A Systematic Study of Knowledge Distillation for Natural Language
Generation with Pseudo-Target Training

Nitay Calderon*

Technion — IIT Microsoft Research

Abstract

Modern Natural Language Generation (NLG)
models come with massive computational and
storage requirements. In this work, we study
the potential of compressing them, which is
crucial for real-world applications serving mil-
lions of users. We focus on Knowledge Distilla-
tion (KD) techniques, in which a small student
model learns to imitate a large teacher model,
allowing to transfer knowledge from the teacher
to the student. In contrast to much of the pre-
vious work, our goal is to optimize the model
for a specific NLG task and a specific dataset.
Typically in real-world applications, in addi-
tion to labeled data there is abundant unlabeled
task-specific data, which is crucial for attaining
high compression rates via KD. In this work,
we conduct a systematic study of task-specific
KD techniques for various NLG tasks under
realistic assumptions. We discuss the special
characteristics of NLG distillation and particu-
larly the exposure bias problem. Following, we
derive a family of Pseudo-Target (PT) augmen-
tation methods, substantially extending prior
work on sequence-level KD. We propose the
Joint-Teaching method, which applies word-
level KD to multiple PTs generated by both
the teacher and the student. Finally, we vali-
date our findings in an extreme setup with no
labeled examples using GPT-4 as the teacher.
Our study provides practical model design ob-
servations and demonstrates the effectiveness
of PT training for task-specific KD in NLG.

1 Introduction

Modern Natural Language Generation (NLG) sys-
tems are based on pre-trained Language Models
(LMs), which are gradually achieving remarkable
milestones (Raffel et al., 2020; Brown et al., 2020;
OpenAl, 2023). Alongside the impressive advances
in applications such as Neural Machine Transla-
ms mainly done during an internship at Mi-

crosoft MSAI. Contact: nitay@campus.technion.ac.il.
Code: https://github.com/nitaytech/KD4Gen.

Subhabrata Mukherjee

Roi Reichart
Technion — IIT

Amir Kantor
Microsoft

tion (NMT), Summarization, chatbots, such mod-
els have also become increasingly larger, deeper,
slower, and more complex. The massive storage
requirements and high computational complexity
of NLG models discourage their deployment in
real-life. As such, there is a growing demand in
the industry for compressing such models while
preserving their performance.

Model compression methods typically either
prune less informative parameters (LeCun et al.,
1989) or use knowledge distillation (KD) (Hinton
etal., 2015; Kim and Rush, 2016) to transfer knowl-
edge from a larger model (the teacher) to a smaller
model (the student). In generation tasks, KD can
be applied at the word-level, by training the student
to mimic the teacher’s next token distribution, or
at the sequence-level, by training the student on
Pseudo-Targets (PTs) generated by the teacher.

Although KD research is extensive (Gou et al.,
2021; Gupta and Agrawal, 2022; Treviso et al.,
2022; Xu and McAuley, 2022), most works focus
on Natural Language Understanding (NLU) tasks,
task-agnostic language modeling, or specific gen-
eration tasks (e.g., NMT). Additionally, KD works
for NLG typically consider large datasets with hun-
dreds of thousands of labeled examples, and ignore
unlabeled data (Shleifer and Rush, 2020; Wang
et al., 2021a; Li et al., 2022; Zhang et al., 2022a).

In more realistic scenarios, however, the num-
ber of labeled examples is limited, alongside an
abundance of unlabeled data (Oliver et al., 2018;
Calderon et al., 2022) that may contribute to KD.
To bridge these gaps, in this paper we conduct a
systematic study of KD for NLG, considering a
variety of tasks: Summarization, Question Gen-
eration, Abductive Reasoning, Style Transfer and
Simplification, in a more realistic setup.

Our realistic setup follows 5 criteria that are par-
ticularly attractive for a broad range of NLP prac-
titioners: (1) Only several thousand labeled exam-
ples are available for training (Medium-resource),

14632

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 14632—-14659
July 9-14, 2023 ©2023 Association for Computational Linguistics

mailto:nitay@campus.technion.ac.il
https://github.com/nitaytech/KD4Gen

as annotation is costly or labor-intensive, especially
for NLG. This is in contrast to research setups
where labeled datasets can be very large. (2) Large
amounts of unlabeled data are available, as is of-
ten the case in industrial setups where unlabeled
data is collected during the life-cycle of the prod-
uct; (3) Off-the-shelf models are used, which is
more practical than training models from scratch;
(4) Inference-time efficiency is our goal, mean-
ing high compression rate; (5) One-time computa-
tional training resources are negligible, compared
to inference-time, allowing extensive use of PTs.

Recently, huge LMs with excellent generative
capacity, such as GPT-4 (OpenAl, 2023) have been
presented. While it is tempting to focus our re-
search on them, we focus on small to medium size
LMs in a fine-tuning setup. This choice is because
utilizing a huge LM as a teacher is often infeasible,
e.g., due to their high financial costs or when the
data cannot be sent to external servers because of
privacy constraints. Furthermore, research suggests
that using mediator-teachers aids the distillation
process (Mirzadeh et al., 2020), as might be the
case in distillation from a huge LM to a medium
fine-tuned teacher and finally to a small student.
For an extended discussion, see §7.

Our work hence focuses on a medium size fine-
tuned teacher and we assume there are several thou-
sand labeled examples for its fine-tuning. Despite
the above limitations, applying huge LMs in some
valuable setups is still possible. Therefore, we also
consider the distillation of one such model (GPT-4),
although this is not our main focus.

We start our study by comparing architectural
(Encoder-decoder vs. Decoder-only), pruning and
KD design decisions, discussing the tradeoff be-
tween computational resources and task perfor-
mance. We focus on practical measures like /a-
tency and throughput, which is important for batch-
offline applications and is typically overlooked.

We next provide the first exposure bias perspec-
tive for KD which motivates PT augmentation.
This bias derives from teacher forcing when the
LM conditions on ground-truth tokens during train-
ing, while at inference time it conditions on previ-
ously generated tokens (Ranzato et al., 2016). As
the distillation progresses, the student’s predictions
gradually become similar to its teacher’s, and there-
fore training with PTs can alleviate exposure bias.

We propose extensions of the common practice
of generating a single mode approximation PT via

beam search, instead, we suggest sampling multi-
ple PTs to facilitate higher exposure to conditional
distribution factors. Additionally, we generate PTs
for unlabeled data and demonstrate their effective-
ness. Moreover, we propose a novel KD technique
termed Joint-Teaching, which applies word-level
KD to PTs generated by both the teacher and the
student. This technique aims to implicitly and ex-
plicitly address the student exposure bias, ground
the learning and teach it to correct its mistakes.

Finally, we extend the scope of our study by
working solely with limited unlabeled examples.
Due to the absence of labeled examples, fine-tuning
the teacher is infeasible, leading us to depend
on huge LMs with zero-shot capabilities. Con-
sequently, we investigate whether our KD findings
from our realistic setup (which involves a fine-
tuned teacher) remain applicable to the new ex-
treme setup. To this end, we show how to success-
fully distill GPT-4, a huge Decoder-only model,
into a small Encoder-decoder model (T5-small),
which also has a different tokenizer.

Our main empirical findings (§5) are: (1)
Encoder-decoder architectures outperform their
Decoder-only counterparts in task-specific fine-
tuning for NLG; (2) Decoder pruning substantially
outperforms encoder pruning when considering
both latency and task performance; and (3) PTs can
be used much more effectively compared to what
was suggested in previous work and this yields sub-
stantially improved task performance on a much
reduced computational cost.

2 Background and Related Work

2.1 Natural Language Generation

Modern LMs based on Transformers leverage two
primary architectures for text generation: Encoder-
decoder (ED) (Vaswani et al., 2017) and Decoder-
only (DO) (Radford et al., 2019). While ED models
are more popular for classification, summarization,
and NMT, DO models excel on open-text genera-
tion and zero/few-shot setups (Wang et al., 2022).

Nonetheless, the increasing popularity of mas-
sive DO models like GPT-3 and PaLM (Brown
et al., 2020; Chowdhery et al., 2022) with impres-
sive generation capabilities, has led to the question
of whether ED models are still relevant for NLG?
In §5 and in the appendix (§B) we discuss and
demonstrate the differences between these two ar-
chitectures. We show in line with recent work of
Tay et al. (2022) that ED models outperform DO

14633

models in task-specific fine-tuning for conditional
NLG. In light of this observation, we focus on KD
only for ED models in the rest of the paper.

Text generation is a structured prediction prob-
lem where the goal is to sample a text ¢ from the
distribution learned by the LM, conditioned on the
input text . The training objective of the LM is to
minimize the negative log-likelihood (NLL) of the
training dataset, by factorizing — log P(y|x) into
— leyz‘l log P(y;|x,y<;). At inference time, the
LM generates one token at a time according to the
conditional distribution: P(y;|z,¢<;). The selec-
tion of the next token is handled by the decoding
method. Beam search, which aims to find the most
likely target, is the the de-facto standard (Zarrief3
et al., 2021). Alternatively, it is possible to frame
decoding as sampling, as we do in this work.

2.2 Exposure Bias

LMs learn the distribution P(y|z, y<;) at the train-
ing phase by conditioning on the ground truth y;.
This is known as teacher forcing which makes the
training efficient and stable but also creates a mis-
match at inference time, since the LM conditions
on its previous predictions ¢;. This discrepancy
between training and inference is called exposure
bias. Potential side-effect is that a single error
during generation may have a cascading effect by
causing a deviation from the ground truth distri-
bution and resulting in an accumulation of errors
(Arora et al., 2022). Many works link exposure bias
to generalization, hallucinations, and degeneration
(Schmidt, 2019; Chiang and Chen, 2021).

Recent works attempted to address exposure
bias, most of which focused on open-text genera-
tion and NMT (Schmidt, 2019; Wang and Sennrich,
2020; Hormann and Sokolov, 2021). Other works
addressed this problem by applying reinforcement
learning techniques (Ranzato et al., 2016) or by
scheduled sampling which replace ground truth to-
kens with generated tokens (Bengio et al., 2015;
Liu et al., 2021b). However, it leads to training
with inaccurate and noisy signals (Xu et al., 2019).
In contrast to other works which study this problem
in a general setting, in KD setting the teacher can
be used to mitigate the student exposure bias by
utilizing PTs and reliable signals from it. This is
the first work to discuss exposure bias in KD.

2.3 Compression and Knowledge Distillation

There has been extensive research on model com-
pression on techniques such as parameter sharing,

pruning, quantization and factorization (Gou et al.,
2021; Gupta and Agrawal, 2022; Treviso et al.,
2022; Xu and McAuley, 2022). Pruning (LeCun
etal., 1989) aims to discard unimportant weights of
a pre-trained or fine-tuned LM, making it more ef-
ficient while preserving performance. Usually, the
pruning is structured, and complete blocks, rows,
or layers are removed according to their magni-
tude, changes during training (Sanh et al., 2020),
or causal effect (Rotman et al., 2021).

Typically there is a performance gap between
the original and the compressed model, which can
be closed by applying Knowledge distillation (KD)
(Hinton et al., 2015) — a technique for transfering
knowledge from a large trained model (teacher 1)
to a smaller one (student S), by training the student
to mimic the teacher’s predictions or features. KD
can be divided into two categories: task-agnostic,
where the goal is to mimic a pre-trained LM’s be-
havior, and task-specific, where the distillation is
performed on a fine-tuned LM. Generally, there
are three levels of KD: word-level (or class-level),
inner-level, and sequence-level (only in NLG):

Word-level KD, also known as Logits KD (Hin-
ton et al., 2015; Kim and Rush, 2016). In this
method, the student learns to match the teacher’s
distribution over the next token at each position,
by minimizing the KL divergence between the dis-
tribution of the student Ps(y;|z, y<;) and the dis-
tribution of its teacher Pr(y;|z,y<;). There are
variations like Noisy KD (Liu et al., 2021a) where
noise is injected during KD by applying dropout to
the teacher, Wang et al. (2021a) which applies KD
only for carefully selected examples, etc.

Inner-level KD aims to mimic additional inner
features of the teacher, for example, Jiao et al.
(2020) leverages hidden states of the teacher to
train the student. Wang et al. (2020) and Wang
et al. (2021b) proposed Attention-relations KD
which trains the student to mimic the relation ma-
trix (scaled dot-product) of the self-attention states.

Sequence-level KD is commonly used for NMT
(Kim and Rush, 2016; Kim et al., 2019; Kasai et al.,
2020). In this approach, the teacher generates PTs
for inputs in the original dataset, and student is
trained to predict them. Usually, the teacher gener-
ates a single PT using beam search, which is known
as “mode approximation” of Pr(y|x).

Gou et al. (2021) and Gupta and Agrawal (2022)

present a detailed overview of KD techniques. No-
tably, most works in NLP explore task-agnostic KD

14634

’ Realistic Setup: Medium-resource labeled dataset with plentiful unlabeled data.

Extreme setup:

No labeled data.

SL.Archi- o) pruning = S3.Objective =9 S4.PTs = S5.Unlabeled =p 0 NUmber 57. PTs $8. Joint- GPT-4t0 T5-S
tecture of PTs Decoding Teaching
. . . Fine-tune +
Fine-tuning No PTs Single PT
Encoder- . Fine-tune + PTs for . Logits KD +
- Logits KD Single PT Labeled A single PT Beam Search Only Teacher Single PT
. Logits KD + Labeled and . . Fine-tune +
Decoder - Noisy KD [Single PT] [Unlabeled][Multiple PTs][Sampling] Only Student Multiple PTs
Attention- High Temp Joint- Logits KD +
Relations KD Sampling Teaching Multiple PTs

Figure 1: The design of our research. At each stage (from left to right), we examine different modeling decisions in
order to gain a better understanding of their impact. We start with the architectural decisions which largely impact
the task performance and computational aspects of the NLG models. Following that, we compare different KD
objectives, and then we focus on augmenting the training data with Pseudo-Targets (PTs). A bold border indicates
the decision we made at each stage based on the average development set performance over four NLG tasks.

for encoder-only models (Sanh et al., 2019; Jiao
et al., 2020; Wang et al., 2021b) or focus on NMT
(Kim and Rush, 2016; Kasai et al., 2020; Wang
et al., 2021a). Shleifer and Rush (2020) focused
on high-resource summarization, and compared
three KD strategies: pruning and fine-tuning, logits
KD, and mode approximation PTs. Unlike these
works, we perform a more systematic study of task-
specific KD for a variety of NLG tasks in realistic
setups. Moreover, we focus on PTs and propose
extensions to demonstrate their effectiveness.

3 Methods
3.1 Research Design

Our research design illustrated in Figure 1 has eight
stages. At each stage, we examine different model-
ing decisions and continue to the next stage after
selecting the best technique according to the perfor-
mance on the development set (to avoid performing
selection on the test set). We linearly examine one
aspect at a time since the alternative (combinatorial
choices) is too expensive. Our study starts with
architectural designs (stages 1-2), continues with
comparing different KD strategies (stages 3-4) and
proceeds to explore the usage of PTs as augmenta-
tion strategies for KD (stages 5-8).

