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Abstract

Human-annotated labels and explanations are
critical for training explainable NLP mod-
els. However, unlike human-annotated labels
whose quality is easier to calibrate (e.g., with a
majority vote), human-crafted free-form expla-
nations can be quite subjective. Before blindly
using them as ground truth to train ML mod-
els, a vital question needs to be asked: How
do we evaluate a human-annotated expla-
nation’s quality? In this paper, we build on
the view that the quality of a human-annotated
explanation can be measured based on its help-
fulness (or impairment) to the ML models’ per-
formance for the desired NLP tasks for which
the annotations were collected. In comparison
to the commonly used Simulatability score,
we define a new metric that can take into con-
sideration of the helpfulness of an explanation
for model performance at both fine-tuning and
inference. With the help of a unified dataset
format, we evaluated the proposed metric on
five datasets (e.g., e-SNLI) against two model
architectures (T5 and BART), and the results
show that our proposed metric can objectively
evaluate the quality of human-annotated expla-
nations, while Simulatability falls short.

1 Introduction

Despite the recent advances of large-scale language
models (LLM) (Devlin et al., 2019; Qin et al., 2023;
Lewis et al., 2019; Raffel et al., 2020), which ex-
hibit close-to-human performance on many natural
language processing (NLP) tasks (e.g., Question
Answering (Rajpurkar et al., 2016; Kočiskỳ et al.,
2018; Mou et al., 2020, 2021; Xu et al., 2022),
Natural Language Inference (Bowman et al., 2015;
Williams et al., 2017; Wang et al., 2018), and Text
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Generation (Duan et al., 2017; Yao et al., 2022;
Zhao et al., 2022)), humans are eager to know how
State-of-the-Art (SOTA) models arrive at a pre-
diction. Researchers working on natural language
explanations1 turned to human annotators for help
by recruiting crowd-workers or experts to annotate
both the labels and corresponding natural language
explanations (Camburu et al., 2018; Rajani et al.,
2019; Aggarwal et al., 2021; Wang et al., 2019b);
Researchers can thus leverage human-annotated ex-
planations to boost models’ prediction performance
or train models to generate human-understandable
natural language explanations.

However, the quality issue of human-annotated
explanations has yet to be explored. Researchers of-
ten leverage popular Natural Language Generation
(NLG) metrics such as BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) to evaluate the similarity
between model-generated and human-annotated ex-
planations, with a strong assumption that human-
annotated ones are the gold standard. Neverthe-
less, unlike providing labels for classification or
multiple-choice QA tasks (Chen et al., 2021), dif-
ferent people may come up with distinct natu-
ral language explanations for the same observa-
tion (Gebreegziabher et al., 2023). Two such ex-
planations can be both correct even though the
BLEU or ROUGE similarity may be low. Further-
more, human-given natural language explanations
can often be subjective and task-dependent (Lee
et al., 2022). As a result, human-annotated expla-
nations should not be simply treated as the gold
standard (Muller et al., 2021); instead, we take the
view that the core value of explanations should be

1In this paper, we use “explanations” and “natural language
explanations” to refer to the collective concepts of “free-text
rationales” and “natural language explanation”, which differ
from “rule-based” or “extractive” explanations.
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Dataset Task Task Format
Data Instances Average explanation

Length (token)Train Valid Test

CoS-E v1.0 Commonsense QA 3-choice Multiple-Choice 7610 950 - 16.148
CoS-E v1.11 Commonsense QA 5-choice Multiple-Choice 9741 1221 - 8.996
ECQA Commonsense QA 5-choice Multiple-Choice 7598 1098 2194 63.572
e-SNLI Natural Language Inference 3-label Classification 549367 9842 9824 15.977
ComVE Commonsense Validation 2-choice Multiple-Choice 10000 1000 1000 10.288

Table 1: Task description and core statistics for five popular large-scale datasets with human-annotated natural
language explanations that are included in our evaluation.

based on how much help they provide towards the
model prediction instead of being based on notions
of semantic similarity or word-matching.

To summarize our contributions in this paper:
1. We provide an objective evaluation to quan-

tify the human-annotated explanations’ helpfulness
towards model performance. Our evaluation
metric is an extension of the Simulatability
score (Doshi-Velez and Kim, 2017) and we
propose a prompt-based unified data format that
can convert classification or multiple choice tasks
into a unified multiple choice generation task
format to minimize the influence of structural
variations across different tasks.

2. Through an evaluation with five datasets
and two models, our metric can rank explanations
quality consistently across all five datasets on two
model architectures while the Simulatability
score (baseline) falls short.

