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Abstract

Recent works have shown that chain-of-thought
(CoT) prompting can elicit language models to
solve complex reasoning tasks, step-by-step.
However, prompt-based CoT methods are de-
pendent on very large models such as GPT-3
175B which are prohibitive to deploy at scale.
In this paper, we use these large models as rea-
soning teachers to enable complex reasoning in
smaller models and reduce model size require-
ments by several orders of magnitude. We pro-
pose Fine-tune-CoT, a method that generates
reasoning samples from very large teacher mod-
els to fine-tune smaller models. We evaluate
our method on a wide range of public models
and complex tasks. We find that Fine-tune-
CoT enables substantial reasoning capability in
small models, far outperforming prompt-based
baselines and even the teacher model in many
tasks. Additionally, we extend our method by
leveraging the teacher model’s ability to gener-
ate multiple distinct rationales for each original
sample. Enriching the fine-tuning data with
such diverse reasoning results in a substantial
performance boost across datasets, even for
very small models. We conduct ablations and
sample studies to understand the emergence of
reasoning capabilities of student models.1

1 Introduction

Language models (LMs) have demonstrated re-
markable performance in a wide range of down-
stream tasks. Recently, large language models
(LLMs) have demonstrated in-context generaliza-
tion capabilities: performing downstream tasks
simply by conditioning on few in-context exem-
plars or plain natural language task descriptions
(Brown et al., 2020; Sun et al., 2021). Despite
these advancements, even the largest LLMs have
been found to struggle with complex tasks which
require multiple reasoning steps (Rae et al., 2021).

1Our code implementation and data are available at
https://github.com/itsnamgyu/reasoning-teacher.
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Figure 1: Fine-tune-CoT uses teacher-generated rea-
soning to teach students. We prompt a very large
teacher model, such as GPT-3 175B, to solve complex
questions via zero-shot chain-of-thought reasoning. We
then use the reasoning samples to fine-tune a much
smaller student model. See Figure 2 for details.

To solve complex tasks, recent works show that it
is possible to elicit reasoning abilities by prompting
LLMs to perform chain-of-thought (CoT) reason-
ing, i.e., generate a series of intermediate reason-
ing steps. This can be achieved by providing CoT
demonstrations as exemplars in prompting (Wei
et al., 2022b). More recently, Kojima et al. (2022)
found that LLMs can be prompted to perform CoT
reasoning simply by providing a natural language
instruction to think step-by-step.

A major drawback of prompt-based CoT rea-
soning methods, however, is their reliance on ex-
tremely large models that span hundreds of billions
of parameters (Wei et al., 2022b; Kojima et al.,
2022). These models are prohibitive to deploy
at scale due to overwhelming computational re-
quirements and inference costs (Wei et al., 2022b).
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Original Sample
Question

A pet store had 56 puppies. In one 
day they sold 24 of them and put the 
rest into cages with 4 in each cage. 
How many cages did they use?

Answer

.8.

Prompt (Zero-shot-CoT)

Q: A pet store had 56 puppies. In one day 
they sold 24 of them and put the rest into 
cages with 4 in each cage. How many 
cages did they use?
A: Let’s think step by step.

Completion (Generated)

The store started with 56 puppies. 24 of 
them were sold, so that means that there 
are now 32 puppies left.  Since there are 4 
puppies in each cage, that means that the 
store now has .8  cages.

Step 1. Reasoning Generation

Large 175B Teacher Model

Step 2. Curation

Small Student Model

Prompt

A pet store had 56 puppies. In one day 
they sold 24 of them and put the rest into 
cages with 4 in each cage. How many 
cages did they use? ###

Completion

The store started with 56 puppies. 24 of 
them were sold, so that means that there 
are now 32 puppies left.  Since there are 
4 puppies in each cage, that means that 
the store now has 8 cages.
-->  8 END

Reasoning Sample (Curated)

Dataset

Step 3. Fine-tuning{Diverse Reasoning

Figure 2: Detailed overview of our proposed Fine-tune-CoT method. Step 1: a very large teacher model is prompted
to solve complex questions (yellow) by generating multi-step reasoning explanations (green). Step 2: completions
are filtered based on the correctness of the final prediction (red). The question, rationale, and answer are used to
compose a reasoning sample comprised of the prompt and a multi-step solution. Step 3: the curated reasoning
samples are used to fine-tune a small, lightweight student to exhibit reasoning capabilities. The application of an
LM-based teacher enables diverse reasoning—generating multiple distinct rationales for each original sample to
enrich the fine-tuning data. This boosts the performance of student models without any additional human annotation.

Therefore, we strive to enable complex reasoning
in small models which are more feasible for large-
scale deployment.

In this light, we propose an approach named
Fine-tune-CoT, which utilizes the reasoning capa-
bilities of very large LMs to teach small models
how to solve complex tasks. We apply existing
zero-shot CoT prompting (Kojima et al., 2022) to
generate rationales from very large teacher models,
and use them to fine-tune smaller student models2.
We illustrate this in Figure 2. We note that stan-
dard fine-tuning without rationales has been shown
to be inadequate for solving reasoning tasks with
small models (Talmor et al., 2018). While there
have been attempts to fine-tune small models with
hand-annotated reasoning steps (Nye et al., 2021;
Cobbe et al., 2021), they often require task-specific
training setups and high-quality rationales which
are costly to annotate (Wei et al., 2022b). In con-
trast, our approach can be readily applied to novel
downstream tasks without hand-crafted reasoning
or task engineering.

We also propose a novel extension to our method,
termed diverse reasoning, to maximize the teaching
effects of Fine-tune-CoT. Inspired by the intuition

2This can be interpreted as a variant of knowledge distilla-
tion (Hinton et al., 2015).

that complex tasks can have multiple solutions with
distinct reasoning paths (Evans, 2010), we generate
multiple reasoning solutions from teacher models
using stochastic sampling to augment the training
data for student models3. We find that this is a
simple yet highly effective approach to maximizing
student performance, which has not been explicitly
recognized in concurrent works on fine-tuning with
CoT reasoning (Huang et al., 2022; Li et al., 2022b;
Magister et al., 2022; Fu et al., 2023).

We evaluate our method on 12 tasks using a
wide range of publicly available models. We find
that Fine-tune-CoT can elicit notable reasoning per-
formance in small models while preserving much
of the versatility of prompt-based CoT reasoning,
which previously required >100B parameter mod-
els (Wei et al., 2022b). Diverse reasoning enables
remarkable gains in performance at the minor cost
of additional teacher inference at development time,
by exploiting our unique learning setup. This en-
ables models as small as 0.3B to outperform larger
students, and even the 175B teacher model in some
tasks. Our ablations show that performance is con-

3Diverse reasoning is orthogonal to existing data augmen-
tation techniques (Yoo et al., 2021; Meng et al., 2022) which
aim to augment new question-answer pairs rather than diverse
reasoning solutions for complex questions.
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sistently scalable across all axes considered: di-
verse reasoning, dataset size, teacher performance,
and student model size. This shows the potential
of our method to enable reliable performance in
small models that are feasible for use in real-world
applications. Lastly, we conduct thorough sample
studies and analyses which shed light on crucial
details previous overlooked in fine-tuning for CoT
and provide intuition on the emergence of reason-
ing abilities in small models.

2 Related Work

Downstream transfer in language models
Much previous work established a “pre-train and
fine-tune” paradigm for enhancing LLM perfor-
mance on downstream tasks (Radford et al., 2018;
Dong et al., 2019; Vaswani et al., 2017; Devlin
et al., 2018). However, fine-tuning is not always
easily applicable (Hendrycks et al., 2020). More
recent literature exhibits a paradigm shift towards
“prompting” the model to predict the desired out-
put (Liu et al., 2021; Raffel et al., 2020). Large
LMs can exhibit strong performance in this set-
ting (Brown et al., 2020). For smaller models to be
able to perform similarly, additional engineering
is usually required (Gao et al., 2021; Schick and
Schütze, 2021b; Schick et al., 2020). For more
complex tasks, the idea of using samples with ex-
plicit reasoning steps for fine-tuning a model (Nye
et al., 2021; Cobbe et al., 2021) preceded the ap-
proach of chain-of-thought (CoT) prompting (Wei
et al., 2022b), which enables very large LMs to
perform well.

Chain-of-thought reasoning In few-shot CoT
prompting, the model learns to generate intermedi-
ate reasoning steps that lead to a problem solution,
after being fed examples of step-by-step reason-
ing. This enables very good performance on a wide
range of tasks. (Wang et al., 2022). Addition-
ally, LLMs can perform well in an unsupervised
task-agnostic setting, using Zero-shot-CoT (Ko-
jima et al., 2022). This requires no fine-tuning or
task specific conditioning, and substantially outper-
forms standard zero-shot learning and sometimes
even few-shot learning on a wide number of tasks.

Yet, prior work has shown that CoT re-
quires extremely large models for optimal perfor-
mance (Hoffmann et al., 2022; Chowdhery et al.,
2022). In our work, we contrast this by showing
how to utilize CoT reasoning methods for smaller
models by fine-tuning them on rationales gener-

ated by a very large model. Using various LLM-
generated explanations for fine-tuning smaller mod-
els has been successfully used in prior work (Li
et al., 2022a), with a focus on specific single tasks.
Also, a similar approach to ours is mentioned
in (Huang et al., 2022); however we note that this
concurrent work focuses on using Few-shot-CoT to
self-generate fine-tuning examples by and for very
large proprietary models. There is a brief glimpse
into fine-tuning on smaller distilled models, but the
results are limited to one dataset and very large
teacher models that are inaccessible to the general
community. In contrast, we provide a rich set of
results and qualitative/quantitative analysis on a
wide range of datasets, using open-source models
that are small and accessible to everyone.

Knowledge distillation Typically, knowledge
distillation (KD) refers to training small models
derived from large models in order to reduce model
size and latency, while still preserving accuracy
and capacity to generalize (Hinton et al., 2015;
Sanh et al., 2019). Essentially, KD is a form of
model compression, making efficient deployment
to capacity-limited devices possible (Bucilua et al.,
2006). We note that our work could also be con-
sidered a distant variant of KD (Gou et al., 2021),
similar to works on improving prompt-based meth-
ods such as Yoo et al. (2021); Schick and Schütze
(2021b,a); Zelikman et al. (2022), or works on data-
free distillation (Micaelli and Storkey, 2019; Nayak
et al., 2019; Shen et al., 2021), where the transfer
data is synthetically generated from a large teacher
model. Similarly, sequence-level distillation, i.e.
training a student model on sequence distributions
of a larger teacher, can make neural machine trans-
lation more efficient (Kim and Rush, 2016). De-
spite being similar in spirit, our method still dis-
tinguishes itself from such previous work. The
role of the teacher model in our method is to teach
the notion of intermediate reasoning. It is not the
specific output that is the main supervising signal
for reasoning, but rather the generation’s structure.
Hence, we do not use a standard KD loss func-
tion that reflects trying to match the teacher output.
Adding to this, we note that our diverse reasoning
is also unusual in the context of KD, where it is e.g.
sufficient in practice to only generate one teacher
sequence for sequence level distillation.
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3 Chain-of-Thought Fine-Tuning

We propose Fine-tune-CoT, a task-agnostic ap-
proach to enable chain-of-thought reasoning in
small LMs. The core idea is to generate reason-
ing samples from very large teacher models using
CoT prompting and subsequently fine-tune small
student models using the generated samples. This
approach preserves the versatility of prompt-based
CoT methods while overcoming their reliance on
prohibitively large models. To maximize versatility
and minimize teacher inference costs, we use the
task-agnostic Zero-shot-CoT prompting method
(Kojima et al., 2022) on teacher models, as it does
not require any reasoning examples or long infer-
ence context. We discuss our choice of teacher
CoT prompting method in Section 7.3. In the fol-
lowing, we characterize Fine-tune-CoT in three
distinct steps. We also provide a visual overview
in Figure 2.

