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Abstract
Two-Tower Vision-Language (VL) models
have shown promising improvements on vari-
ous downstream VL tasks. Although the most
advanced work improves performance by build-
ing bridges between encoders, it suffers from in-
effective layer-by-layer utilization of uni-modal
representations and cannot flexibly exploit dif-
ferent levels of uni-modal semantic knowledge.
In this work, we propose ManagerTower, a
novel VL model architecture that gathers and
combines the insights of pre-trained uni-modal
experts at different levels. The managers intro-
duced in each cross-modal layer can adaptively
aggregate uni-modal semantic knowledge to fa-
cilitate more comprehensive cross-modal align-
ment and fusion. ManagerTower outperforms
previous strong baselines both with and with-
out Vision-Language Pre-training (VLP). With
only 4M VLP data, ManagerTower achieves su-
perior performances on various downstream
VL tasks, especially 79.15% accuracy on
VQAv2 Test-Std, 86.56% IR@1 and 95.64%
TR@1 on Flickr30K. Code and checkpoints
are available at https://github.com/
LooperXX/ManagerTower.

1 Introduction

In recent years, there has been a growing interest
in the field of Vision-Language (VL) representa-
tion learning due to the development of Vision-
Language Pre-training (VLP) techniques. VLP
aims to learn transferable multi-modal knowledge
from large-scale image-text pairs, which can fur-
ther improve the performance of various down-
stream VL tasks, such as visual question answer-
ing (Goyal et al., 2017), visual entailment (Xie
et al., 2019), visual reasoning (Suhr et al., 2019),
and image-text retrieval (Young et al., 2014).

Visual and textual modalities in VL models are
typically processed by uni-modal encoders and sub-
sequently fused in a cross-modal encoder. This
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Figure 1: Brief illustrations of BridgeTower and Man-
agerTower. Hollow arrows indicate the transmission of
multi-layer uni-modal representations in ManagerTower
instead of layer-by-layer transmission in BridgeTower.

general architecture can be referred to as the Two-
Tower architecture. METER (Dou et al., 2022) and
BridgeTower (Xu et al., 2022) are two representa-
tive Two-Tower VL models. METER uses CLIP-
ViT (Radford et al., 2021) and RoBERTa (Liu et al.,
2019b) as pre-trained uni-modal encoders, but it ig-
nores different levels of uni-modal semantic knowl-
edge in them and only feeds the last-layer outputs
of each uni-modal encoder into the cross-modal
encoder. In an effort to address this issue, as illus-
trated in Figure 1(a), BridgeTower connects multi-
ple top uni-modal layers with each cross-modal
layer in a layer-by-layer fashion to exploit uni-
modal semantic knowledge at different levels.

In this work, we build upon the research of
BridgeTower and advance it in two aspects. Specif-
ically, we address the limitations of BridgeTower:
(i) its layer-by-layer utilization of different uni-
modal layer representations is ineffective. Each
cross-modal layer can only utilize an artificially-
connected uni-modal layer representation, thus re-
stricting the exploitation of different levels of uni-
modal semantic knowledge. (ii) the number of
cross-modal layers is tied to the number of uni-
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modal layer representations it used, thus limiting
its scalability and capability. For example, increas-
ing the number of uni-modal layer representations
used requires a corresponding increase in the num-
ber of cross-modal layers. This leads to an increase
in the number of parameters and computation cost,
while does not always result in performance im-
provements as demonstrated by Xu et al. (2022).

As shown in Figure 1(b), we propose a novel
VL model architecture, ManagerTower, that ag-
gregates multi-layer uni-modal representations via
managers in each cross-modal layer. Each man-
ager takes multi-layer uni-modal representations
as the insights of pre-trained uni-modal experts
at different levels, and then adaptively aggregates
them to facilitate more comprehensive cross-modal
alignment and fusion. More concretely, inspired
by the linear combination of layers (Wang et al.,
2019) method, we adapt it as the Static Aggrega-
tion of Experts (SAE) manager and then remove
redundant information to design the Static Aggrega-
tion of Uni-modal Experts (SAUE) manager, which
focuses on aggregating uni-modal semantic knowl-
edge. We further propose the Adaptive Aggrega-
tion of Uni-modal Experts (AAUE) manager to
adaptively aggregate multi-layer uni-modal repre-
sentations for each token in different cross-modal
layers. Moreover, in principle, managers can be
easily integrated into any cross-modal encoders and
work well with any uni-modal encoders, making
ManagerTower scalable and flexible.