3. Our evaluation justifies the hypothesis that
human explanations can still benefit model predic-
tion, even if they were criticized as low-quality by
prior literature’s human evaluation.

2 Related Work

2.1 Natural Language Explanation Datasets

Despite the development of new model archi-
tectures and potentially more significant param-
eters, these “black boxes” unavoidably lack the
ability to explain their predictions; this led to
increased efforts in the community to leverage
human-annotated explanations to either train mod-
els with explanations or to teach them to self-
rationalize. For example, Wiegreffe and Maraso-
vic (2021) reviewed 65 datasets and provided a
3-class taxonomy of explanations: highlights, free-
text, and structured. We focus on five large public
datasets with free-text human-annotated explana-
tions at the instance level (Table 1). We double-
checked these datasets’ licenses, and no personally
identifiable information (PII) exists.

One prominent dataset is CoS-E and its two vari-
ants CoS-E v1.0 and CoS-E v1.11(Rajani et al.,
2019). It extended the Commonsense Question-
Answering (CQA v1.0 and v1.11 versions) dataset
(Talmor et al., 2018) by adding human-annotated
explanations to the correct answer label. How-
ever, a few recent works suggest that the CoS-E’s
explanation quality is not good, as Narang et al.
(2020) independently hand-labeled some new ex-
planations for CoS-E and found a very low BLEU
score between its original explanations and the new
ones. To improve the explanation’s quality, ECQA
(Aggarwal et al., 2021) collected and summarized
single-sentence explanation for each candidate an-
swer into a natural language explanations for every
data in the CQA v1.11 dataset. Sun et al. (2022)
proved that CoS-E explanations are not as good
as ECQA explanations based on human prefer-
ences. The fourth dataset is e-SNLI(Camburu et al.,
2018), which consists of explanations for the Stan-
ford Natural Language (SNLI) dataset (Bowman
et al., 2015). Finally, the fifth dataset is ComVE
(Wang et al., 2020), asking which one of two sen-
tences is against commonsense. Later we evaluate
the human-annotated explanations in the above-
mentioned five datasets with our metric and an
established baseline, the Simulatability score.

Worth mentioning that we do not include
datasets such as SBIC (Sap et al., 2019) or E-δ-
NLI (Brahman et al., 2021). SBIC does not provide
explanations for all the data, and E-δ-NLI leverages
various sources to augment the δ-NLI (Rudinger
et al., 2020) dataset with explanations instead of
providing human annotations.

2.2 Evaluation Metric for Explanations

Many commonly used evaluation metrics for text-
based content like BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) treat human-annotated
answers as the absolute gold standard without
questioning or attempting to evaluate their qual-
ity. One established evaluation metric called
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Figure 1: Unified structure of Baseline and Infusion settings. Black bold text are fixed prompts. We provide
examples of Infusion format in classification task like e-SNLI and multiple choice task like CoS-E and ComVE.
The color schema follows: blue denotes question content; green denotes choice content; orange denotes explanations.

Simulatability score derives from Human Sim-
ulatability (Doshi-Velez and Kim, 2017) and can
examine gold explanations. It simply measures the
change in a baseline model prediction performance,
depending on whether the explanation is provided
as the input. Previous works (Chandrasekaran et al.,
2018; Yeung et al., 2020; Hase et al., 2020; Wiegr-
effe et al., 2020; Poursabzi-Sangdeh et al., 2021;
Rajagopal et al., 2021) have demonstrated the use-
fulness of Simulatability score for evaluating
explanation quality. However, this metric has a
couple of inherent disadvantages. First, it only con-
siders the helpfulness of explanations on a baseline
model, where we show that explanations provide
different helpfulness during fine-tuning and infer-
ence through our experiment in Section 4. In addi-
tion, model performance could also differ when we
transform the original task into other tasks, such as
turning a classification task into a multiple-choice
task with different input data formats.

In order to objectively evaluate human-annotated
explanations, we define a new evaluation metric
based on the Simulatability score that com-
plements both drawbacks of Simulatability by
considering the helpfulness of explanations both at
fine-tuning and inference with the help of a unified
structure to minimize the impact of task differences.
Other works (Carton et al., 2020) attempted to eval-
uate and categorize different characteristics of ex-
planations, but many of them (Chan et al., 2022a;
DeYoung et al., 2020) still treat human-annotated
explanations as the gold standard.

2.3 Usage of Explanations for SOTA models

Existing works have been exploring circumstances
in which explanations could improve model per-
formance; for example, Hase and Bansal (2021)
argues that explanations are most suitable for use
as model input for predicting, and Kumar and
Talukdar (2020) proposed a system to generate
label-specific explanations for the NLI task specif-
ically. Some recent works have tried to generate
better explanations with a self-rationalization set-
ting (Wiegreffe et al., 2020; Marasović et al., 2021),
where a model is asked to generate the prediction
label and explanation simultaneously. We conduct
a preliminary experiment to find the best model
setting to leverage explanations in Section 4.1.

