 83.5 86.0 86.83

+iACE 91.7 88.6 89.1 82.8 85.8 86.6 87.43
+VAWI-SBS 92.9 88.4 89.6 82.2 85.5 86.9 87.58

+VAWI-VABS 92.7 88.9 89.5 82.7 85.8 87.2 87.80
+VAWI-LBS 92.4 89.1 89.7 83.0 85.6 86.9 87.78

RoBERTabase

+None 89.2 87.5 86.2 79.0 81.4 85.4 84.78
+VOKEN 90.5 89.2 87.8 81.0 87.0 86.9 87.06

+iACE 91.6 89.1 87.9 82.6 87.7 86.9 87.63
+VAWI-SBS 91.4 89.4 87.7 82.2 88.2 87.7 87.76

+VAWI-VABS 91.7 89.1 87.9 82.6 88.3 88.1 87.95
+VAWI-LBS 91.6 90.6 87.9 82.4 88.5 88.3 88.21

Table 1: Performance comparison of different methods on NLU tasks, the BEST results are highlighted in bold.
+None denotes that we directly fine-tune the backbone without adding visual information. SBS, VABS, and LBS
represent using the syntax-based strategy, visually-enhanced attention based strategy, and learning-based strategy in
our approach, respectively. The results of VOKEN and iACE on GLUE are reported from Lu et al. (2022).

2019), a 5-way multiple choice QA dataset that
requires commonsense knowledge; (3) Text gener-
ation: we select CommonGen (Lin et al., 2019b), a
constrained text generation task about generative
commonsense reasoning. (4) Cross-modal reason-
ing: we select SNLI-VE (Xie et al., 2019), to eval-
uate the capacity of predicting whether the image
semantically entails the text.

Baseline Models. We compare our approach with
the following baselines, including pre-trained lan-
guage models (PLMs), visual-language pre-trained
models (VL-PTMs), and visually-augmented pre-
trained language modes (VaLMs). (1) PLMs: We
choose BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), BART (Lewis et al., 2020), T5 (Raffel
et al., 2020) as the PLM backbones, and directly
fine-tune them as baselines. (2) VL-PTMs: We
select ALBEF (Li et al., 2021), BLIP (Li et al.,
2022), and CLIP (Radford et al., 2021), which have
been pre-trained on large-scale image-text pairs.
(3) VaLMs: we select VOKEN (Tan and Bansal,
2020) and iACE (Lu et al., 2022), which introduce
the visual information into PLMs by pre-training
on retrieved images and fine-tuning on generated
images, respectively.

Implementation Details. We implement all meth-
ods based on Huggingface Transformers (Wolf
et al., 2020). For all baselines, we set their hyper-

parameters according to their papers. In our ap-
proach, we leverage the text encoder of CLIP (ViT-
B/32) to implement the learnable model-based VH-
words extractor and generate the visual represen-
tations of VH-words in the visual knowledge aug-
mentation module. The hidden size of visual rep-
resentations is set to 512. For different NLP tasks,
we tune the number of visually hungry words in {2,
3, 4, 5}. During fine-tuning, we perform parameter-
efficient tuning on T5-3b and BART-Large, and
full-parameter tuning on other PLMs. For all tasks
and all backbones, we utilize Adam as the opti-
mizer, set the learning rate to 2e-5, weight decay
to 0.01, and a linear warmup for the first 6% steps.
For GLUE, GommonGen, and SNLI-VE datasets,
we fine-tune our model for 3 epochs with a batch
size of 32. For CommonsenseQA, we tune our
model for 10 epochs with a batch size of 32. We
use the cross-entropy loss for classification and the
mean squared error loss for regression.

4.2 Main Experimental Results

In this part, we conduct a series of experiments
on NLU, commonsense reasoning, text generation,
and cross-modal commonsense reasoning tasks.