We first explore the feasibility of various de-
signs of managers by evaluating and analyzing the
performance on VQAv2 and Flickr30K datasets.
Then, we pre-train ManagerTower with commonly
used 4M VLP data and evaluate it on various down-
stream VL tasks. With the same pre-training and
fine-tuning settings and uni-modal backbones as
previous strong baselines such as METER and
BridgeTower, ManagerTower achieves superior
performances on various downstream VL tasks,
especially 79.15% accuracy on VQAv2 Test-Std,
86.56% IR@1 and 95.64% TR@1 on Flickr30K.
It outperforms not only many base-size models
pre-trained on 4M data but also some models pre-
trained on more data and/or with larger size.

2 Preliminary

In this work, for a fair comparison with METER
and BridgeTower, we use the same cross-modal
encoder and pre-trained uni-modal encoders.

2.1 Visual Encoder

CLIP-ViT, the visual encoder of CLIP (Radford
et al., 2021), has been widely used in VL mod-
els (Shen et al., 2021; Dou et al., 2022). It reshapes
each input image into a flattened patch sequence
and prepends a [class] token to the sequence.
After a linear projection, position embeddings are
added to the sequence to get the input visual repre-
sentation V0. The ` th visual layer representation
can be computed as: V`=EncoderV` (V`−1), `=
1 . . . LV, where ` is the layer index and LV is the
number of layers of the visual encoder.

2.2 Textual Encoder

RoBERTa (Liu et al., 2019b) is widely used in the
field of VL (Dou et al., 2022; Li et al., 2022b)
due to its robust performance. It tokenizes the
input text with the byte-level Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016; Radford et al.,
2019) and adds [<s>] and [</s>] tokens to
the start and end of the sequence, respectively.
Then, it applies word embeddings and positional
embeddings to the tokenized sequence to get the
input textual representation T0. Similarly, the ` th

textual layer representation can be computed as:
T`=EncoderT` (T`−1), `=1 . . . LT, where LT is
the number of layers of the textual encoder.

2.3 Cross-Modal Encoder

We adopt the transformer encoder (Vaswani et al.,
2017) with the co-attention mechanism as the
cross-modal encoder (Lu et al., 2019). For each
cross-modal layer, each modality has a multi-head
self-attention (MSA) block, a multi-head cross-
attention (MCA) block, and a feed-forward (FFN)
block. The MCA block allows the visual part of
the cross-modal encoder to attend to the textual
part and vice versa. Each cross-modal layer is de-
noted as EncoderC` , `=1 . . . LC, where LC is the
number of cross-modal layers. For brevity, the ` th

cross-modal layer computes as:

C̃V
` = CV

`−1, (1)

C̃T
` = CT

`−1, (2)

CV
` ,C

T
` = EncoderC` (C̃

V
` , C̃

T
` ), (3)

where CV
` ,C

T
` are the output representations of the

visual and textual part at the ` th layer, C̃V
` , C̃

T
` are

inputs of each part. CV
0 ,C

T
0 are initialized with the

last-layer representations from uni-modal encoders:
CV

0 =VLV
WV,C

T
0 =TLT

WT, where WV,WT
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Figure 2: An illustration of ManagerTower, a textual manager and a visual manager are introduced in each
cross-modal layer. Top N=6 uni-modal layer representations T,V∈RN×L×D and output representations of the
previous cross-modal layer CT

`−1,C
V
`−1, `=1 . . . 6 are fed into the textual managerMT

` and visual managerMV
` ,

respectively. N is the number of pre-trained uni-modal experts we used, L is the length of the input sequence.

are linear cross-modal projections. In this work,
we use the same default setting as BridgeTower for
a fair comparison: LV=LT=12, LC=6, and only
top N=6 uni-modal layer representations are used.