There exists many recent works (Paranjape et al.,
2021; Liu et al., 2021; Chen et al., 2022) that ex-
plore the usage of prompts to complete explana-
tions, generate additional information for the orig-
inal task, or examine whether generated explana-
tions can provide robustness to adversarial attacks.
Ye and Durrett (2022) showed that simply plugging
explanations into a prompt does not always boost
the in-context learning performance, and model-
generated explanations can be unreliable for few-
shot learning. Another related line of research fo-
cuses on extracting or generating explanations with
a unified framework (Chan et al., 2022b) or with a
teachable reasoning system that generates chains
of reasoning (Dalvi et al., 2022).
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Explanations as
Input vs Output

Fine-tune Setting

Baseline Self-rationalization Infusion

CoS-E v1.0 0.695 0.646 0.878
ECQA 0.572 0.513 0.989

Table 2: Preliminary experiment results of using expla-
nations as part of Input(Infusion ) vs. Output(Self-
rationalization) vs. without explanations (Baseline )
on CoS-E and ECQA datasets.

3 Unified Structure

While popular metrics like BLEU and ROUGE can
evaluate text coherence and similarity, one critical
aspect of explanations is how beneficial they can
be. Thus, we want to develop a metric that objec-
tively evaluates explanations’ utility towards model
performance. Furthermore, we expect that such a
metric can systematically demonstrate how good or
bad the explanations are; for example, it could ob-
jectively measure what ‘noisy’ means in a human
study (e.g., from previous works on CoS-E).

With the advantage of sequence-to-sequence
models like T5 that can map different types of lan-
guage tasks into generation tasks, we can control
and minimize the influence of varying task for-
mats on model performance while evaluating the
helpfulness of explanations by leveraging a unified
data format. We realize that existing datasets with
human-annotated explanations are mostly either
multiple-choice tasks or classification tasks. The
classification task could be viewed as a multiple-
choice task where the labels are indeed choices.
Inspired by several previous works that manipu-
lated prompts for sequence-to-sequence models
(Marasović et al., 2021; Liu et al., 2021), we incor-
porate a few well-defined words as template-based
prompts for the unified data structure to indicate
the task content and corresponding explanations.

Examples shown in Figure 1 explain how we
map various tasks into a unified multiple-choice
generation task. We propose two settings: no ex-
planations (Baseline ) and explanations as addi-
tional input (Infusion ). Here we explain how
each prompt addresses a different part of the data
content: 1) ‘explain:’ is followed by the question
content, 2) ‘choice-n:’ is followed by each candi-
date answer, and 3) a special token ‘<sep>’ sepa-
rates the explanations from the task content, while
the explanations in Infusion are led by ‘because’
so that the model knows that the explanation text
explains the task content. For datasets like CoS-E
and ECQA, we leverage the original task as the
question content. On the other hand, we define

fixed question prompts for e-SNLI: “what is the re-
lation between [Premise] and [Hypothesis]?”, and
for ComVE: “which sentence is against common-
sense?” to specify corresponding tasks to models.

4 Preliminary Experiment

4.1 Utilizing Explanations as Part of Input vs
Part of Output

As described in Section 2.3, recent works have
been exploring various circumstances that human-
annotated explanations could help in different as-
pects. We hypothesize that leveraging explana-
tions as additional input with the original task in-
put allows models to use explanations for better
prediction, while the self-rationalization (Maraso-
vić et al., 2021) setting, which generate explana-
tions along with labels, complicates the prediction
task for the models and may lead to a performance
decrease. In addition, the generated explanations
from self-rationalization systems are not explicitly
being used for label prediction. To justify our hy-
pothesis, we conduct a preliminary experiment on
CoS-E v1.0 and ECQA datasets.

We fine-tune three T5-base models on each
dataset with three different settings: Baseline ,
Infusion , and explanations as additional output
(Self-Rationalization hereinafter). For each model,
we maintain the same setting during fine-tuning and
inference. For example, the model fine-tuned with
Infusion will also take data under Infusion dur-
ing inference. We leverage the unified structure for
Baseline and Infusion shown in Figure 1 and
make minor adjustments for the self-rationalization
setting accordingly (shown in Appendix A).