Step 1. Reasoning generation First, we utilize
a large teacher model to generate CoT reasoning
explanations for a given task. Consider a standard
sample Si consisting of a question qi and its true
answer ai. Using Zero-shot-CoT 4. we prompt the
teacher model to generate a reasoning explanation,
or rationale, r̂i to solve question qi and make a final
answer prediction âi. The resulting text sequence,
including the prompt and generations, takes the
following form: “Q: <qi>. A: Let’s think step by
step. <r̂i> Therefore, the answer is <âi>”.

Step 2. Curation Next, we filter the generated
samples and reformat them into prompt-completion
pairs. For filtering, we simply compare the final
prediction of the teacher model âi with the ground-
truth answer ai, following previous works (Zelik-
man et al., 2022; Huang et al., 2022). Note that
this filtering incurs some loss of training samples.
For all instances i where âi = ai, we repackage
(Si, r̂i, âi) into a reasoning sample S′

i = (pi, ci), a
prompt-completion pair. To maximize inference-
time efficiency, we use special-character based de-
limiters to minimize token usage. Specifically, pi
and ci each take the form of “<qi> ###” and “<r̂i>
--> <ai> END”. We note that answer-based filter-
ing does not ensure the correctness of the ratio-
nales, especially for multi-choice questions. We
provide an analysis in Appendix E.1 regarding this
important detail which has not been addressed in
concurrent work.

Step 3. Fine-tune Finally, we fine-tune a small
pre-trained student model on the assembled reason-
ing samples. We use the same training objective
of that used during pre-training, i.e., autoregres-
sive language modeling objective, or next-token
prediction (Radford et al., 2018).

Diverse reasoning To maximize the teaching ef-
fects of Fine-tune-CoT, we can generate multiple
reasoning explanations for each training sample.
This approach is motivated by the intuition that
multiple reasoning paths can be used to solve com-
plex tasks, i.e., type-2 tasks (Evans, 2010). We
posit that this unique feature of complex tasks, in
tandem with the stochastic generation abilities of
the teacher model, can enable diverse reasoning
to significantly boost reasoning supervision sim-
ply through additional teacher inference. In de-
tail, for a given sample Si, instead of applying
Zero-shot-CoT using greedy decoding to obtain a
single explanation-answer pair (êi, âi), we use a
stochastic sampling strategy, i.e., temperature sam-
pling with large T , to obtain D distinct generations
{(r̂ij , âij)}Dj . Subsequent reasoning sample cura-
tion and fine-tuning then proceed as before. We
refer to D as the degree of reasoning diversity. A
similar approach is used in Wang et al. (2022);
Huang et al. (2022), where multiple CoT outputs
are generated and marginalized to find the optimal
answer. However, the effects of such diverse rea-
soning on teaching student models has not been
acknowledged or thoroughly investigated in con-
current work (Huang et al., 2022; Li et al., 2022a;
Magister et al., 2022; Fu et al., 2023). We note
that diverse reasoning imposes an important trade-
off between the development cost and inference
cost/quality of student models which we discuss in
Section 5.3.

4 Experiments

Tasks and datasets We evaluate our method on
12 datasets pertaining to four categories of complex
reasoning, following Kojima et al. (2022). These
include arithmetic (SingleEq, AddSub, MultiArith,
GSM8K, SVAMP), other (Date Understanding,
Tracking Shuffled Objects), symbolic (Last Let-
ter Concatenation, Coin Flip), and common sense
(CommonSenseQA, StrategyQA) reasoning. We
provide details and references in Appendix B.

4Note that Zero-shot-CoT is itself a two-step prompting
method. The reasoning (blue) is generated in the first step and
answer prediction (red) is generated in the second step.
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Method Params
Single Add Multi

GSM8K Aqua SVAMP
Date Shuffled Last Coin Common Strategy

Eq Sub Arith Understanding Objects Letter Flip SenseQA QA

Random 0.00 0.00 0.00 0.00 20.00 0.00 17.12 33.33 0.00 50.00 20.00 50.00

Teacher: InstructGPT (text-davinci-002)

Zero-shot-CoT 175B 82.24 78.99 78.89 40.26 34.25 64.67 73.87 50.22 56.00 92.67 61.75 53.57

Student: GPT-3 (ada, babbage, curie)

Zero-shot 6.7B 0.66 0.84 3.33 1.74 16.54 2.67 9.91 32.89 0.00 56.67 20.23 52.98

Zero-shot-CoT 6.7B 1.32 2.52 5.00 2.35 21.26 1.33 15.32 31.11 0.00 46.67 19.98 51.09
Few-shot-CoT 6.7B 22.37 31.93 10.00 2.50 15.75 11.33 12.84 - 0.67 40.00 24.73 54.68

Fine-tune 6.7B 24.34 25.21 15.00 6.14 15.35 20.67 14.41 33.78 32.67 72.00 76.17 65.21

Fine-tune-CoT 0.3B 7.24 6.72 6.11 3.11 23.62 5.00 17.12 49.33 50.67 99.33 32.68 52.55
1.3B 11.18 11.76 13.33 4.70 19.69 8.00 38.74 52.44 50.67 100.00 43.08 52.69
6.7B 20.39 21.01 33.33 6.75 24.02 12.67 60.36 64.44 52.67 98.67 56.76 55.02

Fine-tune-CoT 0.3B 9.21 10.08 23.89 - - 14.33 58.56 61.78 59.33 99.33 - 57.21
w/ diverse reasoning 1.3B 18.42 19.33 27.78 - - 16.33 70.27 72.00 60.67 100.00 - 57.06

6.7B 24.34 31.09 53.33 - - 30.33 83.78 73.33 62.00 100.00 - 58.22

Table 1: Fine-tune-CoT Performance. Accuracy (%) of OpenAI models on 12 tasks under Fine-tune-CoT (with
diverse reasoning) and baseline methods. ‘Random’ refers to random-guess performance derived based on the
number of choices in multi-choice tasks. For diverse reasoning, we report results for maximum degree D considered:
D = 64 for MultiArith and SVAMP; D = 8 for other datasets. We omit diverse reasoning for large datasets due to
resource constraints and Few-shot-CoT for Tracking Shuffled Objects due to absence of prompts.

Models For teacher models, we use four vari-
ants of GPT-3 175B (Brown et al., 2020), provided
by the OpenAI API. Unless otherwise stated, we
use text-davinci-002 based on InstructGPT
175B (Ouyang et al., 2022) as the teacher for Fine-
tune-CoT. For student models, we consider four
popular model families. For our main experiments,
we use GPT-3 {ada, babbage, curie} as they
are readily available for fine-tuning via the Ope-
nAI API. Due to the blackbox nature of the API,
we also consider various open-source models un-
der controlled settings. We use GPT-2 {Small,
Medium, Large} (Radford et al., 2019) and T5-
{Small, Base, Large} (Raffel et al., 2020) as rep-
resentative model families for decoder-only and
encoder-decoder architectures, respectively. We
also use the instruction-tuned version of T5, Flan-
T5-{Small, Base, Large} (Chung et al., 2022), to in-
vestigate the effects of instruction tuning on student
models, prior to applying Fine-tune-CoT. These stu-
dent models are 25–2500x smaller than the teacher
model, thus considerably more feasible for real-
world deployment. We provide details on models
and API usage in Appendix C.

Baseline methods We provide a comparison of
Fine-tune-CoT (ours) with four baseline methods:
standard zero-shot prompting, vanilla fine-tuning,
Zero-shot-CoT (Kojima et al., 2022), and Few-shot-
CoT (Wei et al., 2022b). Given a training sample
{(qi, ai)}i, we use a simple format “Q: <qi>” for

Method
Model CoT Sample Teacher

Reference
Updates Output Utilization Usage

Zero-shot ✗ ✗ ✗ ✗ (Radford et al., 2019)
Zero-shot-CoT ✗ ✓ ✗ ✗ (Kojima et al., 2022)
Few-shot-CoT ✗ ✓ △ ✗ (Wei et al., 2022b)
Fine-tune ✓ ✗ ✓ ✗ (Radford et al., 2018)
Fine-tune-CoT ✓ ✓ ✓ ✓ Ours

Table 2: Taxonomy of methods. CoT methods are
more interpretable due to reasoning output. While Few-
shot-CoT can utilize few in-context samples, fine-tuning
can utilize any number of training samples via model
updates. Fine-tune-CoT benefits from the reasoning
capabilities of teacher models.

zero-shot prompting. For vanilla fine-tuning, we
format the prompt and completion as “<qi> ###”
and “<ai> END”, respectively. We clarify the taxon-
omy of methods in Table 2. For text generation, we
use greedy decoding following Wei et al. (2022b);
Kojima et al. (2022) throughout our experiments,
except for diverse reasoning. For diverse reasoning
on the teacher, we use temperature sampling with
T = 0.7, following Wang et al. (2022). We provide
experimental details in Appendix A.

4.1 Results

In this section, we present the reasoning perfor-
mance of models using Fine-tune-CoT and diverse
reasoning. We compare with various baselines and
demonstrate the scalability of our method across
four axes: degree of diverse reasoning (Figure 3),
dataset size (Figure 4), performance of the teacher
(Figure 5), and size of the student model (Figure 6).
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We present our findings on GPT-3 models in the
main text and defer results on open-source models
to Appendix G, with a brief summary at the end of
this section.

Fine-tune-CoT elicits complex reasoning in
small models Table 1 summarizes the accuracy
of student models using the proposed Fine-tune-
CoT, compared to prompt-based CoT baselines as
well as standard fine-tuning. While Zero-shot-CoT
exhibits remarkable performance on the very large
175B model (Kojima et al., 2022), it fails to en-
able complex reasoning in all three smaller mod-
els, showing near-negligible performance across
all tasks. We also find that small models are unable
to approach these tasks under standard zero-shot
prompting. On the other hand, Fine-tune-CoT elic-
its notable reasoning performance, demonstrating
significant gains over Zero-shot-CoT when using
smaller models and outperforming both fine-tuning
and Few-shot-CoT in more than half of the tasks.
For complex arithmetic, Fine-tune-CoT achieves a
notable 33% accuracy on MultiArith while Zero-
shot-CoT only reaches 5%. Few-shot-CoT and
fine-tuning only achieve 10% and 15%, respec-
tively. For two commonsense reasoning tasks, our
method outperforms the near-random performance
of Zero-shot-CoT by 37% and 5%, respectively.
Furthermore, it surpasses Few-shot-CoT on Com-
monSenseQA by 32% and performs similarly on
StrategyQA. We observe that Fine-tune-CoT perfor-
mance is most notable for tasks that are not overly
complex, which include other reasoning tasks (Date
Understanding, Shuffled Objects) and symbolic rea-
soning (Last Letter, Coin Flip), significantly out-
performing other baselines. See Appendix Table 9
for performance of all students.