Evaluation on NLU Tasks. We present the ex-
perimental results of different methods on 6 NLU
tasks in Table 1. First, we observe that VL-PTMs
perform worse than PLMs, a possible reason is that
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Base Model Method CommonsenseQA-3k CommonsenseQA

5% 10% 20% 100% 5% 10% 20% 100%

RoBERTabase

+None 41.88 46.04 50.58 61.88 44.88 50.04 57.08 67.90
+Images 42.37 48.09 52.81 64.22 45.72 51.17 58.96 69.64

+VAWI-SBS 42.94 49.27 53.97 65.10 46.51 52.44 59.87 71.01

RoBERTalarge

+None 48.39 56.30 59.06 74.19 51.24 59.95 65.52 76.65
+Images 49.55 57.78 61.29 75.61 52.18 60.93 66.08 78.39

+VAWI-SBS 50.27 58.17 62.22 76.54 52.98 61.97 67.40 79.19

T5-3B
+None 70.16 73.02 75.04 81.81 71.99 75.27 77.72 82.40

+Images 70.96 73.60 75.91 82.40 72.87 76.17 78.71 83.64
VAWI-SBS+PET 71.52 74.19 76.49 83.61 73.58 73.58 79.66 84.56

Table 2: Performance comparison on CommonsenseQA-3k and CommonsenseQA with different amounts of training
data. We report the average performance on the dev set over three runs, and the BEST results are highlighted in
bold. +Images denotes that we add retrieved images about the VH-words using web search engines, and encode
them via CLIP-ViT.

Method Base Model BLUE-3 BLUE-4 METOR Rouge-L CIDER SPICE

BART-large

+None 42.80 32.42 31.36 57.57 16.56 32.94
+Images 42.67 32.67 32.12 57.46 16.78 32.81

+VAWI-SBS 44.56 34.17 32.47 58.46 17.23 33.67
+VAWI-SBS+PET 43.12 33.76 32.20 58.12 16.91 33.17

T5-3b

+None 45.92 35.92 33.02 58.57 17.71 33.51
+Images 45.69 35.50 33.55 58.94 17.51 32.91

+VAWI-SBS 47.67 37.54 33.41 59.94 18.34 34.67
+VAWI-SBS+PET 47.40 37.36 33.71 59.78 18.18 34.17

Table 3: Performance comparison on CommonGen. We also show the performance of parameter-efficient tuning of
our approach, denoted as +PET. The BEST results are highlighted in bold.

they have been continually pre-trained on large-
scale image-text pairs, which may cause the catas-
trophic forgetting problem. Second, VaLMs (i.e.,
VOKEN, iACE, and VAWI) achieve better perfor-
mance over PLMs. As VaLMs infuse external vi-
sual knowledge into the PLMs, they can help the
PLMs better understand the background knowledge
of some words (e.g., color, shape, and size of ob-
jects). Between the two VaLM baselines, iACE is
slightly better. This is because iACE is enhanced
based on VOKEN and incorporates an image gen-
eration model, so it produces more visual infor-
mation to utilize. However, the generated images
inevitably contain noise and redundant information,
which limits the performance gain of iACE.

Finally, by comparing our approach with all base-
lines, it is obvious that VAWI performs consis-
tently better than them on the six datasets. In our
approach, we adopt an efficient and effective way
that augments the visually-augmented representa-
tions using the text encoder of CLIP to encode the
VH-words from the input text. Benefiting from pre-

training on large-scale image-text pairs, the text
encoder of CLIP has been well aligned with the
semantic space of images, so that it can generate
high-quality visually-augmented representations of
the VH-words to enrich them. Such a way not only
saves the costs of time and computation but also
reduces the influence of inevitable noise from re-
trieved or generated images. Additionally, among
three VH-words extraction strategies, LBS slightly
outperforms others in most NLU tasks. The reason
is that LBS incorporates a learnable model-based
strategy to select the VH-words. Such a way can
adaptively extract proper VH-words with the con-
sideration of the intrinsic knowledge of the PLMs.
However, LBS will increase the computation cost
due to its involved learnable VH-words extractor
layer. Therefore, for efficiency, in the following
experiments, we utilize the SBS strategy in our
approach for comparison.