The experiment results are shown in Table 2. We
notice that the self-rationalization setting performs
worse than the Baseline , which is aligned with
our assumption. On the other hand, the Infusion
setting surprisingly achieves significant improve-
ment on CoS-E, which was considered ‘noisy’ by
previous works, demonstrating that the CoS-E ex-
planations are indeed helpful toward models. The
Infusion setting also approaches nearly complete
correctness on the ECQA dataset.

4.2 Explanations as Partial Input During
Fine-Tuning

To examine the utility of explanations to the models
during fine-tuning, we perform an in-depth exper-
iment with the Baseline and Infusion setting
while varying the amounts of training data used
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(a) CoS-E v1.0

(b) ECQA

Figure 2: Explanations as partial input on CoS-E v1.0
(top) and ECQA (bottom) with different amounts of
training data. We perform fine-tuning and predicting for
both Baseline and Infusion settings.

for fine-tuning. First, we randomly select nine sub-
datasets with amounts of data ranging from 10% to
90% of the training data in each dataset used in the
first preliminary experiment. Then, for each sub-
dataset, we fine-tune three models with different
random seeds for sampling and fine-tuning, then
acquire the averaged prediction performance. As a
result, for each CoS-E v1.0 and ECQA dataset, we
get 60 models fine-tuned with varying amounts of
data for both the Baseline and Infusion setting,
including the models fine-tuned on full training
data, then perform prediction with the Baseline
and Infusion settings. We maintain the same
hyper-parameters across the models fine-tuned for
this experiment and report them in Appendix B.1.

The two diagrams in Figure 2 show the exper-
iment results on two datasets (detailed results in
Table 4 in the appendix). Different colors denote
different fine-tuning and inference settings. We
conclude with a few interesting observations:

1. By looking at yellow (model fine-tuned with
Infusion and predict with Baseline ) and green
(model fine-tuned and predict with Infusion )
line, we notice adding more training data during
fine-tuning does not significantly improve model
performance, suggesting that the fine-tuning pro-

Treu =
(
Accu(MInfusionInfusion) − Accu(MBaselineBaseline))

+
(
Accu(MInfusionBaseline) − Accu(MBaselineBaseline))

Figure 3: The formula of our Treu metric. M de-
notes a model and the subscript/superscript denotes
Mpredict setting

f inetune setting. The Simulatability score only con-
siders the second part within our formula.

cess is not teaching the model with new knowl-
edge that is conveyed in the explanations.

2. By comparing yellow and blue (model fine-
tuned and predict with Baseline ) line in each
diagram, we notice the models fine-tuned with
Infusion perform worse than baseline models
without explanations during inference, demonstrat-
ing that fine-tuning with Infusion teaches the
models to rely on the explanations to predict.

3. By comparing red (model fine-tuned with
Baseline and predict with Infusion ) and blue
line in each diagram, we observe the baseline mod-
els for CoS-E perform worse while predicting with
explanations. In contrast, the baseline models for
ECQA consistently exceed baseline performance
significantly, which demonstrates that the help-
fulness of explanations on baseline models in
CoS-E is much worse than the ones in ECQA,
which is aligned with some previous works.

4. By comparing green and blue lines in both
diagrams, we notice that explanations in CoS-E
can contribute to substantial improvement during
inference on models fine-tuned with Infusion set-
ting. This observation shows that explanations in
CoS-E are able to provide helpfulness to models
during fine-tuning, even though they were con-
sidered ‘noisy’ by humans in previous works.

5. By comparing red and green lines in both
diagrams, we can observe that in order to take full
advantage of explanations, it is beneficial to fine-
tune a model even with a small amount of data
that incorporates the explanations. Such fine-
tuning can lead to a substantial improvement.

This experiment shows that explanations provide
different degrees of utility during fine-tuning and
inference. Thus, we should consider both situations
while evaluating the helpfulness of explanations.

5 Our Metric and Evaluation

5.1 Our TreuMetric

Based on our observations from the preliminary
experiments, we propose a novel evaluation metric
that extends the Simulatability score. Figure 3
shows the formula of our Treu metric: it evaluates

14702



the helpfulness of explanations with the sum of
two parts: at fine-tuning, where two models are
fine-tuned with Baseline and Infusion settings
correspondingly, we calculate the prediction accu-
racy difference using the same data format that was
used during fine-tuning for each model; and at infer-
ence, we fine-tune only one model with Baseline
setting and calculate the prediction accuracy differ-
ence between Infusion and Baseline settings.

The second part of our metric is indeed the
Simulatability metric. We observe that fine-
tuning a model with data that incorporates expla-
nations can provide substantial benefits. However,
the Simulatability score fails to account for
this component and only considers the model per-
formance improvement that uses explanations at
inference without fine-tuning first. For the models
fine-tuned with Baseline setting, we believe pre-
trained SOTA large-scale models have the ability
to understand the additional content at the input
to a certain extent. The addition of explanations
at input during inference will show whether it can
provide helpfulness to a baseline model without
additional supervision, while the models fine-tuned
with Infusion setting will rely more on the expla-
nation part of the input for inference.