2.4 Utilization of Uni-Modal Experts
Different layers of uni-modal encoders encoding
different levels of semantic information are well
demonstrated in vision (Dosovitskiy et al., 2020;
Raghu et al., 2021; Naseer et al., 2021) and
language (Peters et al., 2018b; Liu et al., 2019a;
Jawahar et al., 2019). According to Dosovitskiy
et al. (2020) and Raghu et al. (2021), lower layers
of ViT tend to attend both locally and globally,
while higher layers primarily focus on global
information. Similarly, Jawahar et al. (2019) found
that the intermediate layers of BERT (Devlin et al.,
2019) encode a hierarchy of linguistic information,
with surface features at the bottom, syntactic fea-
tures in the middle, and semantic features at the top.

In the field of VL, some works have explored the
usage of pre-trained multi-layer uni-modal repre-
sentations (Dou et al., 2022; Xu et al., 2022). They
simply feed the weighted sum of uni-modal layer
representations into the first cross-modal layer, or
layer-by-layer exploit multiple top uni-modal layer
representations in each cross-modal layer. In this
work, we take each layer of the pre-trained uni-
modal encoder as a uni-modal expert, and the out-
put representation of each layer as the insight of
the uni-modal expert into the current input.

3 Manager Design

Figure 2 depicts the overall framework of Manager-
Tower. It introduces managers in each cross-modal

layer to adaptively aggregate the insights of pre-
trained uni-modal experts at different levels. In the
subsequent subsections, we will elaborate on the
detailed design schema for the three types of man-
agers, and conclude with the cross-modal encoder
with our well-designed managers.1

3.1 Static Aggregation of Experts
The effectiveness of layer fusion in learning com-
prehensive representations has been well demon-
strated in machine translation (Wang et al., 2018,
2019; Wei et al., 2020). Motivated by this, we de-
cide to apply this technique in the context of VL.
As a preliminary approach, we choose to utilize the
linear combination of layers method (Wang et al.,
2019), which is a simple yet effective way to aggre-
gate the representations of previous layers through
the use of learned weights in each encoder layer.

A natural idea is to adapt it to aggregate uni-
modal and cross-modal output representations of
all previous layers. We name it the Static Aggrega-
tion of Experts (SAE) manager. The calculation of
the ` th visual manager is:

MV
` (V7, . . . ,V12,C

V
1 , . . . ,C

V
`−1) = (4)

`−1∑

i=1

WV,`
i+6 � LN(CV

i )+
6∑

i=1

WV,`
i � LN(Vi+6),

whereMV
` denotes the manager for the visual part

of the ` th cross-modal layer, WV,`∈R(6+`−1)×D

is a learnable parameter matrix, � denotes the
element-wise product operation and LN(·) de-
notes Layer Normalization (Ba et al., 2016). The

1More details on pre-training objectives and downstream
fine-tuning are described in Appendix A.
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softmax with a learnable temperature is used to
normalize WV,`. We then omit the superscript V,`

of W for brevity. The learned aggregation weight
W is initialized with 1

6+`−1 on average in order to
assign equal weights to the output representation
of all previous layers.

However, directly applying SAE to VL models is
non-trivial, since it does not bring a desired perfor-
mance improvement compared to BridgeTower but
led to a significant performance decrease. We posit
that this decrease may be due to the average ini-
tialization of W not being suitable for cross-modal
and pre-trained uni-modal output representations
as they have different scales. To investigate this
hypothesis, we propose dividing the parameter ma-
trix W into uni-modal and cross-modal parts and
initializing them with 1

6 and 1
`−1 , respectively,2 and

also learn the softmax temperature separately. The
experimental result yield a significant improvement
compared to the direct application of SAE, but a
limited improvement compared to BridgeTower.
These observations provide a compelling argument
for re-examining how to aggregate multi-layer pre-
trained uni-modal representations.