Small models can outperform very large teach-
ers in reasoning Table 1 also shows that Fine-
tune-CoT is highly effective on small models com-
pared to the large 175B teacher model. For the
tasks Shuffled Objects and Coin Flip, Fine-tune-
CoT is shown to outperform the teacher model
using either 1.3B or 6.7B parameters, i.e., reduc-
ing the number of required parameters by approx.
25–100x. We also find that Fine-tune-CoT with the
very small 0.3B model consistently outperforms
the 6.7B model under Zero-shot-CoT, demonstrat-
ing that our method is able to unlock a wider range
of capabilities compared to the baseline, even when
model size is vastly reduced.
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Few-shot-CoT (6.7B)
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Fine-tune-CoT (6.7B)
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Figure 3: Diverse reasoning performance. Accuracy
(%) of GPT-3 student models under Fine-tune-CoT with
varying degrees of diverse reasoning D. Baseline per-
formance of the largest model under vanilla fine-tuning
and Few-shot-CoT are shown for comparison. Diverse
reasoning is not applicable to the baselines.

Diverse reasoning substantially improves Fine-
tune-CoT performance. To examine the learn-
ing effects of diverse reasoning and compare it with
two baselines given by fine-tuning and Few-shot-
CoT, we apply Fine-tune-CoT using 1–64 reason-
ing explanations per sample across three model
scales on MultiArith and SVAMP5. Figure 3 shows
that diverse reasoning can significantly improve
the performance of student models using Fine-tune-
CoT. For the 6.7B student model, we find a boost
of around 26% on MultiArith, and around 17% on
SVAMP. We also note that using diverse reasoning
always leads to outperforming the baseline within
the respective model size, and can even boost per-
formance of our method beyond that of a larger
model that does not use diverse reasoning. This
even includes the teacher in two cases (Date Under-
standing, Last Letter). Moreover, we find that di-
verse reasoning can boost the performance of Fine-
tune-CoT to surpass that of both Few-shot-CoT
and vanilla fine-tuning across all model sizes. We
posit that due to our focus on complex tasks, the di-
versity of reasoning paths and linguistic templates
can substantially aid in teaching student models to
reason.

Fine-tune-CoT consistently benefits from more
data. We perform an ablation on dataset size to
study the performance scalability of our method
with dataset size. We see that the performance of

5For diverse reasoning, we generate teacher rationales
stochastically with T = 0.7 instead of greedy decoding, which
accounts for small differences in absolute performance num-
bers between Table 1 and diverse reasoning with D = 1.
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Figure 4: Effects of dataset size. Accuracy (%) of the
GPT-3 6.7B student model by dataset size under vanilla
fine-tuning vs Fine-tune-CoT (with diverse reasoning).
Baseline performance under Few-shot-CoT is shown
for comparison. Diverse reasoning is not applicable
to standard fine-tuning. We show diverse reasoning
performance with D = 64 for MultiArith and SVAMP;
D = 8 for others.

the 6.7B model clearly scales with the size of the
dataset, independent of the task. In comparison,
vanilla fine-tuning does not always exhibit this be-
havior. In fact, for Date Understanding, we find that
an increase in dataset size harms the performance
of fine-tuning. Furthermore, Fine-tune-CoT sees
additional benefits from diverse reasoning, which
is not applicable in standard fine-tuning.

Better reasoners are better teachers Next, we
can ask the question of whether the performance of
the teacher is correlated with that of their student
when using Fine-tune-CoT. To test this, we use dif-
ferent versions of GPT-3 as teacher models, keep-
ing the size of the student model constant at 6.7B
parameters (Figure 5). We find that student per-
formance indeed scales with teacher performance,
particularly in the less complex tasks Date Under-
standing and Last Letter. There, the performance of
the student matches the performance of the teacher
very closely. This also fits with our observations
in Appendix D, which show that the successes and
failures of teachers are correlated with those of
the students. We note that this scaling effect is
in contrast not a given in knowledge distillation,
where more accurate teachers do not always result
in better students (Menon et al., 2021).
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Figure 5: Effects of teacher performance on students.
Accuracy (%) of teacher models (Zero-shot-CoT) and
their corresponding GPT-3 6.7B student models (Fine-
tune-CoT). Baseline performance under vanilla fine-
tuning and Few-shot-CoT are shown for comparison.
Teacher models are not applicable to Few-shot-CoT
which uses few human-annotated examples.

Fine-tune-CoT performance scales with model
size for small LMs Finally, we explore the effect
of scaling up student model size on our method, and
compare it with the effects of increasingly larger
student models in Few-shot-CoT as well as vanilla
fine-tuning. We can observe that the performance
of Fine-tune-CoT is consistently scalable with stu-
dent size (Figure 6). In contrast, the two baselines
do not always exhibit the same behavior: in Date
Understanding, neither Few-shot-CoT nor vanilla
fine-tuning results in scalable performance.

Results on open-source student models Over-
all, our findings on T5, Flan-T5, and GPT-2 show
similar trends to those observed on GPT-3. Small
models exhibit near-random performance under
standard zero-shot or CoT prompting in nearly all
cases. Notable, we find that encoder-decoder mod-
els, i.e., T5 and Flan-T5, show noteworthy perfor-
mance under standard fine-tuning, suggesting that
causal masking may be a bottleneck to reasoning
in decoder-based language models in the absence
of CoT output. Fine-tune-CoT consistently outper-
forms prompt-based baselines and is comparable or
superior to vanilla fine-tuning. Diverse reasoning
improves performance even further, often exhibit-
ing significant gains. We report our full findings on
open-source models in Appendix G.
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Figure 6: Effects of student model scale. Accuracy (%)
of GPT-3 student models of various sizes under Few-
shot-CoT, vanilla fine-tuning, and Fine-tune-CoT (with
diverse reasoning). The hatched portion indicates the
performance boost of Fine-tune-CoT when using diverse
reasoning with D = 64 on MultiArith and SVAMP;
D = 8 on others.

4.2 Analysis

Sample study To identify the strengths and weak-
nesses of our method, we perform a thorough sam-
ple study across all datasets and methods. Across
all arithmetic tasks, we find that a large portion
of errors arises from calculations. MultiArith and
SVAMP also show many semantic errors, but these
are significantly reduced with diverse reasoning.
For difficult tasks such as GSM8K and AQUA, we
found that all methods tend to struggle. We found
that our method is highly effective in text-based
tasks, excluding commonsense reasoning, as well
as tasks that contain common linguistic patterns.
On the other hand, we find that students under
Zero-shot-CoT often repeat questions or produce
incoherent repetitive statements. While Few-shot-
CoT elicits step-by-step sentences, the student mod-
els rarely seem to understand the semantics of the
question, and generations often contain logical or
commonsense errors. For details on our sample
study, see Appendix D.

Nuances of fine-tuning on CoT reasoning We
shed light on nuances that have often been over-
looked in previous or concurrent work (Wei et al.,
2022b; Li et al., 2022a; Magister et al., 2022). First,
we acknowledge the possibility that correct sam-
ples may contain incorrect reasoning. In fact, we
find that 27.6% of correct teacher completions for
Date Understanding contained reasoning errors.

However, ablations on rationale filtering suggest
that these incorrect rationales can aid in student
supervision (Appendix E.1). Secondly, we find
that common maximum sequence lengths used for
CoT generations often lead to incomplete answers.
We observe that reasoning length differs among
datasets, and longer generations typically improve
accuracy, but may not be beneficial for fine-tuning
(Appendix E.2). Lastly, we find that many datasets
are comprised of samples that share common tem-
plates, potentially compromising the validity of
our random train-test splits. To address this, we
evaluate our method on manual template-wise data
splits, and confirm that students retain meaningful
reasoning capabilities (Appendix E.3).

5 Discussion

5.1 Accessibility of Fine-tune-CoT

Owing to the versatility of the teacher generation
method, i.e., Zero-shot-CoT, our method can be
readily applied to any complex task without task-
specific engineering. Rationales can be readily gen-
erated using publicly available APIs such as those
provided by OpenAI or Anthropic. This makes it
viable to obtain CoT training data in low-resource
scenarios, which not only outperforms standard
fine-tuning, but elicits the student to output inter-
pretable explanations. Fine-tuning and inference
on student models can also be performed on much
more accessible hardware, in contrast to very large
models. This can reduce long-term inference costs
and minimize environmental impact while making
our method fully accessible to a wide community.

5.2 Viability of Fine-tune-CoT

While Fine-tune-CoT elicits notable complex rea-
soning capabilities in small models, performance
on some difficult datasets would not be consid-
ered viable for real-world use, such as 30.33% on
SVAMP. However, our findings in Section 4.1 in-
dicates significant potential for improvement, as
our method is shown to be uniquely scalable with
(1) diverse reasoning, (2) dataset size, (3) teacher
model performance, and (4) student model size.
The use of diverse reasoning and better teacher
models is especially promising, as these can bene-
fit from improved teacher LLM performance and
inference costs in the future. In addition, it is pos-
sible to incorporate recent CoT methods, which
lead to significant performance improvements, in
student models, which we discuss in Section 7.3.
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5.3 Tradeoffs of Fine-tune-CoT
The aforementioned opportunities to enhance Fine-
tune-CoT also pose many important tradeoffs. We
leave further analysis to future work.

Degree of diverse reasoning The performance
benefits of diverse reasoning come at the cost of
additional teacher inference. Therefore, diverse
reasoning poses a tradeoff between development
cost vs inference cost/quality. In other words, per-
formance gains from diverse reasoning may be uti-
lized to enhance student performance or alleviate
the need for larger student models. This must also
be taken into account for fair evaluation of similar
distillation methods in the future.

Data acquisition Data annotation and diverse
reasoning can both be used to enlarge fine-tuning
data, but each have their associated costs. We note
that the cost of diverse reasoning is linear to the
number of generated rationale and the number of
original samples. Despite this, it can still be a cost-
effective alternative to hand-annotating additional
data. A preliminary cost analysis in Appendix F
shows that the pareto front of data-acquisition-cost
to performance always incorporates diverse reason-
ing. We expect that the cost benefits of diverse
reasoning will continue to improve with improve-
ments in teacher model performance and efficiency.

5.4 Emergence of CoT reasoning
The emergence of abilities such as CoT reasoning
has become a point of interest in recent works (Wei
et al., 2022b,a; Schaeffer et al., 2023). We note that
the efficacy of Fine-tune-CoT on small models does
not disprove this emergence, as our method is based
on fine-tuning. However, we believe our results can
provide some insight into this phenomena.

Why does Fine-tune-CoT work in small mod-
els? In a seminal work, Wei et al. (2022b) sug-
gests that CoT reasoning is an emergent ability of
scale—more specifically, a complicated phenom-
ena involving a variety of emergent abilities, such
as semantic understanding, symbol mapping, arith-
metic ability. However, our sample studies suggest
that Fine-tune-CoT elicits these emergent abilities
even in relatively small models (see Appendix D).
We explain this from two perspectives. First, Wei
et al. (2022b) demonstrated the emergence of rea-
soning abilties by identifying a reduction in the
frequency of reasoning errors with larger model
scale. Similarly, we find that more potent forms

of supervision also lead to a gradual reduction in
reasoning errors. For example, we found a clear
distinction between Zero-, Few-shot-CoT and Fine-
tune-CoT (with diverse reasoning) in the frequency
and severity of semantic errors, i.e., understanding
complex questions, and calculation errors. This
suggests that explicit supervision on reasoning can
also lead to the emergence of reasoning abilities.
Second, we qualitatively find that students show ca-
pabilities that are reminiscent of the larger teacher
model. We found that students can recognize com-
mon semantics and reasoning cues of the given
task, and is able to imitate the process of splitting
large tasks into subtasks. This suggests that it is
possible to learn reasoning abilities pertaining to a
particular domain. We posit that this is possible in
small models due to the limited domain of reason-
ing, and may not be applicable in reasoning tasks
that require large domains of knowledge.