3.2 Architectures and Pruning

In the spirit of our realistic setup, we consider off-
the-shelf LMs and experiment with two model fam-
ilies for each architecture type (see §4.2). In ap-
pendix §B we discuss the differences between ED
(Encoder-Decoder) and DO (Decoder-only) archi-
tectures (stage 1) and show that ED models outper-
form DO models on task-specific tuning for NLG.
Following that, we present results only for ED in
§5. In stage 2, we examine the effect of pruning,
by discarding complete model layers. In the case

of ED, layers can be dropped either from the en-
coder or decoder components, resulting in different
impacts on the task or computational performances.

3.3 Objectives'

As discussed in §2.3, various works proposed dif-
ferent training strategies for KD. In stage 3 we
perform a comparison between three popular KD
objectives (baselines), which do not involve PTs:
(1) Logits KD — which is the most common and
the simplest technique; (2) Noisy KD — which
showed promising results for summarization in self-
distillation setup; and (3) Attention-Relations KD
(combined with Logits KD) — which is the SOTA
technique for Encoder-only models.

As suggested by Mukherjee and Awadallah
(2020), following the end of the KD stage, we
also perform an end-to-end fine-tuning stage on
the ground truth labels. This stage is extremely
cheap since a teacher is not required.

3.4 Pseudo-Targets (a.k.a sequence-level KD)!

Pseudo-Targets (PTs) are predictions generated by
the teacher that can be utilized for training the stu-
dent. Word-level or Inner-level KD can be com-
bined with sequence-level KD (e.g., by applying
Logits KD to PTs). In stage 4 we investigate the
impact of augmenting the labeled data with PTs
when fine-tuning the student (sequence-level KD)
or when using the objective from stage 3.
Although various works demonstrated the effec-
tiveness of PTs (Kim and Rush, 2016; Shleifer and
Rush, 2020), their use of PTs was limited to a sin-
gle PT per labeled training example, generated with
mode approximation beam search. In this paper we
demonstrate that the use of PTs can be much more

"More formal descriptions and implementation details of
the methods discussed in §3.3 and §3.4 are provided in §A

14635

20 T, Tt
"y o
Epoch rmaell_
o) —_ N TSIy
T OING L Te D,
- m— o N TS
oy 18 2
1
16 0
0 20 40 60 80 100

Fraction (%) of y that is generated by the student

Figure 2: BLEU scores measured for targets generated
by the T5-S student and the T5-L teacher for the de-
velopment set of the SQUAD17 dataset. For each input
we generate X% of the final output with the student,
and then use the teacher to continue the generation and
complete the output. The X-axis represents the fraction
that is generated by a distilled student (at the end of the
epoch). This analysis examines the effectiveness of the

teacher’s modeling of Pr(y;|z,9%,).

extensive: We generate multiple PTs per training
example, increase their diversity with sampling-
based rather than mode approximation generation,
and generate PTs for both labeled and unlabeled
examples, which are much more abundant by na-
ture. Our experiments demonstrate that each of
these extensions yields substantial improvements
in the quality of the resulting student model. We
next touch on each of these extensions.

Unlabeled data In our setup unlabeled data is avail-
able in abundance. Since in autoregressive NLG the
LM learns to condition on the targets (y<;), PTs
are essential for utilizing unlabeled data (inputs
without corresponding targets). From a general-
ization perspective, exposing the model to more
inputs, and consequently to more P(y;|z, §L,) fac-
tors, should help the student generalize beyond
the labeled data distribution. Indeed, many works
in various NLP fields have shown that unlabeled
data is effective for generalization (Xie et al., 2020;
Mukherjee and Awadallah, 2020; Calderon et al.,
2022). In stage S we examine its importance.

Multiple PTs We further explore alternatives to the
common practice of generating a single PT with
beam search (mode approximation). Unlike clas-
sification, NLG is a structured prediction problem
and multiple candidates can form a correct solution.
Therefore, we can generate multiple PTs resulting
in stronger exposure to the teacher’s knowledge.
We explore the impact of multiple PTs in stage 6.

Sampling PTs Beam search is not the only way
to generate PTs. In fact, it has been demonstrated
to produce generic texts that lack diversity (Finkel
et al., 2006; Gimpel et al., 2013). A simple alterna-

tive that can produce more diverse and surprising
texts is sampling (Roberts et al., 2020; Holtzman
et al., 2020). Moreover, controlling the temperature
of the logits can increase the diversity of the PTs
even further (Tevet and Berant, 2021). We compare
these decoding techniques in stage 7.

Motivation for these Extensions Compared to a
single mode approximation PT, sampling multiple
PTs for both the labeled and unlabeled examples
should add more variability to the student training
and cover a larger portion of the learnable distribu-
tion, which are known to improve generalization.
Furthermore, these extensions expose the student
to more of the teacher’s knowledge.

Additionally, we also provide an exposure bias
motivation. During the distillation the student’s pre-
dictions gradually become similar to its teacher’s
predictions: §° ~ §. Therefore, we can expect
that training the student with diverse PTs may mit-
igate its exposure bias, which occurs at inference
when it conditions on Qgi, and not on the ground-
truth distribution. In addition, PTs of unlabeled
examples can help mitigate this bias as the stu-
dent is getting exposed to the teacher’s knowledge
rather than the gold standard. Moreover, multiple
and diverse PTs results in extensive exposure to
additional P(y;|x,§Z;) factors. Therefore, we hy-
pothesize that sampling multiple PTs will improve
the student compared to a mode approximation PT.

3.5 Joint-Teaching

As mentioned above, training with PTs generated
by the teacher may implicitly mitigate the student
exposure bias. On the other hand, we can try to
mitigate this bias explicitly by training the student
while conditioning on its predictions (i.e. generate
PTs with the student and use them for training).
Generally, this can be unstable since the student
may learn from its own mistakes. Fortunately, in
KD we have a strong oracle: the teacher. By apply-
ing word-level KD on gjii, the teacher can teach
the student how to continue its generated sequence
correctly and prevent a cascading effect.
Nevertheless, this relies on the reasonable as-
sumption that the teacher models P(y;|z,92;) bet-
ter than the student. In Figure 2 we present a single
setup analysis that supports this assumption: At
almost any stage of the student training, continuing
the generation with the teacher results in better pre-
dictions. Moreover, as the student becomes more
similar to the teacher, we can expect the teacher to
model P(y;|z,92,) even better, which makes the

14636

word-level signals more reliable. This is also sup-
ported by Figure 2: As the distillation progresses,
the teacher continuations keeps getting better.
Following that, we propose a novel KD method
which addresses the exposure bias implicitly and
explicitly namely Joint-Teaching: Apply word-
level KD on PTs generated by both the teacher
and the student. In our experiment we randomly
use the student’s PTs for 50% of the training steps.
In stage 7 we compare training only with the stu-
dents’ PTs or the teachers’ PTs to Joint-Teaching,
demonstrating the superiority of the latter.

4 Experimental Setup

In this section we describe our four NLG tasks and
datasets, the participating models and the evalua-
tion procedures. URLs of the code and datasets, as
well as implementation details and hyperparameter
configurations are described in §D. Additionally,
a comparison between ED and DO architectures
(stage 1) is provided in §B.1; theoretical and em-
pirical complexity analyses are provided in §B.2.

4.1 Tasks and Datasets

We selected four English-to-English core NLG
tasks, which are part of several NLG benchmarks
and surveys (Fu et al., 2018; Gehrmann et al., 2021,
2022; Khashabi et al., 2021; Erdem et al., 2022; Jin
et al., 2022). We built a new realistic experimen-
tal setup, in which the ratio of labeled to unlabeled
data is 1:4, and the amount of labeled data is reason-
able. For each task (excluding Shake7) we keep the
original assignment of each example to its train-test
splits. The exact numbers are provided in Table 1.

Summarization (XSUM40) We use the XSUM
dataset (Narayan et al., 2018) for the abstractive
summarization task. The task of the NLG model
is to generate an introductory sentence (summary)
for a given news article.

Question Generation (SQuAD17) We use the
SQuAD dataset (Rajpurkar et al., 2016, 2018) for
the question generation task. Given a Wikipedia
document and an answer to the question, the task
of the NLG model is to generate the question.

Abductive Reasoning (ART10) We use the aNLG
(also known as ART) dataset (Bhagavatula et al.,
2020) for abductive reasoning generation task. The
task of the NLG model is to generate a plausible
explanation for two given observations.

Style Transfer and Simplification (Shake7) We
construct a new dataset for the well-explored style

Name | Train Unlabeled Dev Test | Input Target
XSUM40 40K 164K 5K 11.3K | 480 32
SQuAD17 | 17.5K 70K 1.57K 9K 320 32
ART10 10K 40K 1.25K 14.3K 48 32
Shake7 7K 28K 0.75K 0.8K 48 48

Table 1: Datasets used in our experiments and the num-
ber of examples in each split. Input and Target represent
the maximum lengths (tokens) we use in experiments.

transfer task (which is also a simplification task) of
translating Shakespeare’s texts to modern English.
We combined pairs of Shakespearean and modern
English texts from Shakespeare’s plots (taken from
Xu et al. (2012); Jhamtani et al. (2017)), with other
texts written by Shakespeare (Karpathy, 2015) and
created a parallel style transfer dataset, see §D.1.

4.2 Models and Pruning

Decoder-only We use the GPT2-family models
(Radford et al., 2019): GPT2, GPT2-M, and GPT2-L;
and the recent OPT-family models (Zhang et al.,
2022b): OPT-125Mand OPT-350M.

Encoder-decoder We use the T5-family models
(Raffel et al., 2020): T5-S and T5-L; and the BART-
family models (Lewis et al., 2020): BART-6:6
(base version) and BART-L.

Pruning We apply pruning only for the pre-trained
BART-6:6 model (thus our study also includes a
non-pruned student, T5-S), and consider two types
of pruning: Encoder pruning and decoder prun-
ing. Following Shleifer and Rush (2020), in both
pruning types we keep only the first and last lay-
ers, resulting in two models: BART-2:6 (pruned
encoder) and BART-6: 2 (pruned decoder).

In the KD stages (3-8) we use two student-
teacher pairs: T5-S and T5-L, and a pair with a
pruned student: BART-2:6 and BART-L.

4.3 Evaluation

Task Performance We report on various metrics
that focus on different aspects, resulting in a more
holistic evaluation of the models. To this end,
we focus on the lexical similarity metrics, BLEU
and ROUGE, the semantic equivalence metric
BERTScore (BS, Zhang et al. (2020)) and the sta-
tistical modeling metric Perplexity (PPL), which is
measured by the average NLL of the ground truth
targets. To make the result tables more readable,
we report the average ROUGE (of the F1 scores
for R-1/2/L), and the F1 score for BS. Notice that
in §D we specify for each task the appropriate met-
ric we use for the development set. In §E we report
the scores of all the metrics.

14637

Arch Model | E-D Params Mem | FLOPs Latency Throughput | BLEU ROUGE BS PPL | Dev
DO GPT2-L 0-36 774 3210 | 42.0 675 2.2K 11.9 27.1 70.1 19 | 13.0
DO GPT2-M 0-24 354 1444 19.4 459 4.8K 9.7 232 66.8 3.7 | 108
DO GPT2 0-12 124 511 6.8 235 13.5K 7.8 20.1 614 28 | 85
DO OPT-350M | 0-24 331 1324 18.1 371 5.1K 9.8 24.9 627 3.1 | 10.7
DO OPT-125M | 0-12 125 502 6.8 185 15.4K 10.7 26.3 692 25 | 117
ED T5-L 24-24 737 2951 19.5 597 5.3K 16.4 34.6 751 1.6 | 17.7
ED T5-S 6-6 60 242 1.4 160 55.2K 13.4 30.8 7277 24 | 146
ED BART-L 12-12 406 1625 10.0 281 7.8K 16.4 34.8 754 1.7 1179
ED BART-6:6 | 6-6 139 558 3.0 147 13.5K 14.5 32.7 742 19 | 159
ED BART-2:6 | 2-6 111 445 1.7 146 16.0K 11.4 28.0 716 22 | 12.8
ED BART-6:2 | 6-2 101 407 2.6 75 15.3K 13.3 31.5 733 2.6 | 150

Table 2: A comparison between different architectures and models, fine-tuned on our datasets. E-D represents the
number of Encoder and Decoder layers. All the computational and performance measures are the average over four
NLG tasks. Params are in millions, Mem is in MB, FLOPS is in billions, Latency is in milliseconds. Throughput is
in thousands of examples per minute. Everything is measured on an Nvidia GeForce RTX 4080. We also indicate
the participating models in the KD stages (3-8): Teachers are underlined, student baselines (no KD) are in bold.

Computational Performance For measuring the
computational performance of the models, we re-
port the number of parameters, the memory of the
models and the number of floating-point operations
(FLOPs). These measures are device-agnostic and
may not be well correlated with the actual perfor-
mance in practice, which depends on the device,
implementation, and hardware utilization of the
accelerators (Ma et al., 2018; Hadidi et al., 2019).
Therefore, we also report practical measurements
such as the latency of generating a single output,
which is important for real-time applications, and
the throughput, which is the maximum number of
examples that can be processed in a minute, and is
important for offline batched applications.

5 Results

The complete results are provided in §E. Table 2
reports the results of fine-tuned models (stages 1-
2). Table 3 reports the results of the KD stages
(3-8) as follows: For each student-teacher pair and
dataset, we calculate the fraction of their perfor-
mance gap that is compensated for by using distil-
lation as opposed to only fine-tuning the student
model: KTIZ QS %, where KD, T and S are the task
scores of the distilled student, its teacher and the
student baseline (fine-tuned), respectively. Then,
we report for each dataset the average fraction of
the closed gap over four metrics and two student-
teacher pairs. We also report the number of wins
within 32 setups (4 datasets, 4 metrics, 2 pairs).

S1: Encoder-decoder models outperform
Decoder-only models in task-specific tuning for
NLG. We present our results in Table 2. For a
detailed analysis of Encoder-decoder (ED) and
Decoder-only (DO) models, we refer readers to
Appendix §B, which reports several interesting the-

oretical and empirical insights. Nevertheless, it is
worth noting here that ED models, such as T5-L,
can have twice the number of layers and parame-
ters of DO models, such as GPT2-M or OPT-350M.
However, despite the higher number of parame-
ters, ED models have roughly the same FLOPs and
comparable latency and throughput.

Regarding task performance, our experiments
demonstrate that ED models consistently outper-
form DO models across all datasets and models,
regardless of their size. Presumably, a better induc-
tive bias is injected by applying self-attention (and
not autoregressive-attention) to the conditioned in-
put sequence. This finding is particularly relevant
for NLP practitioners who aim to develop a spe-
cialized in-house model for a specific NLG task.
We hence continue to the KD stages only with ED
models (T5 and BART).