A positive score demonstrates that the explana-
tions can provide overall helpfulness for better pre-
diction, while a negative score does not necessarily
mean the explanations are not helpful. Instead, a
negative score indicates that the explanations lead
to the model’s performance drop in at least one part
of the evaluation. Researchers can further analyze
the intermediate score for each part. As a result,
the score ranges theoretically from -2 to 2.

5.2 Evaluation

We evaluate human-annotated natural language ex-
planations across five popular datasets using our
Treu metric and the Simulatability score. To
justify that our metric is less biased by different
model architectures and to examine the influence
of models fine-tuned with different settings towards
the prediction performance, we perform experi-
ments on both T5 and BART models. The proposed
unified data format is applied to the experiments
for our metric and the Simulatability score to
make it a more robust baseline.

We maintain the same fine-tuning hyper-
parameters for all the experiments (details in Ap-
pendix B.2). The only exception is for the e-SNLI

dataset, which has about 10x the size (549,367 data
instances) of training data compared to the other
datasets. Therefore, we only fine-tune models on
the e-SNLI dataset with two epochs. Furthermore,
we leverage the special token ‘<s>’ for BART that
was already used during the pre-training process in-
stead of using and adding the special token ‘<sep>’
to BART tokenizer during fine-tuning. We present
the evaluation results in Table 3.

5.3 Findings

Our results justify the intuition that human-
annotated explanations can still provide benefits
toward model prediction, even if they were eval-
uated as low-quality by humans in prior litera-
ture. By first comparing the models’ prediction
results over two architectures, the result shows all
models fine-tuned on T5-base outperform those
fine-tuned on BART-base with the same setting,
mainly with a significant margin.

Despite apparent performance differences be-
tween model architectures, by looking at the or-
derings of datasets in both tables, which are based
on our Treu score, We can easily observe that Treu
score provides the same ranking result for the qual-
ity of explanations in 5 datasets over two model
architectures. Our Treu score (Table 3) ranks the
explanation quality of the five datasets in the fol-
lowing order regardless of model architectures:

ECQA > CoS-E v1.11 > CoS-E v1.0 > e-SNLI > ComVE

According to the Treu score, explanations in
ECQA have the best quality among the five datasets.
Especially, explanations in ECQA are much better
than the ones in both CoS-E datasets, which is con-
sistent with previous works’ consensus. It is worth
noticing that both CoS-E datasets achieve positive
Treu scores, though significantly lower than the
ones for ECQA, demonstrating that explanations
in CoS-E datasets still have positive overall help-
fulness for models’ prediction performance even
though they are considered ‘low quality and noisy’
from human experiments (Sun et al., 2022).

Our Treu score can rank explanation quality
consistently across all five datasets on two mod-
els while the Simulatability falls short. On
the other hand, the Simulatability score cannot
provide a consistent ranking of explanation quality
on the two models. Instead, the Simulatability
score provides two distinct rankings:
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T5-base Mpredict+Baseline
f inetune+Baseline Mpredict+Infusion

f inetune+Baseline
Simulatability

Score Mpredict+Infusion
f inetune+Infusion

Treu
Score

ECQA 0.572 0.746 0.174 0.989 0.591
CoS-E v1.11 0.608 0.610 0.002 0.803 0.197
CoS-E v1.0 0.695 0.645 -0.05 0.878 0.133
e-SNLI 0.907 0.676 -0.231 0.981 -0.157
ComVE 0.88 0.527 -0.353 0.949 -0.284

BART-base Mpredict+Baseline
f inetune+Baseline Mpredict+Infusion

f inetune+Baseline
Simulatability

Score Mpredict+Infusion
f inetune+Infusion

Treu
Score

ECQA 0.428 0.438 0.010 0.901 0.483
CoS-E v1.11 0.443 0.449 0.006 0.700 0.263
CoS-E v1.0 0.512 0.486 -0.026 0.790 0.252
e-SNLI 0.888 0.658 -0.23 0.978 -0.14
ComVE 0.812 0.596 -0.216 0.864 -0.164

Table 3: Evaluation results of human-annotated explanations in 5 datasets with our Treu score and Simulatability
score. The tables above and below correspond to models fine-tuned on T5-base and BART-base, respectively. The
Simulatability score only considers Mpredict+Baseline

f inetune+Baseline and Mpredict+Infusion
f inetune+Baseline, while our Treu score considers

Mpredict+Infusion
f inetune+Infusion additionally.