3.2 Static Aggregation of Uni-Modal Experts
Since Equation (4) can be divided into uni-modal
and cross-modal parts, by computing the cosine
similarity of aggregated uni-modal/cross-modal
representations between every two consecutive tex-
tual/visual managers, we further analyze the in-
sights aggregated by different SAE managers.

As shown in Figure 3, for SAE managers, the
uni-modal similarity is always similar to 1, while
the cross-modal similarity increases with depth and
gets closer to 1. This indicates that, the uni-modal
representations aggregated by different SAE man-
agers are almost identical, and the aggregated cross-
modal representations get similar with depth.

We hypothesize that, since different SAE man-
agers provide similar aggregated uni-modal repre-
sentations to each cross-modal layer, output rep-
resentation of more preceding cross-modal layers
may bring redundant information to confuse the
managers. This leads to aggregated cross-modal
representations converging to indistinguishable vec-
tors as the depth increases.

Hence, we propose focusing on aggregating the
insights of pre-trained uni-modal experts and keep-

2We also try some different initialization methods: one,
progressive, exponential moving average, BridgeTower-like,
etc., but the results are similar to or lower than the average.
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Figure 3: Cosine similarity of aggregated uni-
modal/cross-modal representations between every two
consecutive textual/visual managers.

ing only the output representation of the previous
cross-modal layer. We name it the Static Aggrega-
tion of Uni-modal Experts (SAUE) manager. The
calculation of the ` th visual manager becomes:

MV
` (V7, . . . ,V12,C

V
`−1) =

WC � LN(CV
`−1)+

6∑

i=1

Wi � LN (Vi+6),
(5)

where W∈R6×D and WC ∈R1×D are learnable
parameter matrices and initialized with 1

6 and 1 on
average, respectively. The softmax with a learn-
able temperature only normalizes W.

The significant improvement compared to
BridgeTower empirically support our hypothesis.
Moreover, in Figure 3, the cross-modal similarity
of SAUE decreases with depth, which indicates that
comprehensive and distinguishable cross-modal
representations are learned as depth increases.

3.3 Adaptive Aggregation of Uni-Modal
Experts

Although the SAUE manager achieves a significant
performance improvement, it still has two limita-
tions: (i) W, the learned aggregation weight of
uni-modal expert insights, is almost identical be-
tween managers in different cross-modal layers, as
shown in Figure 3 & 7, which is inconsistent with
the intuition that the need for uni-modal semantic
knowledge varies among cross-modal layers; (ii)
in the inference phase, managers in different cross-
modal layers use the same aggregation weight of
uni-modal expert insights for all tokens in different
samples, which does not match the intuition that
the need for uni-modal semantic knowledge varies
among tokens and samples.
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Figure 4: An illustration of the calculation of aggregated uni-modal representations AV∈RL×D in the visual AAUE
manager. CA denotes the cross-attention mechanism. N=6. We omit LN and softmax for brevity.

To address the above limitations, we propose
the Adaptive Aggregation of Uni-Modal Experts
(AAUE) manager. During training and inference
phases, AAUE managers can adaptively exploit
different levels of uni-modal semantic knowledge
from pre-trained uni-modal experts, for different
tokens in different samples. Take the visual AAUE
manager for example, the calculation of the ` th

visual manager becomes:

MV
` (V7, . . . ,V12,C

V
`−1)=

WC�LN(CV
`−1)+

6∑

i=1

WA,i � LN (Vi+6), (6)

WA=softmax(LN(CV
`−1)×WM+ε), (7)

where WM ∈ RD×6 is a linear projection layer.
The generated aggregation weights WA∈R6×L×D

can adaptively aggregate uni-modal representations
of each token from different levels of pre-trained
uni-modal experts. The softmax has a learnable
temperature and ε ∼ N (0, 1

62
) is a Gaussian noise

for exploration of aggregation (Xue et al., 2022).
Furthermore, to better help managers to exploit

uni-modal semantic knowledge for the current
cross-modal layer, we propose replacing the visual
query CV

`−1 in Equation (7) with the cross-modal
fused query CA(CV

`−1,C
T
`−1) to further improve

performance, where CA is a cross-attention mech-
anism. We visualize WA in Section 4.4.