S2: It is better to prune layers from the decoder.
In stage 2, we examine whether it is better to prune
encoder or decoder layers. To this end, we prune
BART-6:6 and report the results at the bottom of
Table 2. First, notice that pruning decoder layers
greatly impacts the latency given the autoregressive
nature of NLG tasks, making BART-6: 2 two times
faster than BART-6:6. For comparison, pruning
encoder layers does not affect the latency (see the
discussion in §B.2). On the other hand, BART-2:6
has a higher throughput than BART-6:2, mainly
because of the long input in some tasks which is
processed by the encoder. Notice, however, that
the improvement of BART-6: 2 in latency is more
substantial than its throughput degradation.
Second, BART-6: 2 outperforms BART-2:6 in ev-
ery task metric (and dataset), being competitive
to BART-6:6. Moreover, for tasks with long in-
puts (e.g., summarization or question generation,

14638

A. Objective XS SQ AR SH ‘ Wins ‘ Dev
(%) (%) (%) (%)
Fine-tune 00 00 0.0 0.0 0 14.8
Logits 302 39.7 257 419 | 13 | 16.0
Noisy 303 373 352 418 | 14 | 159
Att-Rel 313 284 197 214 5 15.9
B. PTs | XS SQ AR SH | Wins | Dev
Logits 302 39.7 257 419 10 | 16.0
Seq-1vl 13.8 9.1 42 42 0 15.7
Logits+Seq 332 30.8 279 49.0| 22 | 163
C.Unlabeled | XS SQ AR SH | Wins | Dev
Labeled ‘ 332 30.8 279 490 ‘ 0 16.3
+ Unlabeled 558 471 415 70.0 | 32 | 169
D.Decoding | XS SQ AR SH | Wins | Dev
Single PT 55.8 47.1 415 70.0 1 16.9
K-Beams 63.6 563 457 747 4 17.0
Samplin§ 73.0 584 482 81.7| 15 |17.2
H-Sampling 700 639 448 81.8| 12 17.1
E. Joint-T | XS SQ AR SH | Wins | Dev
Only Teacher | 73.0 584 482 81.7 4 17.2
Only Student | 68.7 639 439 794 3 17.1
Joint-Teaching | 80.8 66.7 482 87.7 | 25 174

Table 3: Average fractions of the student-teacher perfor-
mance gaps closed by different KD methods, number
of winning setups (out of 32) and development scores.
Table A: KD objectives (S3); Table B: PT augmentation
(S4). Table C: PTs for unlabeled examples (S5); Table
D: Decoding methods for generating PTs (S6+S7); Ta-
ble E: PTs generated only by the teacher, the student, or
Joint-Teaching (S8). For more details about the meth-
ods see §3 and §A. Tasks: XSUM40 (XS), SQuAD17 (SQ),
ART10 (AR), Shake7 (SH).

see §E), the depth of the encoder is critical and
the pruned-encoder BART-2: 6 underpeforms. As a
rule of thumb, our results suggest that it is better
to prune layers of the decoder. Besides reducing
the model latency, it has a smaller impact on task
performance. In the following stages we use two
student-teacher pairs: T5-S and T5-L, and a pair
with a pruned student, BART-6: 2 and BART-L.

S3: Use Logits KD as the main training objec-
tive. In stage 3 we compare different KD objec-
tives. As seen in Table 3.A, Logits, Noisy and
Attention-Relations KD techniques are competi-
tive, and the quality of the method depends on the
task. Even though Noisy KD has more wins than
Logits KD, the PPL metric accounts for 8 of the
14 wins. Since Logits KD is the best-performing
method according to the average performance on
the development set, we continue to the next PT
stages with it. Our results demonstrate the impor-
tance of KD: applying Logits KD closes more than
34.4% of the student-teacher gap, on average.

S4: Combine Logits KD and PTs. In stage 4 we
examine three methods: using Logits KD only on
the labeled examples, fine-tuning the student with
PTs (Sequence-level KD) or combining them. The

corresponding rows in Table 3 show that sequence-
level KD underperforms Logits KD. However, their
combination results in a better student in 22 setups
and achieves a higher development score, and there-
fore, we use this strategy in the subsequent stages.

S5: Unlabeled data should be utilized. Generat-
ing PTs for the unlabeled inputs may help extract
more of the knowledge embodied in the teacher,
allowing the student to generalize better. In stage 5
we explore this hypothesis. According to Table 3.C,
utilizing unlabeled data greatly boosts the perfor-
mance and closes an additional 19% of the gap. To
the best of our knowledge, this is the first study that
shows this in KD for NLG. In the next stages, we
generate PTs for the labeled and unlabeled inputs.

S6: Exposing the student to multiple PTs helps.
By comparing the rows of Single PT and K-Beams
in Table 3.D, it can be seen that exposing the stu-
dent to multiple targets and covering a larger por-
tion of learnable distribution closes an additional
6.4% of the gap on average.

S7: Sampling is better than Beam-Search for
generating PTs. Table 3.D also shows that gen-
erating PTs with sampling is typically better than
beam search, and closes another 5.2% of the gap
on average. We observe that high sampling tem-
perature is competitive, although its effect depends
on the task and model. High sampling works bet-
ter for T5-S, while sampling without temperature
works better for BART-6: 2 (and on average). Fur-
ther research could investigate a larger range of
temperatures and other diversity-oriented decod-
ing methods. Nevertheless, this is the first study
that challenges the traditional mode-approximation
practice, and show that generating multiple PTs via
sampling significantly improves NLG distillation.

S8: Joint-Teaching improves the student. The
results in Table 3.E support two of our hypotheses,
which we discuss in §3.5. The first is that PTs
generated only by the student are less valuable for
its training than PTs generated by teacher. The
second is that the combination of the two types of
PTs (by Joint-Teaching) can be more effective for
KD than using only PTs generated by the student
or teacher. Our Joint-teaching approach wins 25
out of 32 times and closes another 5.7% of the gap.

Final Compression Results. The final compres-
sion results (after stage 8) are provided in Table 4.
We attempt to achieve high compression rates:
T5-KD and BART-KD reduce 92% and 75% of their

14639

Dataset | Model | FLOPs Latency Throughput | BLEU ROUGE BScore PPL
XSUM T5-L 38.7 539 1.3K 11.5 29.3 72.7 1.7
0K T5-KD | 2.7(-93%) 144 (x3.7) 13.4K (x10.3) | 10.7(80%) 282 (81%) 71.8(80%) 1.9 (87%)
BART-L 19.6 254 33K ‘ 13.0 31.1 73.9 1.7
BART-KD | 5.1 (-73%) 68 (x3.7) 10.0K (x3.0) 123 (79%) 30.2 (79%) 73.5(84%) 1.9 (73%)
SQUAD T5-L 26.1 530 2.0K 22.2 42.3 77.9 1.3
175K T5-KD 1.8 (-:93%) 143 (x3.7) 223K (x11.1) | 209 (57%) 40.6 (57%) 71.0 (50%) 1.5(57%)
BART-L 133 250 4.8K 21.5 41.9 77.8 1.4
BART-KD | 34 (-74%) 67 (x3.7) 13.0K (x2.7) | 209(84%) 409 (75%) 71.3 (77%) 1.7 (711%)
T5-L 59 533 10.7K 6.0 21.7 71.5 1.9
l?gg T5-KD 0.5 (-92%) 142 (x3.7) 109.8K (x10.3) | 4.8 (49%) 199 (50%) 70.4 (47%) 2.4 (25%)
‘ BART-L 32 250 13.7K ‘ 6.0 21.4 71.5 2.1
BART-KD | 0.8 (-75%) 67 (x3.7) 23.4K (xL.7) 5.1 (59%) 203 (57%) 71.0 (61%) 2.4 (34%)
T5-L 7.2 789 7.4K 25.7 454 78.4 1.5
Shak%s&)eare T5-KD 0.6 (-91%) 212 (x3.7) 753K (x10.1) | 25.7(100%) 453 (98%) 78.1 (79%) 1.7(56%)
BART-L 39 367 9.2K ‘ 25.1 44.8 78.3 1.8
BART-KD | 1.0 (-75%) 96 (x3.8) 14.8K (x1.6) 24.8 (88%) 45.2(123%) 78.1(86%) 2.0 (68%)

Table 4: T5-KD and BART-KD are the final distilled models trained with Joint-Teaching. The numbers in parentheses
represent computational improvements or the fraction of the student-teacher gap closed by the distilled model.

teachers’ parameters, respectively. This results in
great computational performance improvements.
Our distilled models reduce the latency of their
teachers by a factor of 3.7. In addition, T5-KD has a
10 times higher throughput, and BART-KD has dou-
ble the throughput of its teacher. Our study shows
that KD allows model compression and drastically
improves the task performance compared to the
fine-tuned baseline. In most setups, our recipe for
KD closes more than 75% of the student-teacher
gap. Surprisingly, in some of the tasks like Shake7
the distilled model outperforms its teacher. Finally,
we also conduct a human evaluation to examine the
relatively lower performance of our KD method
on the ART10 dataset (see appendix §F). Our hu-
man evaluation results show that the distilled model
(T5-KD) closes 72% of the gap, and this is in-line
with the performance on other datasets.

5.1 Extreme setup: KD with GPT-4

In the final phase, we explore the transferability of
our KD conclusions to an extreme setup which in-
volves only limited unlabeled examples. As labeled
examples are unavailable, fine-tuning the teacher
becomes impractical, leading to the reliance on a
huge LM with zero-shot capabilities as the teacher,
and this poses new challenges: (1) The teacher is
a huge Decoder-only model (since this is the stan-
dard for zero-shot learning) while the student is an
Encoder-decoder model; (2) The teacher and the
student have different tokenizers and (3) Querying
the teacher is financially costly, limiting its usage.

We utilize GPT-4 (OpenAl, 2023) as our teacher
and T5-S as the student. The prompt of GPT-4
consists of three labeled demonstrations. Due to
its high cost, we conduct experiments only for the

SQUAD17 (3000 examples) and the Shake7 (1500
examples) datasets, and with the following base-
lines and methods: (a) The GPT-4 teacher; (b) T5-S
training with ground-truth (GT) labels; (c) Student
fine-tuning with a single PT; (d) Fine-tuning with
multiple (five) PTs; (e) Student training with Logits
KD and a single PT (f) Logits KD with multiple
PTs; More details are provided in §C.

Our results in Table 7 (appendix §C.2) are mixed:
Generating multiple PTs outperforms a single PT,
but Logits KD only helps in the SQUAD17 dataset.
Future research is called for as we attribute this
result to challenges in aligning the tokenizers.

6 Conclusion

In this paper, we present a general KD recipe for
NLG. To this end, we conduct a systematic study
on various tasks and evaluate the impact of different
modeling decisions on computational and task per-
formance of distilled models. Our results suggest
that using ED models as students, pruning decoder
layers, combining Logits KD and PTs via sampling
and Joint-Teaching achieve high compression rates
while maintaining competitive performance.

Nevertheless, our recipe is based on average per-
formance and may depend on the task, model, or
setup. The teacher-student performance gap that
still exists demonstrate the need for further research.
For example, high-temperature PTs seem to be less
effective for BART, and further exploration of dif-
ferent hyperparameters or methods for increasing
PT diversity may be necessary. Integrating a smart
selection of training examples or PTs (Wang et al.,
2021a), refining Joint-Teaching with curriculum
learning or scheduling (Liu et al., 2021b) are some
future research directions.

14640

7 Limitations

Using a medium size fine-tuned teacher.

With recent advances in huge LM such as GPT-
4 and their extraordinary generation capabilities,
one may wonder about the relevance of this work
which mainly focuses on a medium size fine-tuned
teacher. Although we show the distillation of a
huge LM (GPT-4), it is often infeasible.

First, when the data cannot be sent to external
servers because of privacy constraints or when the
domain is unique or specific (e.g., in national se-
curity settings or human conversations), huge LMs
that cannot be fine-tuned may be less effective.

Second, we have distinguished between two
types of costs: computational and financial. While
training a student model with a medium-size fine-
tuned teacher may take a few days, the entire pro-
cess is feasible since training time is typically not a
limited resource. In contrast, generating PTs with a
huge LM like GPT-4 can easily cost (many) dozens
of thousands of dollars. This financial cost is of-
ten prohibitive, particularly when training a gen-
eral high-quality student or several domain-specific
ones. While it is possible to utilize a huge LM
to obtain a limited number of labeled examples,
relying on it for generating PTs for abundant un-
labeled data is not feasible. Therefore, a medium
size teacher is needed.

Furthermore, research suggests that using medi-
ator/assistant teachers aids the distillation process
(Mirzadeh et al., 2020; Wang et al., 2020), as might
be the case in distillation from a huge LM to a
medium size fine-tuned teacher, and finally to a
small student. Considering the aforementioned rea-
sons, our study holds significant relevance as it em-
phasizes the importance of the distillation process
with a medium size teacher, regardless of whether
the data is generated manually or by a huge LM.

The scope of our realistic setup. While our results
demonstrate the effectiveness of KD for various
English-to-English NLG tasks, for the tasks that
were part of the study, the output length is relatively
short compared to the input (e.g., Summarization
and Question Generation) or has a similar length
(Abductive Reasoning, Style Transfer and Simplifi-
cation). The results may differ for tasks with much
longer output lengths or for non-English-to-English
tasks such as NMT, data-to-text (e.g., table-to-text),
multilingual, or multi-modality tasks.

In addition, the results are applicable to our re-
alistic task-specific setups, and some findings may

vary in high-resource scenarios or when unlabeled
data is unavailable. Although these scenarios may
be less relevant to NLP application developers, they
are commonly studied in academic research.

Computational training costs. Another limita-
tion of our research is that we did not consider
the computational costs of the KD stages. The
training time comparison between the methods was
therefore overlooked. This is because we assumed
that one-time resource usage for training could be
neglected compared to the accumulated inference
cost of a deployed model.

However, it is worth noting that generating PT's
with the teacher for all the training and unlabeled
examples is computationally expensive (it could
take one to a few days, depending on the number of
unlabeled examples). Furthermore, Joint-Teaching
can also be computationally heavier than other KD
methods, as the student generates PTs during the
training process (although the student is fast).

In addition, different training objectives also
have different costs, with some methods being
more computationally intensive than others (e.g.,
Attention-Relation is more costly than Logits KD).
Finally, the distillation process can be long, and
multiple epochs are required until the student con-
verges - in some setups, we trained the student for
more than a few days.

Utilizing huge LMs. Certain limitations arise in
our extreme setup, which involves the costly uti-
lization of huge LMs (GPT-4) provided by external
companies like OpenAl. First, the comparison with
the Joint-Teaching method is not conducted due to
the need for repeated costly querying of the teacher
model to extract its logits every time a PT is gener-
ated with the student. Nevertheless, extracting the
logits of the teacher PTs (for Logits KD) and gen-
erating multiple PTs is approximately equivalent to
generating a single PT. This is because the prompt,
consisting of many tokens, is processed only once,
and the marginal cost of generating multiple (rela-
tively short) PTs is low.