Distillation of emergent abilities Chain-of-
thought reasoning has been recognized as a prime
example of emergent abilities in very large lan-
guage models (Wei et al., 2022a). Our findings
show that it is possible to distill this ability, un-
der certain domains, to much smaller models sim-
ply through fine-tuning. The potential for distilla-
tion implies that future advancements in language
models may lead to emergent abilities that are not
only pertinent to those larger models, but could
also have a broader impact, cascading benefits to
smaller models.

6 Conclusion

We have proposed Fine-tune-CoT, a method that
uses LLMs as reasoning teachers to transfer the
broad reasoning capabilities previously found in
>100B models to student models as small as 0.3B.
We propose diverse reasoning as a novel approach
to maximize these teaching effects, exploiting the
unique characteristics of this new learning setup
to vastly improve performance. Our extensive ex-
periments show that Fine-tune-CoT elicits signifi-
cant reasoning performance in small models, thus
demonstrating the distillation of CoT reasoning
which has been considered an emergent ability of
scale. By leveraging publicly available models
with zero-shot prompting, we demonstrate a task-
agnostic approach to elicit reasoning performance
in small models, making complex reasoning feasi-
ble for real-world deployment and accessible to the
broader community.
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7 Limitations

7.1 Towards concise answers
Sample studies show that rationales output from
student models may occasionally be repetitive
and digressive. This is undesirable in terms of
inference-time efficiency as well as interpretability.
As a minor optimization to inference computation,
we construct our fine-tuning sample templates us-
ing special-character based delimiters instead of
natural language used in concurrent work (Huang
et al., 2022) to minimize sequence length. Prelimi-
nary findings showed this had no significant impact
on reasoning performance. More importantly, it is
desirable to train student models to generate con-
cise answers in terms of substance. Appendix E.2
hints at the possibility for this, showing that fine-
tuning on shorter reasoning samples causes the
student model to also produce shorter rationales.

7.2 Exploring a wider array of models
We note that the performance of our method is
currently not state-of-the-art. However, it can ben-
efit from advances in teacher models as well as
other prompting methods. For example, future
work should include a wider array of teachers, such
as the highly versatile ChatGPT, which typically
generates detailed long responses that may be able
to impart more knowledge to the student. More
recent models such as GPT-4 have demonstrated
significant advances in complex reasoning abili-
ties, which may improve the efficacy of Fine-tune-
CoT on very difficult datasets, such as GSM8K.
Conversely, our method could prove even more
advantageous when applied to recent models with
improved efficiency, such as those based on the re-
cent LLaMA model (Touvron et al., 2023), which
has sparked a proliferation of work focused on com-
pact language models. Both of these avenues are
promising for future work.

7.3 Better CoT inference methods
The use of diverse reasoning and better teacher
or student models is especially promising, as it is
possible to leverage future improvements in model
performance and decreased inference costs. How-
ever, we can also consider other ways to boost
performance, such as using different prompting
methods. For example, previous work shows that
Few-shot-CoT (Wei et al., 2022b) can improve ac-
curacy over Zero-shot-CoT by a wide margin, e.g.,
going from 78.7% to 93.0% on MultiArith (Kojima

et al., 2022). However, our choice to use Zero-
shot-CoT to generate reasoning samples from the
teacher model is motivated by the fact that Few-
shot-CoT requires a significantly larger inference
context. With the current pricing models based
on token usage, the typical setup of 8-shot CoT
would cost approximately 8 times more compared
to Zero-shot-CoT. Therefore, we see a tradeoff be-
tween using the inference budget for Few-shot-CoT
and using it for diverse reasoning with Zero-shot-
CoT. On the other hand, we also note that recent
works introduce various ways to improve CoT rea-
soning performance substantially (often to near-
perfect levels), which can be applied to our student
models. These include refinement over repeated
inferences (Wang et al., 2022; Li et al., 2022b) and
self-improvement (Zelikman et al., 2022; Huang
et al., 2022). In particular, self-consistency (Wang
et al., 2022) can be utilizied on unlabeled samples
to maximize the teaching signal. In contrast, we
aim to achieve CoT reasoning without the infer-
ence time cost incurred by very large LMs. Future
work is needed to incorporate these methods into
Fine-tune-CoT while minimizing development and
inference costs.

7.4 Connection with knowledge distillation

We assume that there is a lot of potential in strength-
ening the connections between knowledge distilla-
tion and our method. We have already seen in this
work that our method shares some characteristics
with KD, such as the fact that the knowledge of
intermediate reasoning imparted by using also in-
correct samples can have positive effects on student
accuracy, akin to “dark knowledge” (Menon et al.,
2021) that is transferred by training on teacher out-
put logits and not one-hot labels. We have seen
that this leads to a quantity-quality tradeoff when it
comes to the ability of the student model to gener-
alize: having fewer but perfectly curated reasoning
samples is not necessarily as helpful as having a
larger amount of reasoning samples that might not
always be fully correct. On the other hand, we have
also found that more accurate teachers do lead to
more accurate students, which is not always the
case in KD (Müller et al., 2019). It would therefore
be of interest for future work to formalize the con-
nection of Fine-tune-CoT with classic KD methods,
and potentially test the use of a different distillation
loss function that takes the teacher’s actual output
into account.
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8 Ethics Statement

Our work presents various challenges and opportu-
nities in terms of bias and toxicity in language mod-
els. It is widely known that LLMs trained on large
corpora have been shown to capture biases found
in the training data (Brown et al., 2020; Chowdhery
et al., 2022). Since our student models are trained
on reasoning samples generated by these LLMs, it
is possible that such characteristics of the teacher
model can get passed along to the student. This is
an important point to consider when selecting the
teacher model for our method.

Our training setup, however, does offer a unique
opportunity to minimize bias and toxicity in stu-
dent models, by influencing the samples used for
fine-tuning. One approach would be to augment
the curating step of Fine-tune-CoT to filter out bi-
ased or toxic samples. It is possible to automate
this via neural network-based verifiers, previously
used to filter correct output (Cobbe et al., 2021;
Li et al., 2022b). Alternatively, one may consider
optimizing the CoT prompts to minimize bias and
toxicity in teacher-generated rationales.

We note that bad actors can also potentially take
advantage of our method to utilize complex reason-
ing for malicious purposes and deploy it at scale,
using small models. This highlights the importance
of safeguarding the potential capabilities of LLMs
by major providers. To prevent the distillation of
malicious reasoning abilities in small (or large) stu-
dents, future work in identifying usage patterns
involved in these distillation schemes may help
providers apply more stringent precautions to these
use cases.
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A Experimental Details

A.1 Generation

Maximum sequence length For the maximum
sequence length of teacher-generated rationales,
r̂i, we use Lr = 128, following Kojima et al.
(2022), unless stated otherwise. For the maximum
sequence length of the student model predictions,
we use Lp = 1024, unless stated otherwise. We
retroactively applied Lp = 1024 as the default, af-
ter discovering that Lp = 128 is insufficient for
many tasks, as discussed in Appendix E.2.

Sampling temperature We apply greedy decod-
ing for all generations, except diverse reasoning, to
obtain deterministic results following (Wei et al.,
2022b; Kojima et al., 2022). For diverse reasoning,
we use temperature sampling with T = 0.7 to ob-
tain diverse samples, following a similar approach
from Wang et al. (2022).

A.2 Answer cleansing

We follow the method used in Kojima et al. (2022)
to cleanse answers generated by models to assess
their correctness.

A.3 Few-shot-CoT exemplars

For Few-shot-CoT prompting, we use exemplars
provided by Wei et al. (2022b), with some minor
formatting adaptations for consistency with our
other experiments. For Last Letter Concatenation
and Coin Flip, for which Few-shot-CoT prompts
are not provided, we use 8 training samples used
in our 8-shot data experiments shown in Figure 4
and adapt them for Few-shot-CoT using the format
of Wei et al. (2022b). This was not applicable to
Tracking Shuffled Objects, therefore it was omitted
from Few-shot-CoT experiments.

A.4 Fine-tuning OpenAI models

We use default hyperparameters set by the OpenAI
API for both vanilla fine-tuning and Fine-tune-CoT.
While the specifics of the fine-tuning API is not
publicly known, some details on hyperparameters
are documented in the API reference 6. Accord-
ing to the default settings, our models are trained
for 4 epochs. The batch size and learning rate de-
termined based on the number of examples used
for training. The batch size is set to 0.2% of the
number of training examples capped at 256. The

6https://platform.openai.com/docs/api-reference/fine-
tunes/create

learning rate is set to 0.05, 0.1, or 0.2 times that of
the learning rate used to pre-train the base model,
depending on the batch size. Training loss is also
applied to the prompt portion of the training ex-
amples, i.e., the question, with a small weight of
0.01. Based on API pricing , we posit that OpenAI
employs a form of parameter efficient fine-tuning
such as LoRA (Hu et al., 2021) for their fine-tuning
API instead of updating all model parameters.

A.5 Fine-tuning open source models

For vanilla fine-tuning and Fine-tune-CoT on open
source models, we strictly control for hyperparam-
eters. Across all experiments, we fine-tune the
entire model with a fixed learning rate of 3e-4 and
batch size of 8. Upon inspection of model perfor-
mance under various learning rates and batch sizes,
we found that optimal parameters varies among
datasets, even between those with similar number
of reasoning samples. We train all models for a
maximum of 20 epochs, which we found to be suf-
ficient for test accuracy to plateau. We report the
best test accuracy from 20 epochs, but found that
performance varies significantly between epochs.
Overall, we found that performance by epoch is
stable for larger models, and that instruction-tuned
Flan-T5 is more stable compared to T5. Similar
to learning rate and batch size, the optimal num-
ber of epochs also varies between datasets, even
those with similar number of reasoning samples.
Based on the above, we note that our reported
performances of fine-tuned open-source models
may be significantly under-estimated compared to
those with optimal hyperparameters, and recom-
mend practitioners to optimize hyperparameters
using a separate validation set, per each training
setting.

B Datasets

We provide a summary of datasets used in our ex-
periments, including their original licenses, in Ap-
pendix Table 3. We consider the 12 datasets used
in Kojima et al. (2022) to measure reasoning per-
formance. For Last Letter Concatenation and Coin
Flip, we use the publicly available data provided
by Kojima et al. (2022).

Train-test split Contrary to previous works on
prompt-based CoT such as Wei et al. (2022b); Ko-
jima et al. (2022), our fine-tuning approach requires
distinct sets of samples for training and testing. If
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Dataset Choices Training Samples Test Samples Data Split License References

SingleEq - 356 152 70:30 None Koncel-Kedziorski et al. (2015)
AddSub - 276 119 70:30 Unspecified Hosseini et al. (2014)
MultiArith - 420 180 70:30 Unspecified Roy and Roth (2016)
GSM8K - 7473 1319 Original MIT Cobbe et al. (2021)
AQUA-RAT 5 10000 254 Custom Apache-2.0 Ling et al. (2017)
SVAMP - 700 300 70:30 MIT Patel et al. (2021)
Date Understanding 5–6 258 111 70:30 Apache-2.0 Srivastava et al. (2022)
Tracking Shuffled Objects 3 525 225 70:30 Apache-2.0 Srivastava et al. (2022)
Last Letter Concatenation - 350 150 70:30 Unspecified Wei et al. (2022b); Kojima et al. (2022)
Coin Flip 2 350 150 70:30 Unspecified Wei et al. (2022b); Kojima et al. (2022)
CommonSenseQA 5 9741 1221 Original Unspecified Talmor et al. (2018)
StrategyQA 2 1603 687 70:30 Apache2.0 Geva et al. (2021)

Table 3: Description of datasets used in our study.

separate subsets for training and testing (or devel-
opment) are provided, we use those. Otherwise, we
perform a samplewise random split with a train-test
ratio of 70:30. For AQUA, due to the disproportion-
ately large size of the original training set, we ran-
domly sample 10,000 instances for training in our
experiments. Note that due to the highly templated
nature of many datasets, this naive data split may
not be appropriate for evaluating reasoning capa-
bilities. This is an important nuance of fine-tuning
on CoT reasoning, which we address in Appendix
E.3.