3.4 Cross-Modal Encoder with Managers

Since the 1st cross-modal layer lacks the output rep-
resentations of the previous cross-modal layer as
the query, we introduce the SAUE managers in the
1st cross-modal layer and the AAUE managers in
the subsequent cross-modal layers. Hence, Equa-
tion (1) & (2) of the 1st cross-modal layer with
SAUE managers becomes:

C̃V
1 =MV

1 (V7, . . . ,V12), (8)

C̃T
1 =MT

1 (T7, . . . ,T12). (9)

For the 2nd and subsequent cross-modal layers
with AAUE managers:

C̃V
` =MV

` (V7, . . . ,V12,C
V
`−1,C

T
`−1), (10)

C̃T
` =MT

` (T7, . . . ,T12,C
T
`−1,C

V
`−1), (11)

where we omit the modality type and layer index
embeddings added to uni-modal layer representa-
tions V,T in the above equations for simplicity.

Figure 4 shows adaptive aggregation of the in-
sights of pre-trained visual experts in AAUE man-
ages, which is the uni-modal (right) part of Equa-
tion (6). As for SAUE managers, they directly
broadcast the learned weights W∈R6×D to WA

and then aggregate the insights.

4 Experiments

4.1 Implementation Details
ManagerTower consists of a pre-trained textual en-
coder, RoBERTaBASE with 124M parameters, a
pre-trained visual encoder, CLIP-ViT B-224/16
with 86M parameters, and a randomly-initialized
6-layer cross-modal encoder with managers which
has 113M+12M parameters. The detailed set-
ting of the cross-modal encoder is the same as
BridgeTower. The maximum length of the text se-
quence is set to 50, and the image patch size is 16×
16. We use an image resolution of 384 × 384 for
Flickr30K and 576×576 for VQAv2 for a fair com-
parison with BridgeTower. AdamW (Loshchilov
and Hutter, 2019) optimizer with a base learning
rate of 2e−5 and warmup ratio of 0.1 is used.

4.2 Investigation and Analysis
In this section, we investigate various designs of
managers and evaluate the performance by directly
fine-tuning on VQAv2 and Flickr30K without VLP.
Experimental settings are the same as BridgeTower
for a fair comparison. Note that uni-modal en-
coders are initialized with their pre-trained weights.

4.2.1 Type of Manager
We first investigate the performance of different
types of managers and different queries. Take the
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Type Visual Query Weight Test-Dev RMEAN

BT - N× 1 75.91 93.33

SAE
- N× 1 76.19 93.57
- N×D 76.18 93.73

SAUE
- N× 1 76.38 93.75
- N×D 76.55 93.82

AAUE
CV

`−1 N× L 76.52 93.84
CV

`−1,C
T
`−1 N× L 76.65 93.97

Concat- V,CV
`−1 N× L×D 76.38 93.78

Attention V,CV
`−1,C

T
`−1 N× L×D 76.43 93.83

Cross- CV
`−1 N× L 76.41 92.15

Attention CV
`−1,C

T
`−1 N× L 76.45 92.61

Table 1: Performance of different types of managers and
different queries on VQAv2 and Flickr30K. RMEAN in-
dicates the mean recall metrics for image-text retrieval.

visual manager for example, based on the top N=6
visual layer representations V ∈ RN×L×D from
CLIP-ViT, different managers provide the aggrega-
tion weights that can be broadcast to WA for ag-
gregating the insights of pre-trained visual experts.
From the perspective of aggregation weights WA,
the SAE and SAUE managers are static sentence-
level managers that share the same aggregation
weights for all tokens in different samples. Cor-
respondingly, the AAUE manager is an adaptive
token-level manager that adaptively generates dif-
ferent aggregation weights for different tokens in
different samples. Besides, we also implement
Equation (7) with commonly used cross-attention
and concat-attention mechanisms for comparison.