Evaluation on Commonsense Reasoning Tasks.
Following existing works (Lin et al., 2019a), we
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Method SNLI-VE

10% 20% 50% 100%

ALBEF 65.46 67.52 75.47 80.91
ALBEF+VAWI +SBS 65.94 68.23 76.14 81.64

Table 4: Results on the test set of SNLI-VE task. The
BEST results are highlighted in bold.

also rely on a rule-based strategy to extract the ex-
amples containing visible objects, to construct a
new dataset called CommonsenseQA-3K. It con-
sists of 2,903 and 341 examples in the training set
and dev set, respectively. Based on the Common-
senseQA and CommonsenseQA-3k, we also report
the results with different amounts of training data,
to further evaluate the performance of different
methods in the few-shot setting.

As shown in Table 2, we can also see that with
the help of the visual information from either re-
trieved images or our VAWI-SBS, the performance
of PLMs can be improved significantly. It indi-
cates that visual information is indeed helpful to
improve PLMs for understanding commonsense
knowledge. Besides, our approach outperforms the
method using retrieved images from search engines.
Our approach omits the image retrieval process due
to its inevitably involved noise, and relies on the
text encoder of CLIP to augment the visual repre-
sentations. Such a way can guarantee the relevance
between the augmented visual knowledge and the
text input, reducing the influence of retrieved noisy
images and redundant information. Furthermore,
we also perform parameter-efficient tuning on T5-
3B-encoder with our approach and boost its per-
formance. It shows that our approach is able to be
applied to large-scale PLMs to meet their thirst for
visual information.

Evaluation on the Text Generation Task. As
shown in previous experiments, it is useful to im-
prove the performance of VAWI on commonsense
reasoning and nature language understanding tasks.
Here, we would like to study the effectiveness of
our approach on the text generation task (i.e., Com-
monGen) using large PLMs. As shown in Table 3,
our model VAWI also consistently boosts the per-
formance of BART-Large and T5-3b among all
metrics. It further shows that our approach can
also improve PLMs on the text generation task.
As a comparison, we can see that the retrieved
images are not very helpful and even cause per-
formance degradation. The reason may be that

the text generation task is more sensitive to the
inevitable noise from the retrieved images. Fi-
nally, the parameter-efficient tuning strategy of our
approach also achieves comparable performance
with the full-parameter tuning. It indicates that our
parameter-efficient strategy is able to efficiently
optimize the parameters of large-scale PLMs, and
shows a promising future to apply our approach to
much larger PLMs, e.g., GPT-3.

Evaluation on the Cross-modal Commonsense
Reasoning Task. To verify the generality of our
method, we further implement our VAWI on a VL-
PTM (i.e., ALBEF (Li et al., 2021)), and conduct
experiments on a cross-modal reasoning dataset,
SNLI-VE. Concretely we implement our approach
on ALBEF by inserting the visually-augmented
representations after the VH-words embeddings of
the text encoder before the multimodal encoder,
and keeping others unchanged. As shown in Ta-
ble 4, our VAWI can also improve the performance
of ALBEF using different amounts of training data.
It further shows the generality of our approach in
VL-PTMs, as it can also provide rich information
to enhance the text encoder of VL-PTM, helping it
better perform cross-modal reasoning.

4.3 Ablation Study

In this part, we conduct a series of experiments to
verify whether the improvement of our approach de-
rives from the augmented visual knowledge about
the VH-words. More ablation studies are shown in
Appendix A.