Model Family Params Role Variant / Name in API

GPT-3 175B Teacher davinci
InstructGPT 175B Teacher text-davinci-001
InstructGPT 175B Teacher text-davinci-002
InstructGPT 175B Teacher text-davinci-003

GPT-3 6.7B Student curie
GPT-3 1.3B Student babbage
GPT-3 0.3B Student ada

T5 60M Student Small
T5 220M Student Base
T5 700M Student Large

Flan-T5 60M Student Small
Flan-T5 220M Student Base
Flan-T5 700M Student Large

GPT-2 124M Student (Small)
GPT-2 355M Student Medium
GPT-2 774M Student Large

Table 4: Description of models used in our study.

C Models and API Usage

Appendix Table 4 describes all teacher and student
models used in our study. We use InstructGPT
(Ouyang et al., 2022) as the default teacher model
in our experiments, due to its superior zero-shot rea-
soning performance, compared to GPT-3 (Brown
et al., 2020) of the same size (Kojima et al., 2022).

Specifically, we use text-davinci-002 at
the default, as it was the best available model
at the start of our experiments. We were un-
able to consider small InstructGPT models for
fine-tuning, as it is not offered by the OpenAI
API. We attach model size information based on
(https://blog.eleuther.ai/gpt3-model-sizes/), follow-
ing Kojima et al. (2022).

Our total expenditure for API usage, including
all preliminary experiments, was $1,981 USD. The
majority of this expenditure occurred after Septem-
ber 1st, 2022, from which the pricing for infer-
ence on davinci models was $0.02/1K tokens,
among others. Between teacher model inference,
student model {fine-tuning, inference}, the major-
ity of API usage in terms of cost was focused on
teacher model inference.

D Sample Study

To understand where our method makes mistakes,
where diverse reasoning can improve performance,
and where our method always performs well, we
observe randomly sampled instances and analyze
the reasoning performance on them. To do so, we
compare its generations for these samples with (1)
the output of the large teacher model, (2) a student
model using Zero-shot-CoT (3) a student model
using Few-shot-CoT, and (4) a student model us-
ing fine-tuning without chain of thought reasoning.
Our analysis reflects our overall findings, which
we exemplify with representative examples in Ta-
bles 10–13.

D.1 Error analysis

For our analysis of the most common types of er-
rors, we take a look at datasets where we find par-
ticularly bad performance of our vanilla method,
also in comparison to other students. We also dis-
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cuss the benefits of using diverse reasoning in D.2.
We summarize our observations below.

Difficult datasets First, we observe that the sets
GSM8K and AQUA appear to be too difficult for
any small student model, in particular, given that
the teacher model gets below 50% accuracy on
both. In fact, even correct answers are usually cor-
rect only by chance, due to the high complexity of
the tasks (Appendix Tables 10a,b). For AQUA in
particular, we note that while we occasionally find
meaningful reasoning in the 6.7B student model,
students clearly cannot sufficiently learn to solve
the tasks. We do note however that of all the stu-
dent methods, Fine-tune-CoT still gets the best
performance in these two datasets. A similar, if
less salient, issue arises for StrategyQA. Here, the
teacher also performs only 3% above the random
guess accuracy of 50%. The smaller student mod-
els actually manage to improve on this performance
as long as they do not use Zero-shot-CoT, in par-
ticular vanilla fine-tuning, but the errors arising in
Fine-tune-CoT often look very similar to the ones
in the large teacher model. We see that all models
usually merely retrieve information related to the
question, but cannot synthesize an answer from it
(Appendix Tables 10c,11a).

Arithmetic mistakes Next, we note that small
models overall exhibit weak arithmetic skills. This
has already been discussed in previous literature,
where calculation capability has been found to
scale with model size (Wei et al., 2022a). Es-
pecially in SingleEq (Appendix Table 11b) and
AddSub (Appendix Table 11c), a majority of er-
rors in the output of student models using Fine-
tune-CoT simply arise from wrong calculations,
less so bad reasoning. This is also a major fac-
tor in the bad performance our method exhibits on
SVAMP as well as GSM8K; even correct multi-
step reasoning cannot compensate for the fact that
the model’s arithmetic tends to be wrong on inter-
mediate steps (Appendix Tables 11d, 12a). Only
the teacher model then does better on these tasks,
given its much larger size, even though it does not
get perfect accuracy either. However, we note here
that very large language models, such as PaLM
540B, can be trained on arithmetic and scientific
data to be able to reason correctly about a wide
range of mathematical tasks in a step-by-step fash-
ion (Lewkowycz et al., 2022).

Problematic benchmarks, impact of common-
sense reasoning errors Meanwhile, when look-
ing at our method’s performance in Common-
senseQA, we note that producing consistent multi-
step reasoning is not always the issue. We find
that the student model utilizing Fine-tune-CoT can
often generate logical reasoning paths for many
of the samples that are marked as false (Appendix
Table 13b). Rather, the exact answer is often sub-
jective, making it difficult to guess the correct out-
put from logical reasoning alone (Appendix Ta-
ble 13c). CommonsenseQA thus is not always
an ideal benchmark when judged on accuracy, but
gives insight into how well the model can produce
reasoning. We also note a difference compared to
Few-shot-CoT in terms of the impact of reasoning
errors: the latter only performs around 5% above
random, lacks understanding of the question in
many cases, and makes more severe logical and
commonsense mistakes compared to our method.
In fact, Fine-tune-CoT comes close to the teacher
due to the relatively lower impact of errors that
do arise (Appendix Table 13d). This suggests that
Fine-tune-CoT enables stronger task-solving capa-
bilities and avoids making serious commonsense
mistakes that prevent it from arriving at a reason-
able conclusion.

Aligned failures Importantly, we note that for
each dataset, there seems to be a difference between
“easy” and “hard” instances. When we consider the
accuracy of the teacher and other student models
(using fine-tuning, Zero-shot- or Few-shot-CoT)
on tasks where our method fails, we find that it
is always lower than on tasks where our method
is successful. That is, successes and failures tend
to be aligned across the different methods. We
can hypothesize that factors such as content bias
may play a role here; language models have been
found to fail depending on context and content of
the task, in a way similar to human reasoners (Das-
gupta et al., 2022). We can identify samples that
hint at this issue when we look at questions that
include phrasing that seems contradictory or coun-
terintuitive to the context that the model expects
(see Appendix Table 13d, where the number of
movies watched is larger than the number of avail-
able movies). Additionally, previous work shows
that GPT-3 exhibits a performance gap between
instances including terms that are frequent in the
pretraining corpus, and instances including less
frequent terms (Razeghi et al., 2022). This can
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contribute to uneven performance on a multitude of
(especially numerical) tasks across different meth-
ods and model sizes. We can then surmise the
observed absolute differences in accuracy to stem
from the various sources of errors for each method.
For example, fine-tuning has much less room for
error than Fine-tune-CoT, which can additionally
make mistakes on intermediate reasonings such
that errors compound.

D.2 Improvements from diverse reasoning

Semantic issues We find that models seem sensi-
tive to how a question is formulated. This is notice-
able in all datasets, in particular in SVAMP and to
a certain degree in MultiArith. Besides arithmetic
mistakes, we observe that such semantic issues are
one of the main factors for uneven performance of
vanilla Fine-tune-CoT on these two datasets.

In particular, we observe this issue when there
is redundant information present in the question
(Appendix Table 12b). Such cases elicit wrong rea-
soning, or lead the model to become stuck on the
question, similarly to what usually happens with
Zero-shot-CoT in the student model (i.e. repeat-
ing the question, or coming up with information
that only vaguely pertains to the question). Other
common sources of errors are when hidden vari-
ables make up the first part of the task (i.e. those
tasks that force the model to calculate a previously
unknown value that is described in the first sen-
tence (Appendix Table 12c), or when the model
encounters overloaded words (e.g., “landing” in
Appendix Table 12d). We also observe samples
where the model gets stuck on an intermediate re-
sult (Appendix Table 13a). This observation agrees
with previous findings that language models have
recency bias (Zhao et al., 2021).

However, this source of errors can be compen-
sated for by using diverse reasoning. When com-
paring the generations from Few-shot-CoT, vanilla
Fine-tune-CoT and Fine-tune-CoT with diverse
reasoning on MultiArith, we find that diverse rea-
soning enables the model to understand the ques-
tion better. While calculation errors are still rel-
atively frequent, the generations show clear ad-
vantages in terms of semantic understanding and
being able to reason logically as a consequence.
This is especially clear when compared to Few-
shot-CoT, which exhibits problems both in under-
standing the question and formulating coherent ex-
pressions, especially when three or more terms

are involved in the calculation, as mentioned in
Kojima et al. (2022). By contrast, Fine-tune-CoT
with diverse reasoning makes for a significantly
smoother reasoning performance than using Few-
shot-CoT or even vanilla Fine-tune-CoT. This re-
sults in vastly improved accuracy on both Multi-
Arith and SVAMP.

D.3 Strengths
Having analyzed the main sources of errors, we
can now focus on the datasets that elicit good per-
formance from our method, regardless of whether
we use diverse reasoning.

Text-based datasets As arithmetic errors are one
of the main reasons for the decrease in perfor-
mance of small student models, it comes as lit-
tle surprise that our vanilla method without di-
verse reasoning performs well on datasets that are
mainly text-based and do not require actual cal-
culation skills. This includes Date Understanding
(60.4%) (Appendix Table 14a), Last Letter Con-
catenation (52.67%) (Appendix Table 14b), Coin
Flip (98.7%) (Appendix Table 14c), and Shuffled
Objects (64.4%) (Appendix Table 14d). Our meth-
ods performs significantly above random choice
on these sets, and additionally beats the teacher
on Shuffled Objects and Coin Flip. We find that
accuracy metrics for these sets are mostly faith-
ful: while the elicited reasoning is not always very
detailed, and occasionally misses some reasoning
steps (Appendix Table 14e) , the model draws cor-
rect conclusions from mostly correct steps. We also
note that similar to MultiArith and SVAMP, perfor-
mance on these four datasets can be even further
boosted with diverse reasoning, outperforming the
teacher model across all four.

Patterns These datasets also have very clear pat-
terns in their tasks, which helps Fine-tune-CoT to
perform well by providing cues on how to solve
a specific task. We note that in contrast, classic
fine-tuning does not have an advantage in these
datasets, and it gets significantly lower accuracy
than Fine-tune-CoT on all four. The same is also
true for MultiArith, which we have used as a bench-
mark in the main text. While arithmetic errors
cause the absolute accuracy of our method to be
lower than the teacher, it significantly outperforms
fine-tuning on MultiArith even without using di-
verse reasoning. Indeed, we find that also in the
presence of arithmetic errors, our model reasons
correctly in many cases. We can surmise that the

14869



patterned nature of the tasks in MultiArith helps
the student model to understand what is asked of
it, eliciting the correct reasoning. Additionally, we
note that the presence of such patterns in success-
ful datasets does not mean that our method overfits
to existing templates. In our template-split anal-
ysis (Appendix E.3), we in fact show that while
tasks look similar to one another in certain datasets
such as Date Understanding, the student model’s
reasoning does not rely on simply matching tem-
plates or memorizing particular solutions. This
implies that our method can generalize to previ-
ously unseen tasks; the patterns in the datasets do
not produce overfitting, but can be surmised to act
as cues for the model’s understanding of its current
task. Thus, we observe that the reasoning skills of
a student using Fine-tune-CoT can overcome the
smaller model capacity (which proves to be com-
pletely prohibitive, e.g., for Zero-shot-CoT to have
any success on the various tasks).