Results are shown in Table 1. By focusing on
aggregating the insights of pre-trained uni-modal
experts, the SAUE manager outperforms the SAE
manager on both datasets. Furthermore, with the
help of the cross-modal fused query, the AAUE
manager achieves substantially better performance
than other managers. This demonstrates the effec-
tiveness of adaptive token-level aggregation with
the cross-modal fused query compared to static
sentence-level aggregation. Notably, the cross-
modal fused query incorporates output representa-
tions of both visual and textual parts of the previous
cross-modal layer, which can better help managers
to correctly aggregate uni-modal semantic knowl-
edge required by the current cross-modal layer.

4.2.2 Number of Cross-Modal Layers
We compare ManagerTower to BridgeTower with
different numbers of cross-modal layers in Table 2
to further evaluate the effectiveness of Manager-
Tower. Regardless of the number of cross-modal
layers, ManagerTower consistently and signifi-

LC
VQAv2 Test-Dev Flickr30K RMEAN

BT Ours BT Ours
2 74.86 75.47 (↑ 0.61) 92.45 93.31 (↑ 0.86)
3 75.33 76.04 (↑ 0.71) 92.50 93.41 (↑ 0.91)
4 75.74 76.26 (↑ 0.52) 92.76 93.59 (↑ 0.83)
6 75.91 76.65 (↑ 0.74) 93.33 93.97 (↑ 0.64)
8 75.89 76.47 (↑ 0.58) 93.03 93.65 (↑ 0.62)

Table 2: Performance of BridgeTower (BT) and Man-
agerTower with different number of cross-modal layers.

2 3 4 5 6 7 8
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Figure 5: Effect of using different numbers of uni-modal
representations in ManagerTower(LC=3,N = 2 . . . 8).

cantly outperforms BridgeTower on both datasets.
More interestingly, the performance of Manager-

Tower with LC = 3 (76.04) is even better than
that of BridgeTower with LC=6 (75.91). Unlike
BridgeTower, the number of uni-modal layer repre-
sentations used N in ManagerTower is not tied to
the number of cross-modal layers LC and can be
flexibly adjusted. We fix N=6 as the default set-
ting. Therefore, ManagerTower actually uses the
same number of uni-modal layer representations
as BridgeTower, but achieves even better perfor-
mance using half the number of cross-modal layers.
This further demonstrates the flexibility and effec-
tiveness of ManagerTower to adaptively aggregate
uni-modal semantic knowledge, compared to layer-
by-layer exploitation in BridgeTower.

4.2.3 Number of Uni-Modal Experts.
We further investigate the effect of varying N in
ManagerTower with LC = 3. As shown in Fig-
ure 5, there exist two interesting observations: (i)
ManagerTower (LC=3,N=3) is still better than
BridgeTower (LC=3,N=3). This indicates that
when the same number of uni-modal layer repre-
sentations are introduced, ManagerTower allows
more effective aggregation of uni-modal seman-
tic knowledge, thus facilitating cross-modal align-
ment and fusion in each cross-modal layer. (ii)
the performance of ManagerTower first increases
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Model
# Pre-train VQAv2 SNLI-VE NLVR2 Flickr30K