T5-base:

ECQA > CoS-E v1.11 >

CoS-E v1.0 > e-SNLI > ComVE

BART-base:

ECQA > CoS-E v1.11 >

CoS-E v1.0 > ComVE> e-SNLI

From Table 3, the Simulatability score ranks
e-SNLI and ComVE reversely on BART compared
with T5 models, indicating Simulatability
score could be more affected by different model
architectures even with the unified data structure.

One advantage of using our Treu score to evalu-
ate the quality of explanations is that we can ana-
lyze the score by class or intermediate results from
fine-tuning or inference. For instance, we observe
that the Treu scores for e-SNLI with T5 and BART
models are both negative, indicating that the help-
fulness of explanations in e-SNLI could be lim-
ited. However, by looking into the intermediate
results, though the baseline models perform signifi-
cantly worse while predicting with Infusion than
with Baseline setting, the models that are fine-
tuned with Infusion still outperform the base-
line models while predicting with Infusion , jus-
tifying the explanations indeed provide improve-
ments under this setting. When we further decom-
pose the Treu score of e-SNLI by category, we
acquire 0.13/-0.483/0.094 on T5-base and 0.015/-
0.227/-0.271 on BART-base corresponds to entail-
ment/neutral/contradiction.

We speculate that the helpfulness of human-
annotated explanations to models highly de-
pends on the task (e.g., the ‘contradiction’ la-
bel categories) and the explanation format (e.g.,
counter-factorial styles). We notice that the
models fine-tuned on T5 and BART have more
than a 40% prediction accuracy drop on data
with ‘neutral’ labels when they are fine-tuned with
Baseline and predicted with Infusion . In ad-
dition, we observe that the fine-tuned BART mod-
els have about a 40% prediction accuracy drop
on data with ground-truth ‘contradiction’ labels.
We suspect human annotators behave differently
while providing explanations for different cate-
gories in e-SNLI. For instance, humans tend to
provide counter-factorial explanations or use nega-
tion connotations to explain why two sentences are
‘neutral’ or ‘contradiction’ categories. Some rep-
resentative examples for each class are provided
in Appendix 5. Such behavior’s tendency to use
negation connotations in explanations for specific
categories may increase the difficulty for the mod-
els to interpret the information and lead to false
predictions eventually.

From Table 3, ComVE ranks worst among the
five datasets in both tables, indicating the explana-
tions in ComVE are the least helpful for the mod-
els to either fine-tune or predict with. Since the
ComVE task asks models to predict which sentence
is more likely against commonsense, the question
itself implies a negation connotation. Likewise,
many ComVE explanations contain negation, such
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as the one in Figure 1. The concept of negation
has always been a complex concept for machines.
Although both T5 and BART models fine-tuned
with the Baseline setting can perform relatively
well on ComVE, the addition of explanations that
largely contain negation during inference is likely
to create more difficulties for the models to under-
stand and eventually lead to false prediction.

Our hypothesis on counter-examples or nega-
tion annotations in human-annotated explana-
tions can find support from many recent works.
A recent analysis (Joshi et al., 2022) claimed that
negation connotations have high necessity but low
sufficiency to describe the relation between fea-
tures and labels. In addition, counterfactually-
augmented data may prevent models from learning
unperturbed robust features and exacerbate spuri-
ous correlations (Joshi and He, 2021). Therefore,
we suggest human annotators avoid using counter-
examples while providing explanations. Instead,
using precise words to describe the degree of re-
lations between concepts will be preferable and
provide better helpfulness to models.

Nevertheless, these models can correctly under-
stand explanations for all categories after being
fine-tuned with the Infusion setting. Worth point-
ing out that ECQA explanations are summarized
from positive and negative properties for each can-
didate choice which also contains negation words.
However, those negation words mostly appear in
negative properties for wrong choices. As a result,
we notice the pre-trained baseline models can lever-
age ECQA explanations with Infusion during the
predicting process and achieve performance im-
provement. Since we are the first to discover such
a class-level drop on e-SNLI by using Treu score,
we only propose our hypothetical assumption and
leave a definitive study for future work.

6 Conclusion

In this paper, we objectively evaluate human-
annotated natural language explanations from the
perspective of measuring their helpfulness towards
models’ prediction. We conduct two preliminary
experiments and based on the findings from the
preliminary study, we define an evaluation metric
that considers the explanations’ helpfulness at both
fine-tuning and inference stages; We also propose
a unified prompt-based data format that minimizes
the influence of task differences by mapping var-
ious tasks into a unified multiple-choice genera-

tion task. Our experiment with human-annotated
explanations in five popular large-scale datasets
over two sequence-to-sequence model architectures
demonstrates that our metric can consistently re-
flect the relative ranking of explanation qualities
among five datasets while the Simulatability
score falls short. Our work lays a stepstone to-
wards a high-quality human-AI collaboration fu-
ture for data annotation job (Wang et al., 2019a),
and we recommend researchers perform similar
quality checks while collecting human-annotated
explanations in the future.