E Nuances of Fine-tune-CoT

E.1 Rationale filtering

We investigate whether answer-based filtering is
sufficient for selecting good teacher-generated rea-
soning samples. It is possible for the teacher
model to answer correctly despite incorrect reason-
ing, especially in multi-choice questions where the
random-guess probability is significant. To investi-
gate the potential impact of a better filtering scheme
(as opposed to our baseline answer-based filtering)
we manually annotate the correctness of rationales
from the teacher model and evaluate student perfor-
mance when fine-tuning on correctly reasoned sam-
ples. We use the Date Understanding dataset for
this ablation, as it is comprised of well-grounded
multi-choice questions for which Fine-tune-CoT
achieves adequate performance. Appendix Table 6
compares the Fine-tune-CoT performance of stu-
dent models on Date Understanding when using
correct samples filtered based on answer predic-
tions vs golden samples, hand-picked based on
the correctness of rationales. For golden samples,
we exclude samples that contain incorrect reason-
ing steps or irrelevant steps which are misleading.
We find that 28% of correct samples have incor-
rect rationales–significantly more than the random-
guess performance of 17.12%, indicating the im-
portance of filtering. Surprisingly, we however find
that answer-based filtering outperforms the more
stringent human filtering by 5-11%, given the same

initial samples. When we match the number of sam-
ples post-filtering (via undersampling), we do find
that fine-tuning on golden samples outperforms
that on correct samples by 5-8%. These results
suggest that there is a tradeoff between the quality
and quantity of reasoning samples which must be
addressed when considering sample-filtering meth-
ods. We also note that this must be considered in
tandem with diverse reasoning, which can drasti-
cally increase the quantity of reasoning samples.

E.2 Maximum sequence length
Following the original setting for Zero-shot-CoT
(Kojima et al., 2022), we limit the max sequence
length, or max tokens, allowed for the teacher-
generated rationale and student reasoning predic-
tions, denoted Lr, Lp, to 128 initially. How-
ever, we find that this can be insufficient in many
datasets. Allowing for longer inference, we observe
that model performance improves significantly on
AQUA and commonsense reasoning tasks (Ap-
pendix Table 5). Sample inspection shows that ra-
tionales with over ∼500 tokens are typically repet-
itive or too digressive. To investigate the effect
of the max length Lr of the teacher rationale on
fine-tuning, we compare student performance us-
ing Lr = {128, 512} (Appendix Table 7). The
effect of Lr on student performance varies across
datasets, and increased Lr does not necessarily im-
prove student performance on tasks that require
longer rationales, such as AQUA. Finally, we ex-
amine the length distribution of the generated ratio-
nales from the teacher model and student trained
on short (Lr = 128) and long (Lr = 512) rea-
soning samples, respectively (Appendix Figure 7).
We find that the distribution is different for each
dataset. Notably, we find that while the distribu-
tions from the long students were similar to that of
the teacher, the generated rationale from the short
students were typically limited to less than ∼128
tokens. These findings are in line with the intu-
ition that different tasks require different lengths
of rationales, and suggest that careful considera-
tion is needed in determining parameters related to
sequence length.

E.3 Templated datasets
Upon inspection, we found that many datasets con-
tain groups of samples which share common tem-
plates. Therefore, naive samplewise data split has
the potential to leak the same templates into the
train and test sets, essentially demoting the learn-
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Model Max Single Add Multi
GSM8K Aqua SVAMP

Date Shuffled Last Coin Common Strategy
Params Tokens Eq Sub Arith Understanding Objects Letter Flip SenseQA QA

Teacher: InstructGPT (text-davinci-002)

175B
128

81.18 75.72 76.90 42.42 29.63 64.00 65.89 54.10 57.43 89.71 59.86 53.40
(84.83) (90.22) (95.24) (69.85) (44.04) (86.57) (98.06) (97.14) (99.71) (97.14) (82.55) (71.55)

2048
81.18 75.72 76.48 47.73 34.77 66.00 63.28 54.10 57.43 89.71 59.40 53.03
(84.83) (90.22) (94.29) (99.34) (96.42) (99.00) (97.14) (97.14) (99.71) (97.14) (99.92) (99.69)

Student: GPT-3 (ada, babbage, curie)

0.3B
128

7.24 6.72 5.56 3.11 16.54 4.33 17.12 48.89 50.67 99.33 30.30 47.16
(96.05) (99.16) (96.11) (74.75) (45.67) (91.33) (100.00) (100.00) (100.00) (100.00) (86.73) (87.63)

1024
7.24 6.72 6.11 3.11 23.62 5.00 17.12 49.33 50.67 99.33 32.68 52.55

(98.68) (99.16) (97.22) (99.77) (100.00) (97.33) (100.00) (100.00) (100.00) (100.00) (100.00) (99.71)

1.3B
128

11.18 11.76 13.89 4.02 15.35 7.33 38.74 53.78 50.67 100.00 40.95 47.02
(92.76) (96.64) (98.89) (75.36) (48.03) (90.33) (100.00) (99.56) (100.00) (100.00) (86.57) (83.99)

1024
11.18 11.76 13.33 4.70 19.69 8.00 38.74 52.44 50.67 100.00 43.08 52.69
(98.68) (98.32) (99.44) (99.92) (99.61) (99.00) (100.00) (100.00) (100.00) (100.00) (99.92) (98.98)

6.7B
128

21.05 20.17 34.44 7.20 16.93 12.67 60.36 64.00 52.00 98.00 51.27 47.16
(92.76) (97.48) (99.44) (76.19) (55.91) (93.67) (99.10) (100.00) (100.00) (100.00) (85.26) (84.28)

1024
20.39 21.01 33.33 6.75 24.02 12.67 60.36 64.44 52.67 98.67 56.76 55.02
(98.68) (100.00) (100.00) (99.92) (100.00) (99.00) (100.00) (100.00) (100.00) (100.00) (100.00) (99.71)

Random 0.00 0.00 0.00 0.00 20.00 0.00 17.12 33.33 0.00 50.00 20.00 50.00

Table 5: Ablation on maximum sequence length. Accuracy (%) of Zero-shot-CoT on the teacher model and
Fine-tune-CoT on GPT-3 student models, based on maximum sequence length. Values in parentheses refer to the
percentage of generated rationales that were completed within the allotted maximum sequence length. Percentages
lower than 90% are marked in bold. Note that the maximum sequence length is applied to the reasoning portion, i.e.,
step 1, of Zero-shot-CoT and to the entire output of Fine-tune-CoT.
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Figure 7: Effects of teacher reasoning length on student reasoning length. Distribution of the length of generated
reasoning sequences from the 175B teacher model and fine-tuned 6.7B student models on four datasets. Student
(Short) refers to students that were fine-tuned on reasoning samples with maximum rationale sequence length of
Lr = 128, and Student (Long) refers to students that were fine-tuned on longer reasoning samples with Lr = 512.

Method Filter Samples
Model Params

0.3B 1.3B 6.7B

Zero-shot-CoT 0 10.81 14.41 15.32

Fine-tune-CoT Answer 170 17.12 38.74 60.36
Fine-tune-CoT Golden 123 17.12 28.83 54.95
Fine-tune-CoT Answer† 123 17.12 18.92 50.45
Random 16.09

Table 6: Effects of rationale filtering. Accuracy (%)
of GPT-3 student models under Fine-tune-CoT when us-
ing samples filtered using answer predictions (Answer),
or filtered by humans based on the correctness of the
rationale (Golden). Answer† refers to using a randomly
sampled subset of the correct samples to match the num-
ber of golden samples.

Model Max
GSM8K AQUA

Common Strategy
Params Tokens SenseQA QA

0.3B
128 3.11 23.62 32.68 52.55
512 3.41 15.35 32.10 52.98

1.3B
128 4.70 19.69 43.08 52.69
512 3.79 18.90 43.65 53.42

6.7B
128 6.75 24.02 56.76 55.02
512 7.96 18.90 58.15 54.15

Random 1.01 20.44 20.01 50.18

Table 7: Effects of teacher reasoning length on stu-
dent performance. Accuracy (%) of GPT-3 students
models under Fine-tune-CoT on four datasets which
require longer rationales, when trained on reasoning
samples with maximum rationale sequence lengths of
Lr = 128, 512.
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Figure 8: Cost analysis of data acquisition methods. Accuracy (%) of GPT-3 (6.7B) student model under
Fine-tune-CoT with varying degrees of diverse reasoning and dataset sizes. Values in parentheses indicate estimated
total cost of data acquisition, i.e., data annotation and diverse reasoning inference.

Params Split MultiArith Date Understanding

0.3B
Sample-wise 5.56 17.12
Template-wise 5.35 22.22

1.3B
Sample-wise 13.89 38.74
Template-wise 7.49 35.19

6.7B
Sample-wise 34.44 60.36
Template-wise 21.39 49.07

Table 8: Sample-wise vs template-wise split. Accuracy
(%) of GPT-3 student models under Fine-tune-CoT on
two moderately templated datasets when using a sample-
wise vs template-wise train-test split.

ing problem into simple pattern matching, rather
than complex reasoning. This brings into question
the validity of naive samplewise data split, as it has
the potential to leak the same templates into the
train and test sets. To investigate whether the stu-
dent models are truly learning to reason rather than
matching simple patterns, we manually group sam-
ples by template and evaluate Fine-tune-CoT using
a template-wise data split. We consider MultiArith
and Date Understanding as they contain a moderate
number of templates. Note that all datasets exclud-
ing GSM8K, CommonsenseQA, and StrategyQA
contain templates to varying degrees. Appendix
Table 8 shows the performance of Fine-tune-CoT
when using sample-wise vs template-wise split, us-
ing the same train-test ratio of 70:30. While student
performance is typically lower with a template-
wise split, it still significantly outperforms random
guess performance, as well as prompt-based base-
lines shown in Appendix Table 1. This reaffirms
that Fine-tune-CoT is able to elicit complex reason-
ing capabilities in small language models.

F Data Annotation vs Diverse Reasoning

In Appendix Figure 8, we analyze the cost of data
annotation and diverse reasoning, based on current
OpenAI API pricing and a low estimate of anno-
tation cost at 30 annotations per hour at an hourly
rate of $20, i.e., $0.67 per question-answer sample.
When comparing the cost and student performance
of models trained with D = 1 and D = 64, we
can clearly see that using diverse reasoning can
enhance the cost-effectiveness of data acquisition.
However, as the cost of diverse reasoning corre-
lates with the size of the dataset, it is important to
consider the cost-performance tradeoffs.
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G Experiments on Open Source Models

To validate the generality of our method, we apply
our method to a wide range of student models be-
yond variants of GPT-3. While the OpenAI API
for GPT-3 inference and fine-tuning is accessible
and does not require high-end GPUs, the model
weights and implementation are not publicly avail-
able and may involve black-box processing. We
therefore conduct experiments from Section 4 on
open-source models under a standard setting with
fixed hyperparameters, as explained in Appendix A
and report our results in the following. Tables and
figures include results from Section 4 on GPT-3 for
reference.