Images Test-Dev Test-Std Dev Test Dev Test-P IR@1 TR@1
Base-size models pre-trained on 4M public data
ViLTBASE (Kim et al., 2021) 4M 71.26 - - - 75.70 76.13 64.4 83.5
UNITERBASE (Chen et al., 2020) ∗ 4M 72.70 72.91 78.59 78.28 77.18 77.85 72.52 85.90
UNIMOBASE (Li et al., 2021b) 4M 73.79 74.02 80.00 79.10 - - 74.66 89.70
ALBEFBASE (Li et al., 2021a) ∗ 4M 74.54 74.70 80.14 80.30 80.24 80.50 82.8 94.3
METER-SwinBASE(Dou et al., 2022) 4M 76.43 76.42 80.61 80.45 82.23 82.47 79.02 92.40
VLMOBASE (Wang et al., 2021a) 4M 76.64 76.89 - - 82.77 83.34 79.3 92.3
METER-CLIPBASE (Dou et al., 2022) 4M 77.68 77.64 80.86 81.19 82.33 83.05 82.22 94.30
BridgeTowerBASE (Xu et al., 2022) 4M 78.66 78.73 81.11 81.19 81.85 83.09 85.83 94.73
ManagerTowerBASE (Ours) 4M 79.39 79.15 81.26 81.44 82.81 83.34 86.56 95.64
Models pre-trained on more data and/or with larger size
UNITERLARGE (Chen et al., 2020) ∗ 4M 73.82 74.02 79.39 79.38 79.12 79.98 75.56 87.30
UNIMOLARGE (Li et al., 2021b) 4M 75.06 75.27 81.11 80.63 - - 78.04 89.40
ALBEFBASE (Li et al., 2021a) ∗ 14M 75.84 76.04 80.80 80.91 82.55 83.14 85.6 95.9
SimVLMBASE (Wang et al., 2021b) 1.8B 77.87 78.14 84.20 84.15 81.72 81.77 - -
BLIPBASE (Li et al., 2022a) ∗ 129M 78.24 78.17 - - 82.48 83.08 87.3 97.3
SimVLMLARGE (Wang et al., 2021b) 1.8B 79.32 79.56 85.68 85.62 84.13 84.84 - -

Table 3: Comparisons with previous models on downstream VL tasks. The best score is bolded. ∗ indicates that the
model also uses VG-QA data to fine-tune on VQAv2.

gradually, but decreases after N> 6. We assume
that lower-layer uni-modal representations may not
help ManagerTower learn cross-modal fusion and
also increases the computational cost, which is also
consistent with the observation in Xu et al. (2022).

4.3 Comparison with Previous Arts

Pre-train Settings. We pre-train ManagerTower
with two standard VLP objectives, masked lan-
guage modeling (MLM) and image-text match-
ing (ITM), on the commonly used 4M public data:
Conceptual Captions (CC) (Sharma et al., 2018),
SBU Captions (Ordonez et al., 2011), MSCOCO
Captions (Chen et al., 2015), and Visual Genome
(VG) (Krishna et al., 2017). The pre-train settings
are the same as BridgeTower and METER for a
fair comparison. ManagerTower is pre-trained for
100k steps with a batch size of 4096 and a learn-
ing rate of 1e−5. The image resolution for VLP
is 288× 288 and only center-crop (Radford et al.,
2021) is used without any data augmentation.

Main Results. Table 3 shows the performance
of ManagerTower compared with other previous
works on various downstream VL tasks. Manager-
Tower achieves superior performances on these
datasets with only 4M VLP data. With the same
pre-training and fine-tuning settings and uni-modal
backbones as previous strong baselines METER
and BridgeTower, ManagerTower significantly im-
proves performances on various downstream VL
tasks, especially 79.15% accuracy on VQAv2

Test-Std, 86.56% IR@1 and 95.64% TR@1 on
Flickr30K. This further demonstrates that with all
other factors fixed, compared to BridgeTower that
introduces bridges to METER, ManagerTower al-
lows more effective aggregation of multi-layer uni-
modal representations via well-designed managers.
Managers can adaptively aggregate more accurate
uni-modal semantic knowledge to facilitate com-
prehensive cross-modal alignment and fusion in
each cross-modal layer. Notably, ManagerTower
not only outperforms many base-size models pre-
trained on 4M data, but also surpasses some models
pre-trained on more data and/or with larger size.