7 Limitations

In this paper, we evaluate the quality of human-
annotated natural language explanations towards
the models’ prediction performance on multiple
datasets. Although it is a natural step that our eval-
uation metric could be generalized to evaluate the
helpfulness of model-generated explanations, we
would like to caution that: our metric and evalua-
tion experiment requires the models to generate ex-
planations for the train split data, then use the data
with generated explanations to fine-tune the sec-
ond model with the Infusion setting, which may
not be suitable for those systems that are trained
on train split data. In addition, we acknowledge
that the human-annotated explanations are very ex-
pensive to collect, thus, a better mechanism (e.g.,
Active-Learning approaches (Yao et al., 2023)) is
needed to improve human annotators’ performance.

8 Ethics Statement

We do not see potential ethical concerns or misuse
of the proposed evaluation method. One potential
risk, though minimal, could be the misinterpreta-
tion of the findings of this paper. We would like
to caution readers that a higher score of our metric
may not necessarily reflect a higher quality per-
ceived by humans, as the evaluation metric only
measures the explanation’s benefit from the mod-
eling perspective, and it is only one of the many
possible ways of automatically evaluating the qual-
ity of natural language explanations.
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Figure 4: The unified structure of Baseline , Infusion , and self-rationalization settings. Bold text are fixed
prompts for each dataset.

Appendix

A Implementation of self-rationalization
format

We show the implementation of the self-
rationalization setting proposed by Marasović et al.
(2021) and put it together in Figure 4 with our
proposed unified structure of the Baseline and
Infusion setting.

B Experiment Hyper-Parameters

We perform all the computational experiments on a
Google Colab instance with a single Nvidia V100
GPU and 50 Gigabytes of RAM.

B.1 Hyper-parameter for Preliminary
Experiment

For the preliminary experiment of utilizing expla-
nations as part of input V.S. part of the output,
we leverage the following hyper-parameters for all
models with different data structures: max_len :
512, target_max_len : 64, train_batch_size : 1,
learning_rate : 5e−5, num_train_epochs : 12.

For the preliminary experiment of explanations
as partial input during fine-tuning, we maintain
the following hyper-parameters for all models fine-
tuned with partial/full train data of CoS-E and
ECQA datasets: max_len : 512, target_max_len :
16, train_batch_size : 1, learning_rate : 1e−4,
num_train_epochs : 6.

B.2 Hyper-parameter for Explanation
Evaluation with five Datasets

For the evaluation of human-annotated expla-
nations on 5 different datasets, we maintain
the following hyper-parameters for all the mod-
els: max_len : 512, target_max_len : 64,
train_batch_size : 1, learning_rate : 5e−5,
num_train_epochs : 12. The only exception is
the e-SNLI dataset, which has about 10x the size
(549,367 data instances) of training data compared

to the other datasets. Therefore, we only fine-tune
models on the e-SNLI dataset with two epochs.

C Results for Preliminary Experiment -
Explanations as Partial Input During
Fine-tuning

We randomly shuffle three seeds to select the subset
of data and fine-tune the model for the preliminary
experiment of explanations as partial input during
fine-tuning. The detailed results of each experiment
and average accuracy are reported in Table 4.

D Examples of different explanations for
each category in e-SNLI dataset

From our evaluation results, we suspect human an-
notators behave differently while explaining data
with various categories in e-SNLI. For instance, hu-
man annotators may explain why two sentences are
‘entailment’ by describing the shared information
or similarities conveyed by both sentences, which
is easy for models to understand. However, humans
tend to provide counter-examples or negations to
explain why two sentences are unrelated (neutral)
or contradictory rather than explaining their rea-
soning in a positive way. In Table 5, we show rep-
resentative examples of data with corresponding
explanations for each class.
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Fine-tune with Baseline on CoS-E v1.0

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.583 0.656 0.638 0.658 0.661 0.670 0.674 0.678 0.697 0.676
0.550 0.644 0.664 0.650 0.666 0.667 0.667 0.682 0.668 0.682
0.584 0.64 0.64 0.655 0.670 0.675 0.677 0.66 0.674 0.68