Prompt-based baselines A comprehensive per-
formance evaluation of student models across mul-
tiple tasks is encapsulated in Table 9, comparing
Fine-tune-CoT against baseline methods. Perfor-
mance of standard zero-shot prompting, predomi-
nantly insignificant, is omitted when negligible but
does exhibit unexpected spikes on Flan-T5, such
as 94.22% on Tracking Shuffled Objects on the
smallest model. Few-shot-CoT likewise demon-
strates inconsequential performance across most
student models, yet the Flan-T5 models reveal sig-
nificant performance on some tasks such as 7.51%
on GSM8K and 83.87% on CommonSenseQA.
This hints at the possibility that instruction tuning
may empower models to comprehend and execute
CoT prompts, unveiling a latent reasoning capacity
within smaller language models.

Fine-tune-CoT vs vanilla fine-tuning Further
examining Table 9, we note that vanilla fine-tuning
achieves notable performance in encoder-decoder
architectures, namely T5 and Flan-T5, achieving
more than 80% on Date Understanding and 100%
on Coin Flip, significantly outperforming vanilla
fine-tuning on GPT-2 and GPT-3 student models.
This leads us to believe that the causal attention
masking present in decoder-only models could im-
pede complex inter-token reasoning. CoT reason-
ing, in this regard, may serve to mitigate this limita-
tion by repeating key information within the decod-
ing context. Other the other hand, Fine-tune-CoT
either surpasses or matches the performance of
vanilla fine-tuning across a variety of tasks. Our
method also displays consistent scalability with
model size, in contrast to the fluctuating perfor-
mance between model sizes for baseline methods.
The incorporation of diverse reasoning enhances

this scalability. Particularly, we find that the Flan-
T5 models benefit more from Fine-tune-CoT com-
pared to T5 models, implying a favorable role of
instruction tuning. When enhanced with diverse
reasoning, Fine-tune-CoT excels over vanilla fine-
tuning across several complex reasoning tasks, no-
tably observed in the performance of Flan-T5 on
Tracking Shuffled Objects (44.00%→89.33%) and
GPT-2 on MultiArith (11.67%→19.44%).

Effects of diverse reasoning Figure 9 shows the
performance of all student models on MultiArith
and SVAMP under varying degrees of diverse rea-
soning. We observe that performance scales with
diverse reasoning in all student models, with the
exception of T5-Small. It is shown that diverse
reasoning enables Fine-tune-CoT to outperform
standard fine-tuning in all cases.

Effects of student model scale Figure 10 shows
the performance of all student model families ac-
cording to model size. While we observe perfor-
mance scaling for Fine-tune-CoT on GPT-3 models,
this is not apparent in other open-source models.
We posit that this may be due to under-tuned hy-
perparameters, as we used fixed hyperparameters
for all open-source models, in contrast to default
suggested settings for GPT-3.
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Method Params
Single Add Multi

GSM8K Aqua SVAMP
Date Shuffled Last Coin Common Strategy

Eq Sub Arith Understanding Objects Letter Flip SenseQA QA

Random 0.00 0.00 0.00 0.00 20.00 0.00 17.12 33.33 0.00 50.00 20.00 50.00

Teacher: InstructGPT 175B (text-davinci-002)

Zero-shot-CoT 175B 81.50 76.71 78.79 42.17 29.74 64.20 67.58 53.20 57.71 90.04 60.07 53.45

Student: GPT-3 (ada, babbage, curie)

Few-shot-CoT 0.3B 0.66 0.84 3.33 1.74 15.75 2.00 19.27 - 0.00 44.67 18.43 42.98
1.3B 3.29 5.88 5.00 1.59 13.78 4.33 16.51 - 0.00 46.00 18.67 46.05
6.7B 22.37 31.93 10.00 2.50 15.75 11.33 12.84 - 0.67 40.00 24.73 54.68

Fine-tune 0.3B 9.87 8.40 8.89 5.08 24.41 7.67 23.42 32.44 28.67 100.00 51.68 60.41
1.3B 11.84 17.65 17.78 5.38 21.26 14.33 31.53 30.22 30.00 100.00 70.93 60.70
6.7B 24.34 25.21 15.00 6.14 15.35 20.67 14.41 33.78 32.67 72.00 76.17 65.21

Fine-tune-CoT 0.3B 7.24 6.72 6.11 3.11 23.62 5.00 17.12 49.33 50.67 99.33 32.68 52.55
1.3B 11.18 11.76 13.33 4.70 19.69 8.00 38.74 52.44 50.67 100.00 43.08 52.69
6.7B 20.39 21.01 33.33 6.75 24.02 12.67 60.36 64.44 52.67 98.67 56.76 55.02

Fine-tune-CoT 0.3B 9.21 10.08 23.89 - - 14.33 58.56 61.78 59.33 99.33 - 57.21
w/ diverse reasoning 1.3B 18.42 19.33 27.78 - - 16.33 70.27 72.00 60.67 100.00 - 57.06

6.7B 24.34 31.09 53.33 - - 30.33 83.78 73.33 62.00 100.00 - 58.22

Student: T5-{Small, Base, Large}

Few-shot-CoT 60M 1.32 3.36 3.33 1.97 24.80 1.33 20.72 - 0.00 44.67 19.25 46.00
220M 1.97 2.52 1.11 1.74 23.23 0.33 9.91 - 0.00 55.33 13.35 52.55
700M 1.32 1.68 2.78 2.43 19.69 3.00 9.91 - 0.00 55.33 18.92 53.13

Fine-tune 60M 5.92 8.40 13.89 4.02 29.92 11.33 80.18 94.22 24.67 100.00 22.11 58.81
220M 5.92 11.76 15.00 5.00 24.80 8.67 78.38 37.78 44.00 100.00 51.60 59.24
700M 6.58 9.24 13.89 4.25 26.77 9.67 79.28 33.78 50.67 100.00 20.88 61.72

Fine-tune-CoT 60M 2.63 5.04 5.56 2.58 24.02 9.33 77.48 40.00 29.33 100.00 29.48 54.73
220M 4.61 7.56 10.56 3.18 26.77 7.00 80.18 42.67 47.33 98.67 45.37 55.90
700M 5.26 10.92 10.56 4.55 29.92 9.00 80.18 46.22 52.00 100.00 54.22 56.33

Fine-tune-CoT 60M 7.24 7.56 15.00 - - 7.67 81.08 59.11 46.67 100.00 - 56.04
w/ diverse reasoning 220M 5.26 10.08 16.11 - - 10.33 82.88 65.33 60.67 100.00 - 59.68

700M 7.89 11.76 17.78 - - 11.33 81.98 81.78 63.33 100.00 - 62.15

Student: Flan-T5-{Small, Base, Large}

Zero-shot 60M 0.00 0.00 1.67 2.12 23.62 2.00 32.43 33.78 0.00 54.00 39.07 48.47
220M 1.32 0.00 5.00 2.50 27.95 2.00 30.63 31.11 0.00 7.33 72.24 53.42
700M 1.32 4.20 3.89 2.05 24.41 2.67 9.91 28.89 0.00 54.00 84.03 49.34

Few-shot-CoT 60M 1.32 0.84 1.67 2.81 20.87 1.67 27.93 - 0.00 44.67 11.79 51.97
220M 2.63 0.84 3.89 3.64 24.80 3.67 12.61 - 0.00 44.67 70.27 53.86
700M 12.50 10.08 10.00 7.51 23.23 8.33 20.72 - 0.00 44.67 83.87 65.21

Fine-tune 60M 7.24 9.24 16.67 4.93 28.74 10.33 81.08 33.78 39.33 100.00 45.95 58.95
220M 5.26 10.08 16.11 5.08 29.53 10.67 83.78 44.00 45.33 100.00 63.55 61.14
700M 7.24 12.61 18.89 5.53 24.80 11.00 82.88 33.78 53.33 100.00 66.75 63.90

Fine-tune-CoT 60M 6.58 5.88 8.33 2.96 23.23 5.67 80.18 36.00 35.33 100.00 42.01 54.15
220M 4.61 9.24 12.22 4.40 29.13 6.00 83.78 48.89 50.00 100.00 59.05 59.97
700M 11.84 10.92 14.44 5.38 28.35 10.67 84.68 55.11 64.00 100.00 66.83 59.83

Fine-tune-CoT 60M 7.24 10.92 17.22 - - 10.67 84.68 62.22 46.00 100.00 - 56.04
w/ diverse reasoning 220M 9.21 10.92 21.11 - - 12.33 84.68 67.11 56.67 100.00 - 60.84

700M 10.53 15.13 20.00 - - 13.67 87.39 89.33 65.33 100.00 - 61.72

GPT-2 {Small, Medium, Large}

Few-shot-CoT 124M 1.32 0.00 0.00 0.45 17.32 0.33 13.51 - 0.00 44.67 20.15 0.00
355M 0.00 0.00 0.56 0.00 3.94 0.00 9.91 - 0.00 55.33 0.00 0.15
774M 0.00 0.00 0.00 0.00 0.39 0.00 13.51 - 0.00 55.33 0.16 35.08

Fine-tune 124M 2.63 3.36 11.67 2.88 25.59 7.67 7.21 33.78 0.67 60.00 20.80 54.00
355M 0.66 0.84 5.00 0.38 18.90 0.00 23.42 36.89 1.33 57.33 19.82 50.22
774M 1.32 5.04 8.33 2.58 24.80 7.67 13.51 32.44 0.67 1.33 20.88 53.57

Fine-tune-CoT 124M 4.61 4.20 10.00 3.03 24.02 5.67 17.12 38.67 4.67 88.00 22.19 53.57
355M 3.29 5.88 7.22 2.73 23.62 7.33 28.83 35.56 10.67 80.00 22.03 55.02
774M 3.95 5.88 10.56 2.58 22.05 6.33 15.32 39.11 4.00 89.33 25.80 53.13

Fine-tune-CoT 124M 7.24 9.24 19.44 - - 10.67 21.62 57.33 10.67 93.33 - 56.62
w/ diverse reasoning 355M 5.92 9.24 17.22 - - 9.67 20.72 56.00 20.00 95.33 - 55.60

774M 8.55 12.61 17.22 - - 8.67 18.02 52.44 7.33 84.67 - 57.06

Table 9: Fine-tune-CoT performance on all models. Accuracy (%) of all models on 12 tasks under Fine-tune-CoT
(with diverse reasoning) and baseline methods. ‘Random’ refers to random-guess performance derived based on
the number of choices in multi-choice tasks. For diverse reasoning, we report results for maximum degree D
considered: D = 64 for MultiArith and SVAMP; D = 8 for other datasets. We omit diverse reasoning for large
datasets due to resource constraints and Few-shot-CoT for Tracking Shuffled Objects due to absence of prompts.
Zero-shot baseline performance is omitted due to negligible performance, except for Flan-T5 models.
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Figure 9: Diverse reasoning performance on all mod-
els. Accuracy (%) of all student models under Fine-
tune-CoT with varying degrees of diverse reasoning D.
Baseline performance of the largest model under vanilla
fine-tuning and Few-shot-CoT are shown for compari-
son. Diverse reasoning is not applicable to the baselines.
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Figure 10: Effects of student model scale on all mod-
els. Accuracy (%) of all student models of various
sizes under Few-shot-CoT, vanilla fine-tuning, and Fine-
tune-CoT (with diverse reasoning). The hatched portion
indicates the performance boost of Fine-tune-CoT when
using diverse reasoning with D = 64 on MultiArith and
SVAMP; D = 8 on others.
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Table 10: Examples of incorrect output.