The Effect of the Source of Visual Representa-
tions. We first propose three variants that incor-
porate powerful PLMs, i.e., RoBERTa-base, T5-
Large, and T5-3b respectively, to replace the text
encoder of CLIP in our framework. We also replace
the generated visual representations from the text
encoder of CLIP with random noise, to investigate
the importance of the visual representations. As
shown in Table 5, we can see that our approach is
better than all the variants, even T5-3b with billion-
scale parameters. It indicates that CLIP-base is
more effective to augment visual knowledge to
improve the performance of PLMs. Besides, our
approach also outperforms the variant using ran-
dom noise as the visual representation, showing the
worse performance among all the variants. It also
shows the importance of visual representations, as
they indeed contain the visual knowledge that the
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Source of visual representation (Params) CSQA-3k CSQA SST-2 QQP STS-B QNLI

Random Noise (0M) 61.59 66.78 89.13 86.27 85.13 87.22
RoBERTa-large (355M) 61.18 67.17 89.43 86.53 85.60 87.77

T5-large-encoder (375M) 62.21 67.87 89.71 86.67 86.40 87.94
T5-3b-encoder (1500M) 63.10 68.42 90.24 86.96 86.93 88.21

CLIP-base (52M) 65.10 71.07 91.41 87.72 87.67 89.40

Table 5: Performance comparison of different sources of visual representation in our approach. The base model is
RoBERTa-base.

The text encoder of different VL-PTMs (Params) CSQA-3k SST-2 QQP

Random Noise (0M) 61.59 89.23 86.21
ALBEF (110M) 63.34 90.72 87.17

CLIP-base (52M) 65.10 91.41 87.72
UniCL-base (52M) 65.98 91.75 88.07
CLIP-large (123M) 66.27 92.10 88.31

Table 6: Performance comparison of visual representations from different VL-PTMs in our approach. The base
model is RoBERTa-base.

PLM is hungry for.

The Effect of the Stronger VL-PTMs. In our
work, we choose CLIP-base to enhance PLMs,
as it has been pre-trained on a large-scale image-
text dataset. Generally, a stronger VL-PTM would
be more promising to further improve the perfor-
mance. Here, we replace our CLIP-base model
with some stronger VL-PTMs, e.g., ALBEF (Li
et al., 2021), UniCL-base (Yang et al., 2022), and
CLIP-large. Concretely, ALBEF leverages more
pre-training tasks (e.g., MLM, ITM, and ITC),
UniCL utilizes more high-quality pre-training data,
and CLIP-large increases the scale of model param-
eters. We evaluate the above variations on CSQA-
3k, QQP, and SST-2, and the results are shown in
Table 6. We can see that UniCL and CLIP-large
outperform CLIP-base. It indicates that the VL-
PTMs with the larger scale of model parameters
or more high-quality pre-training data are more ca-
pable of augmenting useful visual knowledge for
PLMs. Considering the efficiency, CLIP-base is
also a good choice in our approach, and we will
investigate more proper VL-PTMs in the future.

5 Conclusion

In this paper, we proposed a general visually-
augmented fine-tuning approach that can be applied
to a variety of PLMs and NLP tasks, without using
any retrieved or generated images, namely VAWI.
Specifically, we first identified and extracted the
visually-hungry words (VH-words) from input
text via a token selector, where three different

methods have been proposed, including syntax-,
attention- and learning-based strategies. Then, we
adopted a fixed VL-PTM text encoder to gener-
ate the visually-augmented representations of these
VH-words. As it has been pre-trained by visual-
language alignment tasks on the large-scale cor-
pus, it is capable of injecting visual semantics into
the aligned text representations. Finally, we trans-
formed the visually-aligned features into visually-
augmented features by reformulation layer based
on VH-words, and inserted them into PLMs to en-
rich the visual semantics of word representations
in PLMs. Experimental results on 10 NLP tasks
show that our approach can consistently improve
the performance of BERT, RoBERTa, BART, and
T5 at different scales, and outperform several com-
petitive baselines significantly. Besides, the visual
prompts of our framework can also be used for
parameter-efficient tuning, which can boost the per-
formance of large language models, such as T5-3b.