Average 0.572 0.647 0.647 0.655 0.665 0.671 0.673 0.673 0.680 0.679

Predict
Infusion

0.586 0.586 0.625 0.633 0.596 0.621 0.663 0.655 0.649 0.676
0.561 0.591 0.642 0.609 0.656 0.630 0.618 0.650 0.641 0.652
0.525 0.6 0.631 0.62 0.631 0.614 0.658 0.595 0.647 0.665

Average 0.545 0.592 0.632 0.621 0.628 0.622 0.647 0.634 0.645 0.664

Fine-tune with Infusion on CoS-E v1.0

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.588 0.622 0.617 0.613 0.635 0.616 0.615 0.625 0.652 0.629
0.592 0.614 0.573 0.610 0.650 0.592 0.632 0.64 0.610 0.64
0.601 0.609 0.615 0.618 0.631 0.629 0.641 0.635 0.652 0.634

Average 0.594 0.615 0.602 0.614 0.639 0.612 0.629 0.633 0.638 0.634

Predict
Infusion

0.867 0.874 0.884 0.889 0.902 0.894 0.890 0.886 0.910 0.904
0.875 0.888 0.881 0.890 0.898 0.901 0.9 0.901 0.896 0.895
0.877 0.885 0.887 0.887 0.903 0.907 0.898 0.910 0.894 0.908

Average 0.873 0.882 0.884 0.889 0.901 0.901 0.896 0.899 0.900 0.902

Fine-tune with Baseline on ECQA

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.495 0.522 0.528 0.553 0.550 0.550 0.554 0.569 0.561 0.562
0.471 0.505 0.525 0.533 0.549 0.561 0.558 0.572 0.572 0.572
0.469 0.511 0.533 0.541 0.553 0.545 0.569 0.564 0.566 0.565

Average 0.478 0.513 0.529 0.542 0.551 0.552 0.560 0.568 0.566 0.566

Predict
Infusion

0.664 0.672 0.710 0.716 0.692 0.702 0.708 0.722 0.684 0.701
0.685 0.682 0.673 0.697 0.681 0.682 0.694 0.677 0.699 0.641
0.678 0.715 0.693 0.648 0.706 0.713 0.686 0.685 0.688 0.711

Average 0.675 0.690 0.692 0.687 0.693 0.699 0.696 0.695 0.690 0.684

Fine-tune with Infusion on ECQA

10% 20% 30% 40% 50% 60% 70% 80% 90% 1

Predict
Baseline

0.417 0.406 0.402 0.395 0.381 0.379 0.365 0.379 0.375 0.374
0.381 0.363 0.367 0.366 0.368 0.400 0.385 0.349 0.368 0.371
0.381 0.386 0.345 0.341 0.369 0.376 0.361 0.359 0.386 0.334

Average 0.393 0.385 0.371 0.367 0.373 0.385 0.370 0.362 0.376 0.360

Predict
Infusion

0.974 0.983 0.983 0.989 0.985 0.988 0.989 0.984 0.990 0.992
0.984 0.985 0.983 0.981 0.990 0.989 0.991 0.985 0.990 0.983
0.984 0.982 0.984 0.981 0.989 0.987 0.988 0.989 0.989 0.989

Average 0.980 0.983 0.983 0.984 0.988 0.988 0.989 0.986 0.990 0.988

Table 4: Detailed results for the preliminary experiment of explanations as partial input during fine-tuning.
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Category Premise Hypothesis Explanation

entailment
A young family enjoys feeling
ocean waves lap at their feet.

A family is at the beach. Ocean waves implies the beach.

An old man with a package poses
in front of an advertisement.

A man poses in front of an ad.
The word " ad " is short for the word
" advertisement ".

A man reads the paper in a bar
with green lighting.

The man is inside. In a bar means the man could be inside.

neutral
An old man with a package poses
in front of an advertisement.

A man poses in front of
an ad for beer.

Not all advertisements are ad for beer.

A woman with a green headscarf,
blue shirt and a very big grin.

The woman is young.
the woman could’ve been old rather
than young

A man reads the paper in a bar
with green lighting.

The man is reading the sportspage.
The man could be reading something
other than the sportspage.

contradiction
A woman with a green headscarf,
blue shirt and a very big grin.

The woman has been shot.
There can be either a woman with a very
big grin or a woman who has been shot.

A man playing an electric guitar
on stage.

A man playing banjo on the floor.
The man can’t play on stage if he is
on the floor.

A couple walk hand in hand
down a street.

A couple is sitting on a bench.
The couple cannot be walking and
sitting a the same time.

Table 5: Representative examples of data with corresponding explanations for each class in e-SNLI.
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�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
4, 5, Appendix

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
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4, 5
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� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
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� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.
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crowdworkers explain how the data would be used?
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� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
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� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
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