Another limitation arises from relying on exter-
nal companies to enable logit extraction (for Logits
KD) and there is no assurance that this feature will
be supported. For instance, in the chat versions:
ChatGPT and GPT-4, logits are not accessible. In
this work, we rely on an internal version of GPT-4,
which allows us to extract its logits. Fortunately, we
demonstrate that even without Logits KD, achiev-
ing a strong student model is possible.

14641

Acknowledgements Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,

We would like to thank the area chair, the review-
ers, the members of the Microsoft MSAI team, and
the NLP @ Technion team for their valuable feed-
back and advice. Roi Reichart has been partially
supported by the VATAT grant on data science.

References

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and
Jackie Chi Kit Cheung. 2022. Why exposure bias
matters: An imitation learning perspective of error
accumulation in language generation. In Findings of
the Association for Computational Linguistics: ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 700—
710. Association for Computational Linguistics.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence
prediction with recurrent neural networks. In Ad-
vances in Neural Information Processing Systems 28:

Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311:30.

Annual Conference on Neural Information Process- Erkut Erdem, Menekse Kuyu, Semih Yagcioglu, Anette

ing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1171-1179.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen-tau Yih, and Yejin
Choi. 2020. Abductive commonsense reasoning. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Frank, Letitia Parcalabescu, Barbara Plank, An-
drii Babii, Oleksii Turuta, Aykut Erdem, Iacer
Calixto, Elena Lloret, Elena Simona Apostol,
Ciprian-Octavian Truica, Branislava Sandrih, Sanda
Martincic-Ipsic, Gdbor Berend, Albert Gatt, and
Grazina Korvel. 2022. Neural natural language gen-
eration: A survey on multilinguality, multimodal-
ity, controllability and learning. J. Artif. Intell. Res.,
73:1131-1207.

Jenny Rose Finkel, Christopher D. Manning, and An-

drew Y. Ng. 2006. Solving the problem of cascading
errors: Approximate bayesian inference for linguistic
annotation pipelines. In EMNLP 2006, Proceedings
of the 2006 Conference on Empirical Methods in Nat-
ural Language Processing, 22-23 July 2006, Sydney,
Australia, pages 618-626. ACL.

Clemens Wintel‘, Chl‘istopher Hesse, Mark Chen, Eric Yao Fu. Hao Peng Litu Ou. Ashish Sabharwal

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-

and Tushar Khot. 2023. Specializing smaller lan-
guage models towards multi-step reasoning. CoRR,
abs/2301.12726.

vances in Neural Information Processing Systems 33: Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,

Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Nitay Calderon, Eyal Ben-David, Amir Feder, and Roi
Reichart. 2022. Docogen: Domain counterfactual
generation for low resource domain adaptation. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

and Rui Yan. 2018. Style transfer in text: Exploration
and evaluation. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 663—-670. AAAI Press.

Long Papers), ACL 2022, Dublin, Ireland, May 22-27, Sebastian Gehrmann, Tosin P. Adewumi, Karmanya

2022, pages 7727-7746. Association for Computa-
tional Linguistics.

Ting-Rui Chiang and Yun-Nung Chen. 2021. Relating
neural text degeneration to exposure bias. CoRR,
abs/2109.08705.

14642

Aggarwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna-Adriana Clinciu, Dipanjan Das,
Kaustubh D. Dhole, Wanyu Du, Esin Durmus, Ondrej
Dusek, Chris Emezue, Varun Gangal, Cristina Gar-
bacea, Tatsunori Hashimoto, Yufang Hou, Yacine

https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/e995f98d56967d946471af29d7bf99f1-Abstract.html
https://openreview.net/forum?id=Byg1v1HKDB
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.533
https://doi.org/10.18653/v1/2022.acl-long.533
http://arxiv.org/abs/2109.08705
http://arxiv.org/abs/2109.08705
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.1613/jair.1.12918
https://doi.org/10.1613/jair.1.12918
https://doi.org/10.1613/jair.1.12918
https://aclanthology.org/W06-1673/
https://aclanthology.org/W06-1673/
https://aclanthology.org/W06-1673/
https://doi.org/10.48550/arXiv.2301.12726
https://doi.org/10.48550/arXiv.2301.12726
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015

Jernite, Harsh Jhamtani, Yangfeng Ji, Shailza
Jolly, Dhruv Kumar, Faisal Ladhak, Aman Madaan,
Mounica Maddela, Khyati Mahajan, Saad Ma-
hamood, Bodhisattwa Prasad Majumder, Pedro Hen-
rique Martins, Angelina McMillan-Major, Simon
Mille, Emiel van Miltenburg, Moin Nadeem, Shashi
Narayan, Vitaly Nikolaev, Rubungo Andre Niy-
ongabo, Salomey Osei, Ankur P. Parikh, Laura Perez-
Beltrachini, Niranjan Ramesh Rao, Vikas Raunak,
Juan Diego Rodriguez, Sashank Santhanam, Jodo Se-
doc, Thibault Sellam, Samira Shaikh, Anastasia Shi-
morina, Marco Antonio Sobrevilla Cabezudo, Hen-
drik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang,
Akhila Yerukola, and Jiawei Zhou. 2021. The GEM
benchmark: Natural language generation, its evalua-
tion and metrics. CoRR, abs/2102.01672.

Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya
Mahendiran, Alex Wang, Alexandros Papangelis,
Aman Madaan, Angelina McMillan-Major, Anna
Shvets, Ashish Upadhyay, Bingsheng Yao, Bryan
Wilie, Chandra Bhagavatula, Chaobin You, Craig
Thomson, Cristina Garbacea, Dakuo Wang, Daniel
Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia,
Dragomir R. Radev, Elizabeth Clark, Esin Durmus,
Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hen-
drik Strobelt, Hiroaki Hayashi, Jekaterina Novikova,
Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan
Clive, Joshua Maynez, Joao Sedoc, Juraj Juraska,
Kaustubh D. Dhole, Khyathi Raghavi Chandu, Laura
Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis
Tunstall, Li Zhang, Mahima Pushkarna, Math-
ias Creutz, Michael White, Mihir Sanjay Kale,
Moussa Kamal Eddine, Nico Daheim, Nishant Subra-
mani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka
Ammanamanchi, Qi Zhu, Ratish Puduppully, Reno
Kriz, Rifat Shahriyar, Ronald Cardenas, Saad Ma-
hamood, Salomey Osei, Samuel Cahyawijaya, Sanja
Stajner, Sébastien Montella, Shailza Jolly, Simon
Mille, Tahmid Hasan, Tianhao Shen, Tosin P.
AMahidewumi, Vikas Raunak, Vipul Raheja, Vitaly
Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi
Sang, Yixin Liu, and Yufang Hou. 2022. Gemv2:
Multilingual NLG benchmarking in a single line of
code. CoRR, abs/2206.11249.

Amnon Geifman. 2020. The correct way to measure
inference time of deep neural networks.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of di-
versity in machine translation. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1100-1111. ACL.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A sur-
vey. Int. J. Comput. Vis., 129(6):1789-1819.

Manish Gupta and Puneet Agrawal. 2022. Compression
of deep learning models for text: A survey. ACM
Trans. Knowl. Discov. Data, 16(4):61:1-61:55.

Ramyad Hadidi, Jiashen Cao, Yilun Xie, Bahar Asgari,
Tushar Krishna, and Hyesoon Kim. 2019. Charac-
terizing the deployment of deep neural networks on
commercial edge devices. In IEEE International
Symposium on Workload Characterization, IISWC
2019, Orlando, FL, USA, November 3-5, 2019, pages
35-48. IEEE.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Luca Hormann and Artem Sokolov. 2021. Fixing ex-
posure bias with imitation learning needs powerful
oracles. CoRR, abs/2109.04114.

Harsh Jhamtani, Varun Gangal, Eduard H. Hovy, and
Eric Nyberg. 2017. Shakespearizing modern lan-
guage using copy-enriched sequence-to-sequence
models. CoRR, abs/1707.01161.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, Online Event,
16-20 November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 4163—4174. Association for Com-
putational Linguistics.

Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova, and
Rada Mihalcea. 2022. Deep learning for text style
transfer: A survey. Comput. Linguistics, 48(1):155—
205.

Andrej Karpathy. 2015. The unreasonable effectiveness
of recurrent neural networks.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah A. Smith. 2020. Deep encoder, shallow
decoder: Reevaluating the speed-quality tradeoff in
machine translation. CoRR, abs/2006.10369.

Daniel Khashabi, Gabriel Stanovsky, Jonathan Bragg,
Nicholas Lourie, Jungo Kasai, Yejin Choi, Noah A.
Smith, and Daniel S. Weld. 2021. GENIE: A leader-
board for human-in-the-loop evaluation of text gener-
ation. CoRR, abs/2101.06561.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,

14643

http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/2102.01672
http://arxiv.org/abs/2102.01672
https://doi.org/10.48550/arXiv.2206.11249
https://doi.org/10.48550/arXiv.2206.11249
https://doi.org/10.48550/arXiv.2206.11249
https://deci.ai/blog/measure-inference-time-deep-neural-networks/
https://deci.ai/blog/measure-inference-time-deep-neural-networks/
https://aclanthology.org/D13-1111/
https://aclanthology.org/D13-1111/
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1145/3487045
https://doi.org/10.1145/3487045
https://doi.org/10.1109/IISWC47752.2019.9041955
https://doi.org/10.1109/IISWC47752.2019.9041955
https://doi.org/10.1109/IISWC47752.2019.9041955
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/2109.04114
http://arxiv.org/abs/2109.04114
http://arxiv.org/abs/2109.04114
http://arxiv.org/abs/1707.01161
http://arxiv.org/abs/1707.01161
http://arxiv.org/abs/1707.01161
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1162/coli_a_00426
https://doi.org/10.1162/coli_a_00426
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2006.10369
http://arxiv.org/abs/2101.06561
http://arxiv.org/abs/2101.06561
http://arxiv.org/abs/2101.06561
https://doi.org/10.18653/v1/d16-1139
https://doi.org/10.18653/v1/d16-1139

USA, November 1-4, 2016, pages 1317-1327. The
Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany
Hassan, Alham Fikri Aji, Kenneth Heafield, Ro-
man Grundkiewicz, and Nikolay Bogoychev. 2019.
From research to production and back: Ludicrously
fast neural machine translation. In Proceedings
of the 3rd Workshop on Neural Generation and
Translation@EMNLP-IJCNLP 2019, Hong Kong,
November 4, 2019, pages 280-288. Association for
Computational Linguistics.

Yann LeCun, John S. Denker, and Sara A. Solla. 1989.
Optimal brain damage. In Advances in Neural In-
formation Processing Systems 2, [NIPS Conference,
Denver, Colorado, USA, November 27-30, 1989],
pages 598-605. Morgan Kaufmann.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871-7880.
Association for Computational Linguistics.

Zheng Li, Zijian Wang, Ming Tan, Ramesh Nallapati,
Parminder Bhatia, Andrew O. Arnold, Bing Xiang,
and Dan Roth. 2022. DQ-BART: efficient sequence-
to-sequence model via joint distillation and quantiza-
tion. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 203-211. Association for
Computational Linguistics.

Yang Liu, Sheng Shen, and Mirella Lapata. 2021a.
Noisy self-knowledge distillation for text summa-
rization. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 692-703. Association for Computational
Linguistics.

Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, and
Jie Zhou. 2021b. Scheduled sampling based on de-
coding steps for neural machine translation. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 3285-3296. Association
for Computational Linguistics.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun. 2018. Shufflenet V2: practical guidelines for ef-
ficient CNN architecture design. In Computer Vision
- ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part
X1V, volume 11218 of Lecture Notes in Computer
Science, pages 122—-138. Springer.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang
Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. 2020. Improved knowledge distilla-
tion via teacher assistant. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 5191-5198. AAAI Press.

Subhabrata Mukherjee and Ahmed Hassan Awadallah.
2020. Xtremedistil: Multi-stage distillation for mas-
sive multilingual models. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2221-2234. Association for Computa-
tional Linguistics.

Rafael Miiller, Simon Kornblith, and Geoffrey E. Hin-
ton. 2019. When does label smoothing help? In Ad-
vances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Process-
ing Systems 2019, NeurlPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 4696—4705.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797-1807. Association
for Computational Linguistics.

Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443—-453.

Avital Oliver, Augustus Odena, Colin Raffel, Ekin Do-
gus Cubuk, and Ian J. Goodfellow. 2018. Realistic
evaluation of deep semi-supervised learning algo-
rithms. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 3239-
3250.

OpenAl. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Markus N. Rabe and Charles Staats. 2021. Self-
attention does not need o(nz) memory. CoRR,

abs/2112.05682.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

14644

https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2022.acl-short.22
https://doi.org/10.18653/v1/2022.acl-short.22
https://doi.org/10.18653/v1/2022.acl-short.22
https://doi.org/10.18653/v1/2021.naacl-main.56
https://doi.org/10.18653/v1/2021.naacl-main.56
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.18653/v1/2021.emnlp-main.264
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://doi.org/10.18653/v1/2020.acl-main.202
https://doi.org/10.18653/v1/2020.acl-main.202
https://proceedings.neurips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://www.sciencedirect.com/science/article/abs/pii/0022283670900574
https://www.sciencedirect.com/science/article/abs/pii/0022283670900574
https://www.sciencedirect.com/science/article/abs/pii/0022283670900574
https://proceedings.neurips.cc/paper/2018/hash/c1fea270c48e8079d8ddf7d06d26ab52-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c1fea270c48e8079d8ddf7d06d26ab52-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/c1fea270c48e8079d8ddf7d06d26ab52-Abstract.html
https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/2112.05682
http://arxiv.org/abs/2112.05682
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers, pages 784—789. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383-2392.
The Association for Computational Linguistics.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Nicholas Roberts, Davis Liang, Graham Neubig, and
Zachary C. Lipton. 2020. Decoding and diversity in
machine translation. CoRR, abs/2011.13477.

Guy Rotman, Amir Feder, and Roi Reichart. 2021.
Model compression for domain adaptation through
causal effect estimation. Trans. Assoc. Comput. Lin-
guistics, 9:1355-1373.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Florian Schmidt. 2019. Generalization in generation:
A closer look at exposure bias. In Proceedings
of the 3rd Workshop on Neural Generation and
Translation@EMNLP-IJCNLP 2019, Hong Kong,
November 4, 2019, pages 157-167. Association for
Computational Linguistics.

Sam Shleifer and Alexander M. Rush. 2020. Pre-trained
summarization distillation. CoRR, abs/2010.13002.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia,
Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil
Houlsby, and Donald Metzler. 2022. Unifying lan-
guage learning paradigms. CoRR, abs/2205.05131.

Guy Tevet and Jonathan Berant. 2021. Evaluating the
evaluation of diversity in natural language genera-
tion. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, EACL 2021, Online,
April 19 - 23, 2021, pages 326-346. Association for
Computational Linguistics.

Marcos V. Treviso, Tianchu Ji, Ji-Ung Lee, Betty van
Aken, Qingqing Cao, Manuel R. Ciosici, Michael
Hassid, Kenneth Heafield, Sara Hooker, Pedro Hen-
rique Martins, André F. T. Martins, Peter A. Milder,
Colin Raffel, Edwin Simpson, Noam Slonim, Ni-
ranjan Balasubramanian, Leon Derczynski, and Roy
Schwartz. 2022. Efficient methods for natural lan-
guage processing: A survey. CoRR, abs/2209.00099.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—6008.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. CoRR, abs/2005.03642.