Limitations

An important limitation of our approach VAWI is
the need for extracting visually-hungry words (VH-
words) as the trigger to inject visual knowledge
into PLMs. In real-world applications, it is hard
to obtain the annotations of VH-words. Therefore,
we propose three VH-words extraction strategies.
However, the three strategies may be not always
proper for all NLP tasks, and we rely on the experi-
mental results to select the best one among them.
Besides, we adopt the text encoder of CLIP as the
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VL-PTM for generating the visually-aligned repre-
sentation. As a pre-trained model, CLIP also may
contain biases learned from the pre-training corpus,
which may result in improper biased prediction on
some NLP tasks.
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A Ablation Study

A.1 Ablation Study on Visual Knowledge
Augmentation

The Effect of the Pre-trained Dataset of VL-
PTMs. We notice that the pre-training dataset of
VL-PTMs is different from PLMs. Here, we in-
vestigate whether the captions or images from the
large-scale image-text pairs contribute more to the
performance gain of our approach. To verify it, we
pre-train a new PLM only using the captions data.
Following the setting of ALBEF, we utilize the pre-
trained parameters of BERT to initialize this model
and only extract the captions from the pre-training
data of ALBEF (14.5M sentences in total). After
pre-training on these captions until convergence,
we utilize this model to replace CLIP-base in our
approach and keep other settings unchanged. We
conduct experiments on commonsense reasoning
and NLU tasks to evaluate its effectiveness for aug-
menting visual knowledge. As shown in Table 7,
we can see that such a variation underperforms
ALBEF and our approach, and even leads to perfor-
mance degradation on the CSQA task. It indicates
that during pre-training the image data is an im-
portant resource for learning visual knowledge in
VL-PTMs. Only text data (i.e., captions) can not
provide sufficient visual knowledge that PLMs are
hungry for. Therefore, after pre-learned on large-
scale text-image pairs, CLIP can absorb the useful
visual knowledge from the images and inject them
into PLMs in our approach. It further indicates
that the improvement of our method is due to the
involvement of the visual information about the
VH-words.

A.2 Ablation Study on Visually-enhanced
Fine-tuning

Different Insertion Positions of Visual Repre-
sentations. In our visually-enhanced fine-tuning
framework, we insert the visual representation of
the VH-word after its original word embedding. To
verify its effectiveness, we propose three variants
of it that do not insert, insert all visual representa-
tions of VH-words before and after the input text,
respectively. As shown in Table 8, we can observe
that all these variants would lead to a performance
decrease. It demonstrates that a proper position
to insert the visual representation is important for
the utilization of augmented visual representations.
By inserting them after the word embeddings of

corresponding VH-words, PLMs can effectively
aggregate the visual representations to enrich the
word representations, leading to better performance
on downstream NLP tasks.

B Further Analysis

The Frozen CLIP’s Text Encoder. In the ex-
periment presented in Table 1, we directly fine-
tuned CLIP and the results indicate that the per-
formance of VL-PTMs’ text encoder is unsatisfac-
tory when directly fine-tuned on NLP tasks. In
our VAWI, we fix the model parameters of CLIP-
base’s text encoder to preserve the visual knowl-
edge. Hence we also conduct experiments on four
NLU tasks from GLUE using frozen CLIP. Spe-
cially, we fix CLIP-base’s text encoder and only
fine-tuned added 4 transformer layers above it. As
shown in Table 9, we can see that CLIP’s perfor-
mance under this setting is better than that of di-
rectly full-parameter fine-tuning CLIP and also un-
derperforms RoBERTa and BERT. It indicates that
fixing CLIP is more suitable for NLP tasks, and
shows the rationality of VAWI settings that always
fix the CLIP’s text encoder in VAWI to preserve
CLIP’s knowledge.