(a) GSM8K

Question

Zaid spends 1/4 of his salary on rent, 1/3 on car fuel and donates half of the remaining amount to
his favorite charity. He gives his daughter 200$ to use for her weekly expenses and 700$ to his
wife to budget for groceries and other household goods. If Zaid earns 6000$ per month, how much
money will he still have after all these expenses and donations? ###

Answer 350

Completion

Zaid spends 1/4 of his salary on rent, so that’s 300$ per month. Zaid spends 1/3 of his salary on
car fuel, so that’s 150$ per month. That leaves him with 3000$ per month. He donates half of the
remaining amount to his favorite charity, so that’s 1500$ per month. That leaves him with 1500$
per month. He gives his daughter 200$ per month, so that’s 400$ per month. He gives his wife
700$ per month, so that’s 350$ per month.

Prediction 350

(b) AQUA

Question

20 marbles were pulled out of a bag of only white marbles, painted black, and then put back in.
Then, another 20 marbles were pulled out, of which 1 was black, after which they were all returned
to the bag. If the percentage of black marbles pulled out the second time represents their percentage
in the bag, how many marbles in total Q does the bag currently hold? Answer choices: (A) 40, (B)
200, (C) 380, (D) 400, (E) 3200. ###

Answer D

Completion

There are 20 white marbles, 20 black marbles, and 1 black marble. The first time, 10 white marbles
and 10 black marbles are pulled out. The second time, 5 white marbles and 5 black marbles are
pulled out. Now, we can calculate the total number of marbles that are in the bag. There are 20
white marbles and 20 black marbles. The first time, 10 white marbles and 10 black marbles are
pulled out. The second time, 5 white marbles and 5 black --> D

Prediction D

(c) StrategyQA

Question Is it common to see frost during some college commencements? ###

Answer Yes

Completion

First, what is a college commencement? A college commencement is the ceremony at which a
student graduates from college. Second, what is frost? Frost is a type of weather that occurs
when the temperature is below freezing and the ground is frozen. So, is it common to see frost
during some college commencements? No, it is not common to see frost during some college
commencements. --> No

Prediction No
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Table 11: Examples of incorrect output.

(a) StrategyQA

Question Is sternum connected to any of the bones mentioned in James Weldon Johnson’s Dem Bones? ###

Answer Yes

Completion

The sternum is a bone in the chest. The bones in the chest are the sternum, the clavicle, the two
collarbones, and the two breastbones. The breastbones are the two right and left breastbones. So,
no, the sternum is not connected to any of the bones mentioned in James Weldon Johnson’s Dem
Bones. --> No

Prediction No

(b) SingleEq

Question There are 33 walnut trees currently in the park. Park workers will plant 44 more walnut trees today.
How many walnut trees will the park have when the workers are finished ? ###

Answer 77.0

Completion
There are 33 walnut trees currently in the park. Park workers will plant 44 more walnut trees today.
This means that when the workers are finished, there will be a total of 83 walnut trees in the park.
--> 83.0

Prediction 83.0

(c) AddSub 25

Question Jason has 43 blue and 16 red marbles . Tom has 24 blue marbles . How many blue marbles do they
have in all ?###

Answer 67.0

Completion
Jason has 43 blue marbles and 16 red marbles. Tom has 24 blue marbles. To find out how many
blue marbles they have in all, we need to add 43 and 24. 43 + 24 = 77 Therefore, they have 77 blue
marbles in all. --> 77

Prediction 77

(d) GSM8K

Question

Four dogs sat in a line within the veterinarian’s waiting room. The first dog was the Affenpinscher,
who weighed only 10 pounds. Next to him sat a Dachshund, who weighed twice as much as the
Affenpinscher. Next to the Dachshund sat a Papillon, who weighed one-fourth as much as the
Dachshund. And at the end of the line sat a Mastiff, who weighed 44 times the weight of the
Papillon. How much did the Mastiff weigh, in pounds? Let’s think step by step ###

Answer 220

Completion
The Affenpinscher weighs 10 pounds. The Dachshund weighs twice as much as the Affenpinscher,
so it weighs 20 pounds. The Papillon weighs one-fourth as much as the Dachshund, so it weighs 2
pounds. The Mastiff weighs 44 times as much as the Papillon, so it weighs 44 pounds. --> 44

Prediction 44
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Table 12: Examples of incorrect output.

(a) SVAMP

Question If you had 33 cookies and each bag has 11 cookies How many bags of cookies do you have? ###

Answer 3.0

Completion
There are 33 cookies. Each bag has 11 cookies. That means that if we divide 33 by 11, we will
know how many bags of cookies there are. 33 divided by 11 equals 2. There are 2 bags of cookies.
--> 2.0

Prediction 2.0

(b) CommonsenseQA

Question What is someone who isn’t clever, bright, or competent called? Answer choices: (A) clumsy, (B)
ineffectual, (C) dull, (D) clumsy, (E) stupid. ###

Answer E

Completion
If someone isn’t clever, bright, or competent, then they’re not effective. If someone’s not effective,
then they’re not useful. If someone’s not useful, then they’re not needed. If someone’s not needed,
then they’re not important. Therefore, the answer is (B) ineffectual. --> B

Prediction B

(c) CommonsenseQA

Question Billy set aside a block of time for having fun after work. Why might he do this? Answer choices:
(A) happiness, (B) stress relief, (C) pleasure, (D) ocean, (E) may laugh. ###

Answer B

Completion
After work, Billy might be tired and want to relax. He could set aside a block of time and say, “OK,
I’m going to spend the next X minutes doing something I enjoy.” This might help him relax and
feel happier. --> A

Prediction A

(d) CommonsenseQA

Question What island country is ferret popular? Answer choices: (A) own home, (B) north carolina, (C)
great britain, (D) hutch, (E) outdoors.###

Answer C

Completion

A ferret is a small mammal, so (D) hutch is probably not the best answer. It’s also not a very
common animal, so (A) own home and (B) north carolina are probably not the best answers. That
leaves us with (C) great britain and (E) outdoors. Great britain is a larger island than outdoors, so
the ferret is probably more popular in that country. --> C

Prediction C

(e) SVAMP

Question
There are 17 different movies and 11 different books in the ’ crazy silly school ’ series. If you read
13 of the books and watched 63 of the movies How many more movies than books are there in the ’
crazy silly school ’ series? ###

Answer 6.0

Completion

There are 17 different movies and 11 different books in the ‘crazy silly school’ series. If you read
13 of the books, that means you have read 7 books. If you watched 63 of the movies, that means
you have watched 63 movies. So there are 17 movies and 11 books, and you have read 7 books
and watched 63 movies. That means there are 8 more movies than books in the ‘crazy silly school’
series. --> 8.0

Prediction 8.0
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Table 13: Examples of incorrect output.

(a) SVAMP

Question
Danny collects bottle caps and wrappers. He found 65 wrappers and 5 bottle caps at the park. Now
he has 31 bottle caps and 9 wrappers in his collection. How many more wrappers than bottle caps
did danny find at the park? ###

Answer 60.0

Completion

First, Danny finds 65 wrappers and 5 bottle caps at the park. Then, he has 31 bottle caps and 9
wrappers in his collection. Now, we want to know how many more wrappers than bottle caps Danny
found at the park. We can find this out by subtracting the number of bottle caps from the number of
wrappers: 9 - 5 = 4 So, Danny found 4 more wrappers than bottle caps at the park. --> 4.0

Prediction 4.0

(b) SVAMP

Question
Next on his checklist is wax to stick the feathers together and colors to paint them. He needs a total
of 57 g of colors to paint them. He needs 22 g of wax more. If the feathers require a total of 353 g
of wax How many grams of wax does he already have? ###

Answer 331.0

Completion
First, he needs 57 grams of colors to paint the feathers. Second, he needs 22 grams of wax more.
Third, the feathers require a total of 353 grams of wax. So, he already has 353 grams of wax. -->
353.0

Prediction 353.0

(c) CommonsenseQA

Question You’ll find a landing at the top of what? Answer choices: (A) ocean, (B) apartment building, (C)
stairwell, (D) airport, (E) room. ###

Answer C

Completion

A landing is a place where something can touch the ground. A landing at the top of an ocean would
be a very strange place to find, since there would be no ground to touch. A landing at the top of an
apartment building would be a very strange place to find, since there would be no ground to touch.
A landing at the top of a stairwell would be a very strange place to find, since there would be no
ground to touch. A landing at the top of an airport would be a very strange place to find, since there
would be no ground to

Prediction A

(d) SVAMP

Question 18 red peaches, 14 yellow peaches and 17 green peaches are in the basket. How many red and
yellow peaches are in the basket?###

Answer 32.0

Completion

There are a total of 48 peaches in the basket. There are 18 red peaches, 14 yellow peaches, and 17
green peaches. This means that there are a total of 33 peaches in the basket. There are 33 peaches
in the basket. This means that there are 17 red peaches and 14 yellow peaches in the basket. -->
17.0

Prediction 17.0
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Table 14: Examples of correct output.

(a) Date Understanding

Question
Jane was born on the last day of Feburary in 2000. Today is her 16-year-old birthday. What is the
date a month ago in MM/DD/YYYY? Which choice is true? Answer choices: (A) 01/30/2016, (B)
11/08/2015, (C) 01/29/2016, (D) 07/29/2015, (E) 05/04/2016, (F) 02/02/2016. ###

Answer C

Completion Jane’s 16th birthday is on 02/28/2016. A month ago from that would be 01/28/2016. Therefore, the
answer is (C). --> C

Prediction C

(b) Last Letter Concatenation

Question Take the last letters of each words in "Lino Mariel Aditya Elisabeth" and concatenate them. ###

Answer olah

Completion The last letter of "Lino" is "o". The last letter of "Mariel" is "l". The last letter of "Aditya" is "a".
The last letter of "Elisabeth" is "h". So the final answer is "olah". –> olah

Prediction olah

(c) Coin Flip

Question A coin is heads up. Cinthia does not flip the coin. Lloyd does not flip the coin. Jacqueline flips the
coin. Jc flips the coin. Is the coin still heads up? Note that "flip" here means "reverse". ###

Answer Yes

Completion
Cinthia does not flip the coin, so the coin remains heads up. Lloyd does not flip the coin, so the
coin remains heads up. Jacqueline flips the coin, so the coin is now tails up. Jc flips the coin, so the
coin is now heads up again. –> yes

Prediction Yes

(d) Tracking Shuffled Objects

Question

Alice, Bob, and Claire are playing a game. At the start of the game, they are each holding a ball:
Alice has a blue ball, Bob has a yellow ball, and Claire has a green ball. As the game progresses,
pairs of players trade balls. First, Bob and Claire swap balls. Then, Bob and Alice swap balls.
Finally, Bob and Claire swap balls. At the end of the game, Bob has the Which choice is true?
Answer choices: (A) blue ball, (B) yellow ball, (C) green ball. ###

Answer B

Completion

First, Bob and Claire swap balls. This means that Bob now has the green ball and Claire has the
yellow ball. Then, Bob and Alice swap balls. This means that Bob now has the blue ball and Alice
has the green ball. Finally, Bob and Claire swap balls again. This means that Bob now has the
yellow ball and Claire has the green ball. At the end of the game, Bob has the yellow ball. –> B

Prediction B

(e) Date Understanding

Question
Tomorrow is 11/12/2019. What is the date one year ago from today in MM/DD/YYYY? Which
choice is true? Answer choices: (A) 11/02/2018, (B) 11/04/2018, (C) 09/04/2018, (D) 08/25/2018,
(E) 11/11/2018. ###

Answer E

Completion One year ago from today would be 11/11/2018. --> E

Prediction E
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