Fusheng Wang, Jianhao Yan, Fandong Meng, and Jie
Zhou. 2021a. Selective knowledge distillation for
neural machine translation. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 6456—6466. Associa-
tion for Computational Linguistics.

Thomas Wang, Adam Roberts, Daniel Hesslow,
Teven Le Scao, Hyung Won Chung, 1z Beltagy, Julien
Launay, and Colin Raffel. 2022. What language
model architecture and pretraining objective works
best for zero-shot generalization? In International
Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
22964-22984. PMLR.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2021b. Minilmv2: Multi-head self-
attention relation distillation for compressing pre-
trained transformers. In Findings of the Associa-
tion for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 2140-
2151. Association for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlIPS 2020, December 6-12, 2020, virtual.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:

14645

https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/2011.13477
http://arxiv.org/abs/2011.13477
https://doi.org/10.1162/tacl_a_00431
https://doi.org/10.1162/tacl_a_00431
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://doi.org/10.18653/v1/D19-5616
https://doi.org/10.18653/v1/D19-5616
http://arxiv.org/abs/2010.13002
http://arxiv.org/abs/2010.13002
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.48550/arXiv.2205.05131
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.18653/v1/2021.eacl-main.25
https://doi.org/10.48550/arXiv.2209.00099
https://doi.org/10.48550/arXiv.2209.00099
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2005.03642
http://arxiv.org/abs/2005.03642
http://arxiv.org/abs/2005.03642
https://doi.org/10.18653/v1/2021.acl-long.504
https://doi.org/10.18653/v1/2021.acl-long.504
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://proceedings.mlr.press/v162/wang22u.html
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://doi.org/10.18653/v1/2021.findings-acl.188
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6

State-of-the-art natural language processing. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 38—45. Association for Computa-
tional Linguistics.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Advances in Neural
Information Processing Systems 33: Annual Confer-

ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Canwen Xu and Julian J. McAuley. 2022. A survey on
model compression for natural language processing.
CoRR, abs/2202.07105.

Dongkuan Xu, Subhabrata Mukherjee, Xiaodong Liu,
Debadeepta Dey, Wenhui Wang, Xiang Zhang,
Ahmed Hassan Awadallah, and Jianfeng Gao. 2022.
Autodistil: Few-shot task-agnostic neural architec-
ture search for distilling large language models.
CoRR, abs/2201.12507.

Wei Xu, Alan Ritter, Bill Dolan, Ralph Grishman, and
Colin Cherry. 2012. Paraphrasing for style. In COL-
ING 2012, 24th International Conference on Compu-
tational Linguistics, Proceedings of the Conference:
Technical Papers, 8-15 December 2012, Mumbai, In-
dia, pages 2899-2914. Indian Institute of Technology
Bombay.

Weijia Xu, Xing Niu, and Marine Carpuat. 2019. Differ-
entiable sampling with flexible reference word order
for neural machine translation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 2047-2053. Associa-
tion for Computational Linguistics.

Sina ZarrieB3, Henrik Voigt, and Simeon Schiiz. 2021.
Decoding methods in neural language generation: A
survey. Inf., 12(9):355.

Shengqiang Zhang, Xingxing Zhang, Hangbo Bao, and
Furu Wei. 2022a. Attention temperature matters in
abstractive summarization distillation. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
ACL 2022, Dublin, Ireland, May 22-27, 2022, pages
127-141. Association for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022b.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

A Study Methods

In this section, we formally describe the objec-
tives and methods we consider in our study and
discuss in §3. A description of the notations is pro-
vided in Table 5. In addition, for each method we
mention the stage in which we examine it and its
corresponding name in the results Table 3. More
implementation details including hyperparameters
are provided in §D.

Conditional Language Modeling (fine-tuning)
Stages 1 and 2. “Fine-tune” in Table 3.A.

The objective of the autoregressive LM is to
minimize the Negative Log Likelihood (NLL) of
the training dataset:

Ly (z,y) = —log P(y|z)
lyl
== log P(yilz, y<:)
i=1
Notice that in our experiments we also conduct
a fine-tuning stage for 10 epochs on the labeled
data after the distillation stage of the following KD
methods.

Logits KD (a.k.a Word-Level KD)
Stage 3. “Logits” in Table 3.A and 3.B.

The objective of the student is to minimize the
KL divergence (or the Cross-Entropy) of the next
token distribution of the student and the teacher:

ELog (LE, y) =

1]

- Z K L(Ps(yilr, y<i) || Pr(yi|z, y<i))
i=1

Noisy KD
Stage 3. “Noisy” in Table 3.A.
For more details see Liu et al. (2021a) and §D.

Attention Relation KD
Stage 3. “Att-Rel” in Table 3.A.

For more details see Wang et al. (2020), Wang
et al. (2021b) and §D.

Fine-tune + PTs (a.k.a. sequence-Level KD)
Stage 4. “Seq-1vl” in Table 3.B.

14646

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/44feb0096faa8326192570788b38c1d1-Abstract.html
http://arxiv.org/abs/2202.07105
http://arxiv.org/abs/2202.07105
http://arxiv.org/abs/2201.12507
http://arxiv.org/abs/2201.12507
https://aclanthology.org/C12-1177/
https://doi.org/10.18653/v1/n19-1207
https://doi.org/10.18653/v1/n19-1207
https://doi.org/10.18653/v1/n19-1207
https://doi.org/10.3390/info12090355
https://doi.org/10.3390/info12090355
https://doi.org/10.18653/v1/2022.acl-long.11
https://doi.org/10.18653/v1/2022.acl-long.11
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

x Input text: A sequence of m tokens,
T = (X1, ey Tpy)-

Y Target text: A sequence of n tokens,
Yy= (yla 7yn)

The next token distribution that the au-
toregressive LM learns via teacher forc-

ing.
i Generated text: The inference output of
the LM.

The next token distribution that is used
during inference for generating .

The teacher LM.
The student LM (|S| < |T)).

A pseudo target (PT) generated by the
teacher model.

An output generated by the student
model (student PT).

The teacher’s next token distribution.
The student’s next token distribution.

P(yilz,y<i)

P(yilz, 9<i)

<,
Aol

~S

<

Pr(yilr,y<i)
Ps(yilw, y<i)

Table 5: Notations.

For each labeled input x, we use the teacher
to generate a single mode approximation PT via
beam search: §j7. Then we fine-tune the student by
minimizing Ly (z,97).

Notice that in our experiments we actually mini-
mize Ly (z, 97)+ Ly (7, y), i.e., an interpolation
between the ground truth target and the PT. We find
this interpolation to work better than using only the
PT. Kim and Rush (2016) proposed another inter-
polation, by selecting the most similar PT to the
ground truth from a set of K PTs generated by
beam search.

Logits KD + PTs
Stage 4 and 5. “Logits+Seq” in Table 3.B and
“Labeled” in Table 3.C.

Same as “Fine-tune + PTs”, but we train the
student to minimize: L og(, 97). Following the
note above, we actually minimize the interpolation:
Liog(7,97) + Liog(,) (this is also the case for
the following methods).

Logits KD + PTs for unlabeled inputs
Stages 5 and 6. “+Unlabeled” in Table 3.C and
“Single PT” in Table 3.D.

Same as “Logits KD + PTs”, but we also gen-
erate a single mode approximation PT for each
unlabeled input.

Logits KD + Multiple PTs
Stage 6. “K-Beams” in Table 3.D.

We use the teacher to generate K PTs for ev-
ery labeled or unlabeled input, using beam search
with a beam size of K. We kept all the final K
beams (sequences), Y, and used them to distill
the student by minimizing: > ;7 ¢y, Liog(2, g1).

This technique can be viewed as generating the
top-K mode approximations. In our experiments
we use a different single PT for each input at every
epoch (i.e., if we generate K PTs for each input, it
takes K epochs until the student sees all of them).
We mainly do it for a fair comparison between the
different methods (see §D for additional details).

Logits KD + Sampling Multiple PTs
Stage 7 and 8. “Sampling” in Table 3.D and “Only
Teacher” in Table 3.E.

Same as “Logits KD + Multiple PTs”, but rather
than generating PTs via beam search, we sample
them. Notice that in every distillation epoch a dif-
ferent single PT is sampled.

Logits KD + High Temperature Sampling of
Multiple PTs
Stage 7. “H-Sampling” in Table 3.D.

Same as “Logits KD + Sampling Multiple PTs”,
but we apply softmax temperature adjustment to
the next token distribution when we sample PTs.
High temperature values cause the next token dis-
tribution to be more flat (and increase its entropy).
Therefore, high-temperature sampling generates
more diverse and surprising PTs (Tevet and Berant,
2021). We use 7 = 1.5 in our experiments.

Logits KD + Student PTs
Stage 8. “Only Student” in Table 3.E.

Same as “Logits KD + Sampling Multiple PTs”,
but instead of generating PTs with the teacher, we
use the student to generate PTs. We generate PTs
on-the-fly since the student is continuously updated
during training. In other words, for every training
input, we use the student to sample a student PT
°. Then, we calculate £ og(z, %) and update the
student weights. The process is repeated for every
input until the student finishes the training.

Joint-Teaching
Stage 8. “Joint-Teaching” in Table 3.E.

This method combines “Logits KD + Sampling
Multiple PTs” and “Logits KD + Student PTs”.
Accordingly, we generate a PT for every training
input using either the teacher or the student. The
student is trained to minimize:

aLiog(e,§7) + (1 — @) Liog(w, %)

Where in our experiments o = 0.5, since we find
it to work nicely. However, in future extensions of
this method, « can also be a scheduled variable or
a variable that depends on the student’s learning.

14647

B Language Models Architectures

As discussed in §3, the first stage (stage 1) of our
study is to select the backbone architecture of the
NLG model. In this section, we thoroughly dis-
cuss and demonstrate the differences between the
two common transformer architectures for NLG:
Encoder-decoder (ED) models and Decoder-only
(DO) models. We start by providing a background
on these architectures in §B.1. Following that, in
§B.2 we present a theoretical and empirical com-
plexity analysis. Finally, in Subsection §B.3 we
compare various off-the-shelf LMs from different
families by fine-tuning them on several NLG tasks
in the realistic setups we consider in this work.
An important note: We acknowledge that the
generation capabilities of huge LMs such as GPT-
3, GPT-4, and PalLM are exceptional. We do not
claim that Encoder-decoder models outperform
huge Decoder-only models. We consider fine-tuned
small or medium-sized LMs since our teachers and
students are such. In this case, Encoder-decoders
are preferable for task-specific fine-tuning of NLG.

B.1 Transformer Background

Modern LMs are based on the Multi-layer Trans-
former architecture (Vaswani et al., 2017). The
core building block of the Transformer is Atten-
tion, which processes the sequence by replacing
each token with a weighted average of the rest
of the sequence (self-attention), the preceding to-
kens (autoregressive-attention), or another input
sequence (cross-attention). For text generation,
there are two dominant types of models: Encoder-
decoder (ED) (Vaswani et al., 2017; Raffel et al.,
2020; Lewis et al., 2020) and Decoder-only (DO)
(Radford et al., 2019; Zhang et al., 2022b).

ED models, which consist of two components
(an encoder and a decoder), process inputs and tar-
gets (outputs) independently, with different parame-
ter sets: The encoder processes the inputs with self-
attention layers and passes its output to the decoder.
Then, the decoder autoregressively generates the
target token by token by applying autoregressive-
attention and cross-attention (with the output of
the encoder). On the other hand, DO models con-
sist of autoregressive-attention layers that process
inputs and targets together. Typically, the target
sequence is concatenated to the input sequence
(sometimes, with a separation token between them,
such as “TL;DR” for summarization).

Notice that in contrast to the DO model, the

encoder component represents each token of the
input sequence by sharing information from all the
tokens in the input (via self-attention), while the
DO model represents an input token by sharing
information only from its preceding tokens (via
autoregressive-attention). Another difference be-
tween the two architectures is that each layer of
the decoder component of the ED model, applies
cross-attention to the target tokens by conditioning
on the last hidden states of the input tokens. This is
in contrast to the decoder layers of the DO model
which apply autoregressive-attention to the target
inputs by conditioning on the same layer hidden
states of the input tokens.

ED and DO models differ not only in the ar-
chitecture but also in the pre-training objectives.
Whereas DO models are trained with an autoregres-
sive language modeling objective (given previous
tokens, predict the following one), ED models are
trained with a masked language modeling objective
(given a sequence with masked spans, predict the
missing tokens).

As a result of these differences (encoder com-
ponent, attention mechanisms, and training objec-
tives), the models exhibit different inductive biases,
which affect their performance. While ED models
are more popular for classification, summarization,
and NMT tasks, DO models excel on open-text
generation and zero-shot or few-shot learning (Raf-
fel et al., 2020; Wang et al., 2022). Furthermore,
the two architectures have different computational
complexities (see the discussion in the next sub-
section, §B.2). Nonetheless, the increasing popu-
larity of huge DO models like GPT-3/4 and PaLM
(Brown et al., 2020; Chowdhery et al., 2022; Ope-
nAl, 2023), which have impressive generation ca-
pabilities, has led to the question of “whether ED
models are still relevant for NLG”, a question that
we aim to answer in the first stage of our study.

To build an NLG system, it is necessary to select
an architecture that meets its needs. In the spirit
of our realistic setup, we compare various off-the-
shelf ED and DO LMs from different families, and
show that ED models outperform DO models in
conditional generation tasks. These findings are in
line with the recent work of Tay et al. (2022), which
in contrast to us, trained from scratch LMs. For the
DO architecture, we use the GPT2-family models
(Radford et al., 2019): GPT2, GPT2-M, and GPT2-L;
and the recent OPT-family models (Zhang et al.,
2022b): OPT-125Mand OPT-350M. For ED models

14648

-)

Latency (---)
Throughput (-

Figure 3: Comparing different pruning strategies for
BART-E:D model, where E and D are the numbers of
encoder and decoder layers respectively. X-axis is the
ratio of the input length to the sum of the input and
target lengths (=256). Left: Latency in milliseconds
(solid line), Right: Throughput — examples per minute
in a log scale (dashed line).

we use the same models which are described in
the main paper: T5-family models (Raffel et al.,
2020): T5-S and T5-L; and the BART-family mod-
els (Lewis et al., 2020): BART-6:6 (base version)
and BART-L.

B.2 Complexity Analysis

For the theoretical complexity analysis, we assume
all the transformer models have the same hidden
size dimension and ignore it in our analysis. We
consider two types of models: ED with E encoder
layers and D decoder layers, and a DO model with
D decoder layers. The input and target lengths are
m and n, respectively. For decoding, we assume
that hidden states of previously generated tokens
are cached and re-used (i.e., for the i-th token, the
decoder layers perform operations only for it). We
do not discuss space complexity, as it depends on
the exact implementation (Rabe and Staats, 2021)
and memory utilization of the device. Therefore,
we do not connect the throughput measure to theo-
retical analysis.