The Computation Latency of the Proposed
Methods. In our VAWI, we fix the model parame-
ters of CLIP-base to preserve the visual knowledge.
Such a way can also decrease the computation costs
during training and inference. To verify it, we re-
port the mean training and inference latency per
batch on the CSQA-3k dataset of our method and
baselines on RTX3090 GPU, where all these meth-
ods utilize RoBERTa-base as the backbone. As
shown in Table 10, we can see that our proposed
VAWI-SBS and VAWI-VABS would not increase
the latency too much. For VAWI-LBS, as it re-
quires a PLM and a VL-PTM to adaptively select
the VH-words, it will relatively increase the la-
tency. As shown in Table 1, we can see that all the
three variants achieve comparable performance in
6 NLU datasets. Therefore, it is more efficient and
effective to select the SBS and VABS variations
in our approach. Despite it, we can see that all
our variants own less latency than iACE, since our
approach does not require a time-consuming image
generation process. And as shown in Table 1, our
approach can also achieve better performance.

The Effect of the Improper Visually-hungry
Words. To analyze how the quality of the VH-
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The text encoder of different VL-PTMs (Params) CSQA-3k CSQA SST-2 STS-B MNLI

None 61.59 67.90 89.23 85.46 79.06
BERT pre-trained on captions (110M) 62.17 67.56 89.58 85.73 79.24

ALBEF (110M) 63.64 68.47 90.72 87.17 80.86
CLIP-base (52M) 65.10 71.07 91.41 87.73 82.27

Table 7: Performance comparison of visual representations pre-trained using different pre-training data in our
approach. The base model is RoBERTa-base.

Insert Positions CSQA-3k

5% 10% 20% 100%

Not insert 41.88 46.04 50.58 61.88
Before input text - 39.77 44.86 57.47
After input text - 40.23 45.67 58.08

After the VH-words 42.94 49.27 53.97 65.10

Table 8: Performance comparison w.r.t. different inser-
tion positions of visual representations. The base model
is RoBERTa-base.

SST-2 QNLI QQP STS-B

CLIP-base 73.3 74.5 72.8 73.8
Fixed CLIP-base 75.1 76.9 73.7 75.2

Table 9: The effect of fixed CLIP’s text encoder.

words affects the performance of our approach,
we further conduct the experiments on CSQA-3K
and two NLU tasks SST-2 and QQP from GLUE,
to show the effect of insufficient VH-words on
our model performance. After extracting the VH-
words, we remove part of them and only randomly
sample 0%, 20%, and 50% VH-words for augmen-
tation. As shown in Table 11, we can see that with
the decreasing of the sampling probability, the per-
formance of our approach degrades gradually. It
indicates that not enough VH-words would degrade
the performance of our approach.

The Number of VH-words. Our approach has an
important hyper-parameter required to tune, such
as the number of VH-words. VH-words can sup-
ply visual knowledge that PLMs may be hungry
for. Here, we would like to study whether more
VH-words are better to improve performance. We
conduct experiments on the QQP and CSQA-3K
datasets using RoBERTa-base as the backbone, and
present the results in Figure 2. We can see that
with the increase of the number of VH-words, the
performance gain of our approach first increases
and then decreases. A possible reason is that too
many VH-words may also introduce noisy or re-
dundant information (e.g., not very relevant words),

Method Training Time (s) Inference Time (s)

RoBERTa-base 0.506 0.182
+Voken 0.506 0.182
+iACE 1.138 0.512

+VAWI-SBS 0.587 0.241
+VAWI-VABS 0.680 0.308
+VAWI-LBS 0.893 0.486

Table 10: The computation latency during training and
inference.

Correct VH-words proportions CSQA-3k SST-2 QQP

0 % 61.60 89.57 87.63
20 % 62.17 89.44 87.40
50 % 64.22 91.73 89.20

100 % 65.10 92.93 89.74

None 61.88 89.23 86.21

Table 11: The effect of the improper visually-hungry
words. The base model is RoBERTa-base.

which would also influence the fine-tuning perfor-
mance. Instead, it is also more efficient to select a
few VH-words (e.g., two words for CSQA-3k) for
deploying our approach in large-scale PLMs.

Case Study of Extracted Visually-hungry Words.
In this part, we show the VH-words extracted by
syntax-, attention- and learning-based strategies in
Table 12, Table 13, Table 14 and Table 15. We can
see that the three strategies would extract slightly
different VH-words. The reason is that the three
strategies are based on different techniques to iden-
tify the VH-words. As we can see, the cases show
that most of the extracted VH-words by our strate-
gies are generally related to some visual semantics,
e.g., spider, two eyes. Although such VH-words
can not perfectly cover all the visual semantics,
they actually contain most of the important words
that the PLMs may be hungry for, e.g., red and yel-
low. Besides, we can also see that the VH-words
extracted by our three strategies may not perfectly
align with human judgment. In fact, it is also hard
for humans to determine proper rules to identify
VH-words, e.g., people, human, and water. In addi-
tion, as the learned knowledge of PLM is a black

14924



0 1 2 3 4 5 6
VH-words Numbers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A

cc
ur

ac
y 

G
ai

n
CSQA-3k
QQP

Figure 2: Performance comparison w.r.t. different num-
bers of VH-words.

box, it is also difficult for humans to judge the
usefulness of our extracted VH-words for PLMs.

The Interpretability of Augmented Embeddings.
In this part, we show how our augmented embed-
dings infuse visual knowledge into the PLM. Con-
cretely, we show the attention distributions of a
PLM (i.e., RoBERTa-base) in the last few layers
before and after infusing visually-augmented rep-
resentations on CSQA. As shown in Table 16, we
can see that the [CLS] tokens pay more attention to
the VH-words and their visually-augmented repre-
sentations, and the VH-words also pay more atten-
tion to their visually-augmented representations. It
shows that the injected visually-augmented repre-
sentations provide useful knowledge, which guides
the PLM to focus on more important tokens and
also improves the representations of the VH-words
and the [CLS] token.
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Input
Input sentence: Unlike a spider and his many sight seers, people only have what? two eyes.

Syntax-based Strategy
Unlike a spider and his many sight seers, people only have what? two eyes

Visually-enhanced Attention Based Strategy
Unlike a spider and his many sight seers, people only have what? two eyes.

Learning-based Strategy
Unlike a spider and his many sight seers, people only have what? two eyes.

Table 12: The first instance from the CommonsenseQA dataset. The extracted visually-hungry words are highlighted
in green.

Input
Input sentence: Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Syntax-based Strategy
Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Visually-enhanced Attention Based Strategy
Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Learning-based Strategy
Where on a river can a human hold a cup upright to catch water on a sunny, clear day? waterfall.

Table 13: The second instance from the CommonsenseQA dataset. The extracted visually-hungry words are
highlighted in green.

Input
Input sentence: the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Syntax-based Strategy
the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Visually-enhanced Attention Based Strategy
the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Learning-based Strategy
the mesmerizing performances of the leads keep the film grounded and keep the audience riveted.

Table 14: The instance from the SST-2 dataset. The extracted visually-hungry words are highlighted in green.

Input
Input sentence: How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already
starting to turn yellow or yellowish?

Syntax-based Strategy
How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already starting to turn
yellow or yellowish?

Visually-enhanced Attention Based Strategy
How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already starting to turn
yellow or yellowish?

Learning-based Strategy
How do I sell dry Moringa leaves powder in Indian market? Can I use the moringa leaves that are already starting to turn
yellow or yellowish?

Table 15: The instance from the QQP dataset. The extracted visually-hungry words are highlighted in green.
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RoBERTa-Base VAWI
Self-Attention, Layer12, Head5 Self-Attention, Layer12, Head5
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Table 16: The attention maps of the self-attention layers on RoBERTa-base and our approach.
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