A single encoder layer has a quadratic time com-
plexity in terms of input length O(m?). An ED
decoder layer consists of a causal-attention and
cross-attention and therefore has a time complexity
of O(n(m + n). Thus, ED model has a complexity
of O(m?E + n(m + n)D). Since we concatenate
the input and the target for DO models, a single
decoder layer of a DO has a time complexity of
O((m + n)?). Thus, a DO model has a complex-
ity of O(m2D + n(m + n)D). This suggests that
an ED model can have the same time complex-
ity as a DO model (when E = D) while having

double parameters because the encoder and the de-
coder layers do not share parameters (excluding
cross-attention weights, which account for a small
portion of the total weights (Raffel et al., 2020)).

Note that the number of floating-point operations
(FLOPs, see subsection §4.3), is compatible with
the theoretical complexity. As a result, it is possi-
ble to verify the observation above — an ED model
with double the number of layers and parameters as
a DO model should have roughly the same number
of FLOPs. Consider Table 3.2 and take for example
GPT2-M, which has 24 decoder layers, and compare
it to T5-L which has 48 layers (both of them have
the same number of heads and the same hidden di-
mension, see Table 6). Indeed, they have the same
number of FLOPs. On the other hand, there are
differences in the practical measures. While the
latency of GPT2-M is smaller than T5-L, its memory
footprint is larger, which results in smaller through-
puts. This highlights the complex nature of the
connection between the theoretical and the prac-
tical measures (e.g., FLOPs and latency), which
depend on the device, implementation, and hard-
ware utilization that enable parallelism.

Now, compare models from the same family but
with different sizes. As can be seen, the ratio be-
tween the latencies of the models does not reflect
the large compression rate between their sizes. For
example, T5-L is 12 times larger than T5-S, how-
ever, it is only 3.7 times faster. Likewise, GPT2-L
is 6 times larger than GPT2, but is only 2.9 times
faster. On the other hand, the throughput reflects
much better the size differences. This demonstrates
the complex relationship between architectural de-
cisions and computational measurements and sug-
gests that architectural decisions should be taken
according to the (specific) task and system needs.

We next present a big O notion when assuming
that operations can be parallelized (as in GPUs).
This notation reflect better the latency: a practical
measure of the time for generating a single target
example. With full parallelism, the complexity of
processing the input in a single encoder layer (for
ED) is reduced from O(m?) to O(m) (see Kasai
et al. (2020)). The same is true for the DO decoder
layer when it processes the input since it is capable
of processing all of it at the same time. However,
since the target is generated by one token at a time
(autoregressive), the processing complexity in each
layer that processes the target remains O(n(m +
n)). As a result, the time complexity of ED is

14649

Arch. Model Enc. Dec. Heads Hidden Params
DO GPT2-L 0 36 20 1280 774
DO GPT2-M 0 24 16 1024 354
DO GPT2 0 12 12 768 124
DO OPT-350M 0 24 16 1024 331
DO OPT-125M 0 12 12 768 125
ED T5-L 24 24 16 1024 737
ED T5-S 6 6 8 512 60
ED BART-L 12 12 16 1024 406
ED BART-6:6 6 6 16 768 139
ED BART-6:2 6 2 16 768 111
ED BART-2:6 2 6 16 768 101

Table 6: Architectural details for different models. Enc.
and Dec. present the number of layers. Heads present

the number of attention heads at each layer. Hidden

is the size of the hidden dimension and Params is the
number of parameters in millions.

O(mE + n(m + n)D) and of DO is O(mD +
n(m + n)D), which is equal to the ED complexity
when E' = D. Nevertheless, there are differences
in practical measurements.

The theoretical analysis when allowing paral-
lelism sheds light on two observations that come
up from the practical analysis. The first one is
that the length of the target has a higher impact on
the latency, than the length of the input. This is
expected in the autoregressive generation process,
where the relationship between the complexity and
the input length is linear, while quadratic for the
target length. This is supported by Table 8: for
all models, altering only the input size minimally
affects the latency.

The second observation is pruning decoder lay-
ers has a higher impact on the latency than pruning
encoder layers. This is also expected since each
decoder layer contributes O(n(m +mn)) to the total
latency complexity, whereas a single encoder layer
contributes O(m). This is verified in Table 8 and
in Figure 3: the encoder pruned model, BART-2:6,
has roughly the same latency as its full version,
BART-6:6. Conversely, the decoder pruned model
BART-6: 2 has a smaller latency from both.

The behavior of throughput is more complex
than latency. While the pruned decoder model
consistently has a smaller latency regardless of
input length (as shown in Figure 3), the pruned
encoder (BART-2:6) has a higher throughput than
the pruned decoder (BART-6:2) for longer inputs,
as indicated by the crossover at around 0.8 on the
X-axis in Figure 3.

B.3 Task Performance Analysis

In this subsection, we discuss the differences in
task performance between off-the-shelf ED and DO

models, which are finetuned on our four datasets.
The average results (over the four tasks) are pro-
vided in Table 2. For all datasets and models, ED
models outperform DO models. Presumably, a bet-
ter inductive bias is injected to the ED models: (1)
By applying self-attention (and not autoregressive-
attention) to the conditioned input sequence; (2)
By the fact that in contrast to the DO model, the
decoder component of the ED model attends to the
last hidden states of the conditioned input sequence
from its first layer. This is unlike the DO model,
where each layer applies attention to hidden states
of the same layer.

Our results for conditional generation tasks in a
finetuning setup are in line with other works (Raffel
et al., 2020; Tay et al., 2022) which trained LMs
from scratch. This finding is particularly relevant
for NLP practitioners who aim to develop a special-
ized in-house model for a specific NLG task. Our
findings also raise the question of why huge lan-
guage models, such as GPT-3 and PalLM (Brown
et al., 2020; Chowdhery et al., 2022) are DO, and
Wang et al. (2022) answer it by showing that DO
models excel in zero and few-shot setups. Indeed,
in the final part of our study, which involves an ex-
treme setup where labeled data is unavailable, we
use GPT-4, a Decoder-only model with zero-shot
capabilities, to generate PTs. Our equivocal results
lead us to continue only with ED models (TS and
BART) for our compression study (stages 1-8).

C KD without Labeled Data

In the final phase of our study, we intend to explore
the possibility of scaling up our experimental setup.
This is accomplished by working with only a lim-
ited number of unlabeled examples and without
any labeled examples. We refer to this setup as
extreme setup. It is important to note that unlike
the realistic setup, which incorporates a medium-
sized labeled dataset, the extreme setup poses a
challenge for fine-tuning a teacher model due to
the lack of labeled examples. In that case, we need
to utilize as our teacher a huge LM, such as GPT-4,
which has zero-shot and few-shot capabilities and
can generate plausible PTs.

The main goal of this phase is to investigate
the transferability of the KD conclusions from our
realistic setup to the extreme setup, which pos-
sess the following differences since it involves a
huge zero-shot LM as the teacher: (1) The teacher
is a Decoder-only model (since this is the stan-

14650

dard architecture for zero-shot and few-shot LMs)
and the student is an Encoder-decoder model (fol-
lowing our findings that they outperform Decoder-
only models, see §5); (2) The teacher and the stu-
dent have different tokenizers, which means that a
sequence-alignment algorithm is needed to perform
Logits KD; (3) Unlike the realistic setup where the
computational training cost could be neglected, in
the extreme setup we assume that querying the
huge teacher is financially costly and therefore we
limit its usage.

The third difference above impacts the design
choice of the extreme setup, and we limit the num-
ber of unlabeled data to a few thousand. In addition,
we do not consider the Joint-Teaching method due
to its high cost compared to other methods. This
is because it requires querying the teacher every
time we generate a PT with the student (to extract
the teacher logits). However, notice that extracting
the logits of GPT-4 and generating multiple PTs is
approximately equivalent to generating a single PT.
This is because the prompt and the input, consist-
ing of many tokens, are processed only once, and
the marginal cost of generating multiple (relatively
short) PTs is low.

C.1 Experimental Setup

Models and datasets We utilize GPT-4 as our
teacher model and T5-S as the student model. For
generating PTs with GPT-4, we use a prompt that
contains a task instruction and three demonstrations
of labeled examples (few-shot learning).

We consider two NLG tasks: (1) Question Gen-
eration — we use the SQUAD17 dataset and sample
3000, 250 and 500 examples as the train, devel-
opment and test, respectively; (2) Simplification
and style transfer — we use the Shake7 dataset and
sample 1500, 250 and 350 examples as the train,
development, and test, respectively. Notice that
both the training and development sets do not con-
tain any labeled data. Only the test set includes
labeled data, which is used for evaluation purposes.

Methods and baselines We present the test results
for the following baselines and methods: (a) The
GPT-4 teacher; (2) A T5-S model which is trained
using ground-truth (GT) targets to compare with
the GPT-4 teacher; (c) Student fine-tuning with a
single PT; (d) Student fine-tuning with multiple
PTs; (e) Student training with a single PT and Log-
its KD; (f) Student training with multiple PTs and
Logits KD.

o

) <|endoftext|>:0.02, (d) <|endoftext|>: 0.0,
.:0.01, Roberts: 0.89, 200: 0.0, ?: 0.02,
Rob: 0.03, Robert: 0.05 202: 0.03, 201: 0.95

How | much | was | Brian | L | . | Roberts | ' | total | compensation | in | 201 | 0 | ?

INEASE N

+
How | much | was | Brian | L | . | Robert | s | ' | total | compensation | in | 2010 | ?

(b) . 0.11, Rob: 0.33, || 5: 1.0 (e)

Robert: 0.56

Figure 4: An example of an alignment between the
teacher’s tokens (top) and the student’s tokens (bottom).
Black double arrows represent an exact match while
blue arrows represent replacement. Green + represents
an insertion while red x represents a deleted token. The
boxes present the probabilities of the next token in the
location of the yellow highlighted token.

We train each model (except GPT-4) using four
learning rates: [0.003, 0.001, 0.0005, 0.0003]. In
addition, as we explain §C.2, we also include re-
sults when we train the models of (c)-(f) using
golden targets (ground-truth labels) for the devel-
opment set.

Tokenizers Alignment In the extreme setup, the
teacher is a Decoder-only model (GPT-4), and the
student is an Encoder-decoder model (T5-S) that
does not share the same tokenizer. Therefore, to
perform Logits KD, where the probabilities of the
next token’s logits are used for distillation, two
types of token alignment are required: (1) Match-
ing each token in the teacher’s tokenized PT se-
quence with its corresponding token in the stu-
dent’s tokenized PT sequence; (2) Matching the
tokens from the teacher’s logits to tokens from the
student’s vocabulary.

For example, consider the black and blue arrows
in Figure 4. These arrows demonstrate the first
type of match, where we align the tokens of the to-
kenized PT sequences. Additionally, some tokens
might be inserted (c) or deleted (f). Similar to Fu
et al. (2023), we use the well-known dynamic pro-
gramming Needleman—Wunsch algorithm (Needle-
man and Wunsch, 1970) for sequence alignment to
find this mapping. The output of the algorithm is
a sequence of edit operations: match, replacement,
insertion, and deletion. We consider two tokens as
a match if the algorithm determines them as such
or if they are replaced and one is a prefix of the
other. For instance, the blue arrows in Figure 4
represent a match via replacement.

The OpenAl API allows us to extract only the
probability distribution over the top five tokens at
each decoding step. However, their probability is
usually close to 1. We align the top five tokens to
the student’s vocabulary by performing an exact

14651

dev contains GTs dev contains PTs
SQUAD17 | Shake7 SQUAD17 | Shake?

Method \ BL RG BS PP \ BL RG BS PP \ BL RG BS PP \ BL RG BS PP
a. GPT-4 (Teacher) 13.6 37.6 75.0 214 423 794

b. T5-S + GT labels 17.8 364 752 2.1 |212 421 764 2.1

c. T5-S+PT 11.3 319 720 249 |19.1 411 760 237 | 11.7 326 724 265|189 411 760 247
d. T5-S + PTs 114 322 720 24 |19.0 411 76.1 236 | 11.6 327 724 284|192 411 76.1 236
e. T5-S + Logits + PT | 11.3 32.0 72.1 251 | 184 40.7 758 247 |11.6 324 724 272|185 410 759 266
f. T5-S + Logits + PTs | 12.0 32.7 725 24 | 189 410 759 242|119 328 725 248 | 19.1 407 750 252

Table 7: BLEU (BL), ROUGE (RG), BERTScore (BS), and PPL (PP) test scores of different baselines and KD
methods in the extreme setup. The four left columns present the scores when the development set contains ground-
truth (GT) targets, and the four right when it contains PTs generated by the GPT-4 teacher.

match. Then, we apply softmax to the logits to
make their probabilities sum to one. For example,
(a) and (b) in Figure 4 present such an alignment.
Notice that some of the tokens of the teachers are
omitted (“Robsert” and “I<endoftextl>"). In case
the student token does not have a match in the
teacher’s top five tokens, we determine its proba-
bility as one. For example, (c) and (e) in Figure 4:
(c) “s” is a token that is inserted and therefore its
probability is one; and (e) the token “2010” does
not appear in the top five tokens (d), and therefore
its probability is one.

The second type of alignment we need to per-
form is matching the teacher’s logits of the next
token prediction to tokens from the student’s vocab-
ulary. The OpenAl API allows us to extract only
the probability distribution over the top five tokens
at each decoding step. However, the sum of their
probabilities is usually close to 1. We align the top
five tokens with the student’s vocabulary by per-
forming an exact match. Then, we apply softmax
to the logits to ensure their probabilities sum up to
one. For example, (a) and (b) in Figure 4 demon-
strate such an alignment. Note that some tokens
from the teacher are omitted (e.g., "Roberts" and
"l<endoftext/>"). If the student’s token does not
have a match in the teacher’s top five tokens, we
assign its probability as one. For instance, in Fig-
ure 4, (c) "s" is an inserted token, so its probability
is one; and (e) the token "2010" does not appear in
the top five tokens (d), hence its probability is one.

C.2 Results

In Table 7, we present the results of the extreme
setup. We do not include computational perfor-
mance metrics as OpenAl does not detail the exact
architecture of GPT-4. We find the results vary
greatly between different initializations and learn-
ing rates. The observed difference in performance
can be primarily attributed to the unique extreme
setup. The limited number of training instances and

the distinct distribution of PTs, generated by GPT-
4 rather than a fine-tuned model contribute to this
variation. Additionally, the discrepancy between
the development set, consisting of PTs, and the
test set, containing ground-truth targets, negatively
affect model selection (Fu et al., 2023).

To address the issue of variability, we present
the average scores over different learning rates.
Additionally, we include the results from exper-
iments conducted with development sets that con-
tain ground-truth (GT) targets (as shown in the four
left columns of Table 7). Indeed, the correlation
between the development score and the test score
is considerably low (0.06 and 0.12 for the SQUAD17
and Shake7 datasets, respectively) when the de-
velopment sets are PTs, in contrast to the higher
correlations observed when the development sets
are GTs (0.57 and 0.66).

As depicted in Table 7, the overall trends in
the left four columns (development set with GTs)
align with those in the right four (development set
with PTs). The results are mixed: for the SQUAD17
dataset, Logits KD with multiple PTs outperforms
the other methods, which is in line with the conclu-
sions from the realistic setup. Surprisingly, incor-
porating Logits KD has a positive effect only when
there are multiple PTs. In the Shake7 dataset, Log-
its KD does not improve the student. We believe
this is due to the difficulties with aligning the tok-
enizers and call for further research. Nevertheless,
another conclusion from the realistic setup, which
also holds in the extreme setup, is that generating
multiple PTs is preferable over a single PT.

D Additional Implementation Details

Our experiments are conducted in the PyTorch
framework. Models are trained on a machine
equipped with 4 Nvidia Tesla v100 GPUs (for
XSUM40 and SQuAD17; in that case, we use DDP
training) or with Nvidia GeForce RTX 4080 (for
ART10 and Shake7).

14652

Training We optimize our model with the
AdamW optimizer, with a weight decay of 1e — 5,
€ = le—8, 100 warmup steps, and a linear learning
rate scheduler. We use the largest batch size that
fits the GPU for every dataset and model. However,
for a fair comparison, we accumulate the gradients
and update the model every 96 training examples
for any experiment (same number of gradient up-
dates). For BART models we apply half-precision
training and inference.

The validation metric for XSUM40 is ROUGE-2
(F1) and for SQUAD17, ART10@ and Shake7 is BLEU.
In addition, for XSUM40@ we use “summarize:” as a
prefix for T5 models and “TL;DR” as a suffix for
DO models. For SQUAD17 we use “ask:” as a prefix
and suffix for TS5 and DO models respectively. For
ART10 we use “explain:” as a prefix and suffix for
TS5 and DO models respectively, and for Shake7,
we use “modern:” as a prefix and suffix for TS and
DO models respectively.

Fine-tuning We examine multiple learning rates
for each model and dataset as follows: for our
student models, T5-S and BART-6:6, and smaller
Decoder-only models, GPT2, OPT-125M-we search
within 8 different learnings rates in the range of
[5e — 2, 1e — 5] and train the models for 35 epochs.
For our teacher models, T5-L and BART-L and the
remaining decoder-only models—6 learning rates in
[5e — 3, 1e — 6] and 20 epochs. For fine-tuning the
decoder-only models, we concatenate the input and
the target, separated by a task suffix, and calculate
the loss only on the target tokens.

Evaluation We evaluate every model two times
at each epoch (at the middle and the end) and select
the best checkpoint according to the development
set performance (see §4.1 for more details about
the measure used in each dataset). For computa-
tional reasons, when we evaluate the model on the
development set, we generate predictions for no
more than 1K. We use DeBERTa-base model (He
et al., 2021), fine-tuned on the MNLI dataset as the
backbone model for calculating BSs.

Knowledge Distillation For computational rea-
sons, the learning rate which is used for training
the student is selected according to the develop-
ment performances in the fine-tuning stage (and
reported on Tables 9, 10, 11, 12). Since we have
observed that the convergence time of the students
in KD setups is slow (unlike fine-tuning), we train
the models for 192 epochs but stop the training if

there is no improvement in the performance for 16
epochs (32 evaluation steps). We note that all of
the experiments were stopped before the last epoch.
Following Mukherjee and Awadallah (2020); Xu
et al. (2022), we perform a fine-tuning stage for
10 epochs after selecting the best checkpoint dur-
ing the KD stage. The final checkpoint is selected
either from the KD or fine-tuning stages.

For Logits KD we minimize the KL divergence
between the student and the teacher logits. We also
tried using Label-Smoothing (Miiller et al., 2019)
with different scaling temperatures, however, it did
not help the distillation. For Sequence-Level KD
we fine-tune the student on pseudo-targets gener-
ated with beam search in addition to the original
ground truth targets. For Noisy KD we only apply
noise to the teacher’s logits (as it is shown to be
more important than applying noise to the input,
and since we don’t focus on input manipulations in
this study). For Attention-Relations KD we distill
relations from the last encoder and last decoder lay-
ers and scale the weights of the loss components to
1 at the start of the training.

Pseudo Targets For generating pseudo targets
we use nucleus sampling with P = 0.95, for high
temperature sampling we use 7 = 1.5. When gen-
erating pseudo targets with the teacher using beam
search, we use a beam size of 16. For sampling,
we generate 48 pseudo targets (these are the largest
sizes that fit on v100 GPU for XSUM40).

In experiments with a single pseudo target, we
select the highest-ranked prediction among the gen-
erated targets using beam search with a beam of
size 16. We augment the training data with PTs
by adding pairs of input and a single PT for each
labeled or unlabeled example (depending on the
experiment). In experiments with multiple PTs, we
use a different single PT at every epoch (alterna-
tively, the student could learn from multiple pseudo
targets of the same input on every epoch). We do it
for two main reasons: first, we want a fair compar-
ison between experiments with single or multiple
pseudo targets. Second, we have observed that the
ground truth of the labeled data is important—this
way, the student sees more of it as the proportion
of ground truth targets is larger than the alternative.

We use nucleus sampling and for high tempera-
ture sampling we use 7 = 1.5. For computational
reasons, we generate all the teacher PTs once and
reuse them. Conversely, the student PTs are gen-
erated on-the-fly, since the student is continuously

14653

updated during training. In Joint-Teaching, we gen-
erate PTs with the student in 50% of the training
steps (in the remaining 50% we use the teacher).

Computational Profiling All computational pro-
filing experiments are conducted on Nvidia
GeForce RTX 4080. Following Geifman (2020),
we do a GPU warmup for 10 steps and then av-
erage 100 computational measurements. For ev-
ery dataset, we use the maximum input and target
length as reported in Table 1. FLOPs are measured
for a full forward step. Latency and memory foot-
print are measured for generating a single example.
For measuring Throughput, which is the maximum
number of examples the model can process in a
minute, we find the maximum batch size that does
not exceed 16GB during the generation, and then
measure the throughput.

D.1 The Shake7 Dataset

We construct a new dataset for the well-explored
style transfer task (which is also a simplification
task) of translating Shakespeare’s texts to modern
English. We combined three existing datasets: two
parallel datasets of Shakespeare’s original texts and
their modern versions (Xu et al., 2012; Jhamtani
et al., 2017) and a third dataset containing only
unlabeled texts from Shakespeare’s plots that are
not part of the other two datasets (Karpathy, 2015).
A particular advantage of this dataset is that it con-
sists of publically available datasets, while many
other datasets for thesimplification task are not pub-
lic. Moreover, in this dataset we have access to
both labeled (original alongside modern texts) and
unlabeled (original texts) data. Additionally, the
labels (modern English texts) are of very high qual-
ity as experts produce them. Finally, the task of
this dataset is harder than other style transfer and
simplification cases since the difference between
the original text and the simplified version is not
limited to a small number of words. We hope this
dataset will contribute to the NLP community.

D.2 URL:s of Code and Data

* Code Repository - code and datasets:
github.com/nitaytech/KD4Gen.

* HuggingFace (Wolf et al.,, 2020) - code
and pretrained weights for language models,
tokenizers, and datasets: huggingface.co/.
huggingface.co/docs/accelerate/index.

* Torchprofile - for measuring FLOPs:
github.com/zhijian-1liu/torchprofile.

E Additional Results

In this section, we report additional details and the
complete results of our study. Table 6 presents a
full description of the architecture of the models
used in our study. Table 8 provide full results of our
computational measurements. In Tables 9, 10, 11
and 12 we report on the performances of every ex-
periment we conduct, for XSUM4@, SQUAD17, ART10
and Shake?7 datasets, respectively.

Dataset \Model FLOPs Lat. G.Mem TP Batch
GPT2-L 84.0 630 539 555 23

GPT2-M 38.8 424 345 1177 0

GPT2 136 211 198 3335 78

OPT-350M 363 344 294 1415 49

XEO[{(M OPT-125M 13.6 170 180 3728 86
| = 480 | T5L 387 539 112 1297 116
iy =32 | T5°S 27 144 30 13392 525
BART-L 19.6 254 59 3349 243

BART-6:6 5.8 132 36 8361 428

BART-2:6 2.8 131 36 12320 432

BART-6:2 5.1 68 36 10025 433

GPT2-L 56.7 604 361 849 35

GPT2-M 261 410 223 1804 65

GPT2 92 215 124 5128 124

OPT-350M 244 333 193 2143 76

SSUSAIP OPT-125M 92 167 112 5748 138
| Z20 | 5L 26.1 530 77 2011 166
iy =32 | T5S 1.8 143 16 22256 984
BART-L 133 250 41 4759 350

BART-6:6 39 133 16 11066 956

BART-2:6 2.0 131 16 15000 963

BART-6:2 3.4 67 16 13009 965

GPT2-L 125 582 58 4417 219

GPT2-M 57 401 34 9421 428

GPT2 20 208 18 26177 824

OPT-350M 53 325 32 10328 458

%‘g OPT-125M 2.0 161 17 30164 911
pleug | T5L 59 533 22 10661 581
‘y):32 T5-5 05 142 3 109777 5101
BART-L 32 250 12 13704 1197

BART-6:6 1.0 132 5 21259 3088

BART-2:6 0.8 131 5 20818 3111

BART-6:2 0.8 67 2 23408 7359

GPT2-L 150 883 70 3129 182

GPT2-M 6.9 600 38 6849 383

GPT2 24 306 18 19237 824

OPT-350M 6.4 484 38 6439 386
Shakglsgeafe OPT-125M 24 241 17 21902 911
olmag | T5L 72 789 28 7422 453
yl =48 | T5-S 06 212 3 75309 4063
‘ BART-L 39 367 15 9200 958
BART-6:6 13 192 6 13251 2562

BART-2:6 1.1 191 6 13859 2581

BART-6:2 1.0 96 3 14836 5197

Table 8: Computational profiling results. For each
dataset, we use the maximum input and target lengths as
appear in table 1. FLOPs (in billions) are the number of
floating-point operations required for a full forward step.
Latency (Lat.) (in milliseconds) is the time required
for generating a single example. G. Mem is the mem-
ory footprint in MB for generating a single example.
Throughput (TP) is the number of examples that can be
generated per minute when taking the maximum batch
size (Batch) that does not exceed 16GB.

14654

https://github.com/nitaytech/KD4Gen
https://huggingface.co/
https://huggingface.co/docs/accelerate/index
https://github.com/zhijian-liu/torchprofile

Model Obj. PTIn. Decoding PTSt. LR FT Dev BLEU ROUGE PPL R1 R2 RL BS-F1 BS-P BS-R MET
T5-L FT - - - 55 F 17.7 115 293 1.7 390 169 319 727 738 718 335
T5-5 FT - - - 33 T 122 176 232 31 324 115 259 683 690 679 268
T5-5 FT L 1-BS T 33 F 135 85 24.6 29 337 128 273 692 704 683 279
T5-5 Noisy - - - 3e3 F 137 83 249 22 342 129 276 697 713 684 28.0
T5-5 Att-Rel - - - 3e3 F 140 88 254 23 348 134 281 702 715 69.1 288
T5-S Logits - - - 3¢3 F 141 85 25.1 23 344 131 278 699 714 687 283
T5-S Logits L 1-BS T 33 F 142 84 25.0 23 343 131 278 698 712 686 28.1
T5-S Logits L+U 1-BS T 33 F 158 99 27.1 21 364 150 298 710 699 724 305
T5-S Logits L+U K-BS T 33 F 159 103 273 2.1 368 153 299 712 703 722 311
T5-5 Logits L+U Samp. T 33 F 163 105 279 1.9 373 157 306 718 705 733 3L5
T5-5 Logits L+U H-Samp. T 33 T 163 105 279 1.9 374 156 305 717 707 728 316
T5-5 Logits L+U Samp. S 33 T 165 102 278 1.9 374 156 305 718 732 706 314
T5-5 Logits L+U Samp. T+S 3e3 F 166 107 282 1.9 378 160 309 718 709 730 320
BART-L FT - - - le5 F 190 130 311 1.7 410 188 336 739 730 750 358
BART-6:6 FT - - - 5e5 F 157 100 27.6 20 370 155 303 721 738 706 3Ll
BART-2:6 FT - - - 5¢-5 F 123 8.0 23.8 24 328 122 263 694 702 687 275
BART-6:2 FT - - - 5e-5 F 154 93 26.5 27 358 146 292 710 726 69.6 299
BART-6:2 FT L 1-BS T 55 F 153 98 27.0 26 362 151 297 711 727 698 303
BART-6:2 Noisy - - - 55 F 161 98 27.6 22 370 156 303 717 736 700 308
BART-6:2 Att-Rel - - - 5e5 F 164 99 276 24 370 156 303 717 734 702 310
BART-6:2 Logits - - - 5e5 F 162 100 27.6 24 370 156 302 718 734 704 3Ll
BART-6:2 Logits L 1-BS T 5e5 F 166 104 279 23 372 160 305 720 737 704 314
BART-6:2 Logits L+U 1-BS T 5e5 F 175 111 288 22 382 168 314 725 7Ll 742 324
BART-6:2 Logits L+U K-BS T 5e5 F 177 115 294 22 388 173 320 728 714 745 332
BART-6:2 Logits L+U Samp. T 5e-5 F 183 116 296 20 3901 176 323 731 717 748 334
BART-6:2 Logits L+U H-Samp. T 5e-5 F 179 113 294 20 388 173 320 730 714 748 329
BART-6:2 Logits L+U Samp. S 5e-5 F 180 113 294 20 390 172 320 730 745 717 332
BART-6:2 Logits L+U Samp. T+S Se5 T 183 123 302 19 399 180 328 735 746 725 347
GPT2-L FT - - - 5e6 F 119 78 225 1.9 307 119 249 656 672 642 256
GPT2-M FT - - - led F 112 68 20.6 2.1 287 104 229 639 651 629 237
GPT2 FT - - - le3 F 80 46 17.6 26 250 7.8 199 620 638 605 199
OPT-350M ET - - - led F 106 6.7 20.8 28 291 105 228 645 658 63.8 243
OPT-125M FT - - - 7e5 F 115 7.0 225 22 311 114 249 679 695 665 252
Table 9: Results for summarization task, XSUM40 dataset.
Model Obj. PTIn. Decoding PTSt. LR FT Dev BLEU ROUGE PPL R1 R2 RL BS-F1 BS-P BS-R MET
T5-L FT - - - 5e-5 F 220 222 423 13 506 293 468 779 778 777 489
T5-$ FT - - - Se-4 F 194 191 383 1.9 466 253 432 761 758 758 446
T5-5 FT L 1-BS T S5e-4 F 197 188 387 28 468 260 433 757 755 761 455
T5-5 Noisy - - - Se-4 F 203 202 39.6 1.7 478 266 444 764 767 764 459
T5-5 Att-Rel - - - S5e4 F 204 201 395 1.7 477 265 443 764 766 764 458
T5-5 Logits - - - Se4 F 202 204 39.8 1.7 479 269 446 768 765 765 46.0
T5-S Logits L 1-BS T 5e-4 F 199 196 394 1.8 477 265 440 762 763 765 46.1
T5-S Logits L+U 1-BS T 5e-4 F 206 202 40.1 1.7 482 273 448 765 767 765 467
T5-S Logits L+U K-BS T 5e-4 F 208 21.0 408 1.6 490 278 455 77.1 769 769 47.1
T5-S Logits L+U Samp. T Se-4 F 211 209 405 1.6 486 277 453 769 769 768 470
T5-S Logits L+U H-Samp. T S5e-4 F 216 213 409 15 490 280 456 772 710 710 472
T5-5 Logits L+U Samp. S Se-4 F 208 209 407 1.6 489 278 454 769 770 710 473
T5-5 Logits L+U Samp. T+S Se4 F 215 209 406 15 489 277 452 770 769 768 47.1
BART-L FT - - - le5 F 211 215 419 14 502 289 467 778 783 715 480
BART-6:6 FT - - - led F 184 193 392 1.7 477 261 438 763 763 765 459
BART-2:6 FT - - - led F 123 118 287 1.9 363 163 334 713 715 713 338
BART-6:2 FT - - - led F 176 177 376 24 459 245 426 755 763 749 431
BART-6:2 FT - - - le4d F 178 181 382 20 463 250 432 757 766 750 433
BART-6:2 FT L 1-BS T le4d F 196 195 392 24 474 263 440 761 768 757 449
BART-6:2 Noisy - - - le4d F 192 188 392 1.8 474 260 442 764 715 757 442
BART-6:2 Att-Rel - - - led F 188 186 39.1 20 473 259 439 761 770 754 442
BART-6:2 Logits - - - led F 195 194 394 1.9 477 263 443 763 710 759 450
BART-6:2 Logits L 1-BS T led F 200 197 395 1.9 476 266 443 763 769 759 450
BART-6:2 Logits L+U 1-BS T led F 203 204 402 1.9 483 274 450 766 712 762 459
BART-6:2 Logits L+U K-BS T led F 204 202 399 1.8 479 272 446 764 711 161 456
BART-6:2 Logits L+U Samp. T led F 204 204 405 1.8 487 27.6 452 1767 713 763 462
BART-6:2 Logits L+U H-Samp. T le4d F 204 202 40.1 1.7 483 273 449 767 714 763 458
BART-6:2 Logits L+U Samp. S le4 F 209 207 408 1.8 490 277 456 712 716 710 469
BART-6:2 Logits L+U Samp. T+S led F 210 209 409 1.7 491 278 458 773 718 710 470
GPT2-L FT - - - 7e-6 F 150 158 333 1.7 403 217 378 732 747 720 379
GPT2-M FT - - - S5e-4 F 116 122 273 37 339 163 316 694 702 689 326
GPT2 FT - - - le3 F 61 66 17.9 36 229 96 212 530 536 526 216
OPT-350M FT - - - led F 106 107 254 25 309 164 287 524 530 521 292
OPT-125M FT - - - led F 126 134 312 21 392 192 353 701 712 69.6 35.1
Table 10: Results for question generation task, SQUAD17 dataset

14655

Model Obj. PTIn. Decoding PTSt. LR FT Dev BLEU ROUGE PPL R1 R2 RL BS-F1 BS-P BS-R MET
T5-L FT - - - 55 F 60 6.0 21.7 19 288 88 274 715 727 706 26.1
T5-S FT - - - 54 F 37 3.6 18.1 25 252 54 237 694 703 687 224
T5-S FT L 1-BS T 5e-4 F 40 42 18.5 28 254 61 240 693 698 69.0 23.1
T5-S Noisy - - - Se-4 F 46 43 192 24 262 66 248 70.1 713 692 234
T5-S Att-Rel - - - 5e-4 F 45 43 19.0 24 260 64 247 701 714 69.1 23.1
T5-S Logits - - - 5e-4 F 45 43 19.0 24 259 65 246 700 713 69.0 23.1
T5-S Logits L 1-BS T S5e-4 F 44 44 19.1 25 262 64 247 698 707 693 235
T5-S Logits L+U I-BS T 5e-4 F 49 438 19.8 24 268 7.1 255 704 715 69.6 24.1
T5-S Logits L+U K-BS T 54 F 50 438 19.8 24 269 7.1 255 704 716 696 24.0
T5-S Logits L+U Samp. T 54 F 50 47 19.8 24 268 70 255 706 720 694 238
T5-S Logits L+U H-Samp. T 54 F 50 47 19.9 23 270 72 255 705 715 697 242
T5-S Logits L+U Samp. S S5e-4 F 49 47 19.7 23 267 70 254 705 719 695 2338
T5-S Logits L+U Samp. T+S 5e4 F 53 48 19.9 24 270 73 255 704 713 697 242
BART-L FT - - - 55 F 64 6.0 214 21 285 86 271 715 727 706 257
BART-6:6 FT - - - 5¢-5 F 4.6 49 20.3 21 273 75 260 711 727 697 241
BART-2:6 FT - - 5e-5 F 37 3.7 17.9 23 248 54 234 695 707 685 217
BART-6:2 FT - - - 5¢-5 F 37 39 18.8 27 256 62 245 701 725 68.1 221
BART-6:2 FT L 1-BS 5e-5 F 4.6 4.6 194 28 262 69 250 702 714 692 234
BART-6:2 Noisy - - 5¢-5 F 47 47 19.8 24 267 72 255 707 724 693 23.6
BART-6:2 Att-Rel - - - 5e-5 F 51 44 19.2 27 261 68 248 704 720 69.1 23.0
BART-6:2 Logits - - - 5¢-5 F 50 47 195 26 264 70 252 706 721 693 235
BART-6:2 Logits L 1-BS T 55 F 53 50 19.8 26 267 74 254 706 719 695 239
BART-6:2 Logits L+U 1-BS T 5e-5 F 56 5.1 20.1 26 270 76 256 707 721 69.6 24.1
BART-6:2 Logits L+U K-BS T 55 F 54 52 20.1 25 270 76 257 709 723 698 24.1
BART-6:2 Logits L+U Samp. T 55 F 56 52 20.2 25 272 77 258 709 722 69.8 243
BART-6:2 Logits L+U H-Samp. T 55 F 53 50 19.9 25 269 74 256 708 723 696 238
BART-6:2 Logits L+U Samp. S 55 F 50 4.9 20.0 25 269 75 256 709 723 697 239
BART-6:2 Logits L+U Samp. T+S 5¢5 F 52 5.1 20.3 24 272 77 259 710 723 699 243
GPT2-L FT - - - 5¢6 F 36 3.6 13.8 23 185 51 176 672 694 654 189
GPT2-M FT - - - 54 F 19 20 9.8 48 137 28 129 635 647 626 155
GPT2 FT - - le3 F 21 22 10.9 28 150 32 143 652 679 629 161
OPT-350M FT - - - led F 25 30 154 34 212 48 201 617 627 609 19.1
OPT-125M FT - - - led F 19 21 10.9 36 155 30 143 641 650 637 160
Table 11: Results for abductive commonsense reasoning, task, ART10 dataset
Model Obj. PTIn. Decoding PTSt. LR FT Dev BLEU ROUGE PPL R1 R2 RL BS-F1 BS-P BS-R MET
T5-L FT - - - 5e-5 F 254 257 454 15 540 315 506 784 784 786 538
T5-S FT - - - 5e-4 F 233 233 434 2.1 523 290 489 769 769 710 516
T5-S FT L 1-BS T 5e-4 F 242 237 441 27 531 297 495 774 712 717 525
T5-S Noisy - - - 5e-4 F 245 242 443 1.9 531 301 497 775 716 715 525
T5-S Att-Rel - - - 5e-4 F 245 241 444 19 533 300 498 774 774 715 525
T5-S Logits - - - S5e-4 F 241 243 445 19 534 302 500 774 714 715 527
T5-S Logits L 1-BS T 5e-4 F 248 248 447 1.9 534 305 502 776 717 716 528
T5-S Logits L+U 1-BS T 5e-4 F 255 251 454 1.9 542 313 507 780 780 78.1 537
T5-S Logits L+U K-BS T 5e-4 F 255 254 455 1.8 542 313 510 78.1 781 782 537
T5-S Logits L+U Samp. T 5e-4 F 254 254 455 1.8 542 312 509 781 782 78.1 535
T5-S Logits L+U H-Samp. T 5e-4 F 255 255 45.1 1.7 539 310 506 78.1 78.1 78.1 534
T5-S Logits L+U Samp. S Se-4 F 252 255 454 1.8 541 311 509 781 781 782 537
T5-S Logits L+U Samp. T+S 5e4 F 253 257 453 1.7 540 312 508 78.1 782 782 536
BART-L FT - - - 5e-5 F 253 251 448 1.8 534 307 502 783 785 782 529
BART-6:6 FT - - - 5¢-5 F 251 238 437 1.8 523 295 491 774 716 713 516
BART-2:6 FT - - - 5e-5 F 227 220 418 20 507 274 473 761 764 759 495
BART-6:2 FT - - - 5e-5 F 231 224 430 26 517 286 486 767 713 763 500
BART-6:2 FT L 1-BS T 5e-5 F 248 233 436 30 526 29.1 492 772 774 712 515
BART-6:2 Noisy - - - 5e-5 F 241 231 440 2.1 527 297 495 773 719 768 512
BART-6:2 Att-Rel - - - 5e-5 F 233 222 432 23 520 288 487 768 774 763 503
BART-6:2 Logits - - - 5e-5 F 242 238 441 24 529 298 495 775 718 712 518
BART-6:2 Logits L 1-BS T 5e-5 F 250 238 441 24 530 297 496 775 718 714 519
BART-6:2 Logits L+U 1-BS T 55 F 252 244 448 23 536 305 503 778 781 716 527
BART-6:2 Logits L+U K-BS T 55 F 256 245 447 22 533 305 501 777 780 715 521
BART-6:2 Logits L+U Samp. T 5e-5 F 255 247 450 2.1 537 308 504 779 783 717 526
BART-6:2 Logits L+U H-Samp. T 5e-5 F 252 247 450 20 537 308 505 778 782 716 526
BART-6:2 Logits L+U Samp. S 5e-5 F 255 245 448 2.1 536 305 503 779 782 717 525
BART-6:2 Logits L+U Samp. T+S 5e5 F 261 248 452 20 539 309 507 78.1 783 780 532
GPT2-L FT - - - le5 F 216 203 39.0 1.8 474 255 442 745 757 735 457
GPT2-M FT - - - 7e-4 F 186 177 350 43 429 224 396 706 707 707 423
GPT2 FT - - - le3 F 176 176 341 22 416 222 386 653 659 650 410
OPT-35eM FT - - - 34 F 190 189 381 36 466 244 432 721 728 715 447
OPT-125M FT - - - 5e-5 F 208 204 405 1.9 491 267 457 746 754 740 463
Table 12: Results for style transfer and simplification task, Shake7 dataset

14656

References
4.45

T5-S T5-L T5-KD Gap
275 4.0 365 T72%

Table 13: Human evaluation for the ART10 dataset. The
numbers are the average ratings for the golden refer-

ences, the student baseline (T5-S), the teacher (T5-L),
and the final distilled model (T5-KD). We also present
the fraction of the student-teacher gap closed by T5-KD.

F Human Evaluation for ART10

In this section, we aim is to examine the relatively
lower performance of our KD method on the ART10
dataset when compared to other datasets. Accord-
ingly, the abductive reasoning task and the ART10
dataset in particular, are a unique case where au-
tomatic evaluation is hard to perform due to the
large number of diverse potential solutions (See the
examples in §F.2). Therefore, we assume that the
fraction of the student-teacher gap closed by the
distilled model may have been underestimated.

To validate our assumption, we conducted a
human evaluation involving two annotators. We
randomly selected 50 input examples and gener-
ated outputs using the student baseline (T5-S),
the teacher (T5-L), and the final distilled model
(T5-KD). The annotators were asked to rate the gen-
erated texts on a five-level scale (see SF.1 below).
The inter-annotator agreement achieved by our an-
notators was Kendall’s 7=0.52. According to Ta-
ble 13, which presents the average rating for each
model, we find that the distilled model closes 72%
of the student-teacher gap. This result is much
greater than the 50% estimated by the automatic
evaluation, and is in-line with the performance of
the distilled model on other datasets.

F.1 Human Evaluation — Instructions

You will be presented with two texts referred to as
“The Observations”. These observations occur in a
specific order, with the first happening before the
second. Your task is to assess four “explanations”
of the second observation, which aim to explain
why it occurred, given that the first observation had
already occurred. A good “explanation” should be
clear and provide a plausible account of what hap-
pened between the two observations. You should
rate each explanation using this five-level scale:

1. The explanation is nonsensical or contains
many grammatical errors.

2. The explanation is not related to the observa-
tions or repeating the observations.

3. The explanation is related to the observations
but does not explain them.

4. The explanation is related to the observations
but only partially explains them.

5. The explanation fully explains the observa-
tions.

F.2 Generated Examples

Observation 1: I went to a rap show for the first
time in my life.

Observation 2: Now I'm avid rap and hip hop
listener.

Reference: I really enjoyed the show.

T5-S: I went to a hip hop show.

T5-L: I fell in love with rap and hip hop.

T5-KD: The rap show was very good.

Observation 1: Allison wanted to renew her vows
with Tom.

Observation 2: Yeah even had a new baby.
Reference: Allison and Tom did it and felt more
love.

T5-S: Tom had a baby.

T5-L: Allison proposed to Tom.

T5-KD: Allison asked Tom to marry her.

Observation 1: Today I decided to learn how to
make bread.

Observation 2: I noticed I made an error in my
measurements and started over.

Reference: I accidentally put in twice as much salt
as needed.

T5-S: I went to the grocery store to learn how to
make bread.

T5-L: I didn’t follow the recipe exactly.

T5-KD: I did not follow the instructions carefully.

Observation 1: Tommy called on the girl who sat
next to him in class.

Observation 2: Tommy decided to ask the girl for
a date.

Reference: The girl was very beautiful and kind.
T5-S: Tommy asked the girl for a date.

T5-L: Tommy liked the girl a lot.

T5-KD: The girl said she liked Tommy.

14657

ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
7

[0 A2. Did you discuss any potential risks of your work?
Not applicable. Not relevant to this work, as it is a general model compression/knowledge distillation
for NLG.

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract, 1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B ¥ Did you use or create scientific artifacts?

Appendix

v/ B1. Did you cite the creators of artifacts you used?
4, Appendix

B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

¥f B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
4, Appendix

[B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?

Not applicable. Left blank.

0 BS5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

v B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.

4

C ¥ Did you run computational experiments?
4, Appendix
¥/ C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
4, Appendix

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

14658

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4, Appendix

v C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

5, Appendix

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

Appendix

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

Not applicable. Left blank.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

Not applicable. Left blank.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

14659