4.4 Visualization of Aggregation Weights

We delve into managers by visualizing the aver-
age aggregation weights they generate for each
cross-modal layer over all samples in VQAv2 Valid
in Figure 6. For each row, the first column shows
the learned aggregation weights of SAUE man-
agers. The other five columns show the aggregation
weights generated by AAUE managers and share
the Y-axis to provide easy horizontal comparison.

Interestingly, the aggregation weight distribu-
tions provided by managers are completely dif-
ferent from the one-hot distributions specified in
BridgeTower, and there are two distinct trends: (i)
For SAUE managers in the 1st cross-modal layer,
vertically: textual manager exhibits increasing and
then decreasing weights, most favoring T10, unlike
T12 and T7 used in METER and BridgeTower,
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Figure 6: A visualization of aggregation weights of textual and visual AAUE managers in each cross-modal layer
after VLP. The X-axis is the index of the uni-modal expert, and the legend shows the index of the cross-modal layer.
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Figure 7: A visualization of aggregation weights of textual and visual SAUE managers in each cross-modal layer.
The X-axis is the index of the uni-modal expert, and the legend shows the index of the cross-modal layer.

respectively; visual manager exhibits increasing
weights, most favoring V12, the same as METER
and BridgeTower. (ii) For AAUE managers in the
2nd to 6th cross-modal layers, horizontally: whether
textual or visual managers, they exhibit diverse ag-
gregation weight distributions in different layers.

Overall, comparing the aggregation weight distri-
butions horizontally and vertically, ManagerTower
learns diverse distributions in different cross-modal
layers. This provides strong evidence that the in-
troduced managers can adaptively aggregate uni-
modal semantic knowledge for comprehensively
cross-modal representation learning.

4.5 Intuitive Comparison Between BT&MT
We provide brief illustrations in Figure 8 to intu-
itively compare BridgeTower (BT) and Manager-
Tower (MT) with different type of managers.

BT vs. MT with SAUE Managers. In Ta-
ble 2 & 5, we provide the performance compar-
ison between BridgeTower and ManagerTower.3 In
fact, BridgeTower can be seen as an approximate
special case of ManagerTower with SAUE man-
agers if we replace the learned weights W in each
manager with layer-by-layer one-hot distributions4

used in BridgeTower. However, as shown in Fig-
ure 7, the aggregation weight of textual and visual
SAUE managers share a similar progressive trend

3The re-implemented BridgeTower obtained higher ex-
perimental results than the original paper due to the better
fine-tuning settings we used for all experiments in Section 4.2.

4It means that, for each cross-modal layer, only one uni-
modal expert is activated at a time in the bottom-up direction.

across cross-modal layers, which is completely dif-
ferent from the distributions in BridgeTower. This
allows ManagerTower with SAUE managers to
achieve significant performance gains (from 75.91
to 76.55) compared to BridgeTower. Besides, the
similar trend of aggregation weights is consistent
with the observations in Figure 3, that is, the cosine
similarity of aggregated uni-modal representations
between managers is always similar to 1.

SAUE Manager vs. AAUE Manager. When we
compare Figure 6 & 7, their respective aggregation
weight distributions are completely different. This
further demonstrates that compared with SAUE
managers, AAUE managers can adaptively gen-
erates different aggregation weights for different
tokens in different samples. Interestingly, the first
column of two figures both comes from the SAUE
managers, but the distributions are still clearly dif-
ferent. We presume that high-layer AAUE man-
agers may help low-layer SAUE managers rectify
their management of experts.

We also provide the visualizations of aggrega-
tion weights of SAE and AAUE managers without
VLP in Figure 9 & 10. Comparing the visualization
of three types of managers without VLP, we can
find that (i) the learned aggregation weights of SAE
and SAUE managers are still a little close to the
average initialization we used and they all share a
similar progressive trend across cross-modal layers;
(ii) for each AAUE manager, its generated aggrega-
tion weights vary significantly across 6 uni-modal
experts; comparing different cross-modal layers,
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Figure 8: Brief illustrations of BridgeTower and our
ManagerTower with SAE, SAUE and AAUE managers.
Hollow arrows indicate the transmission of multi-layer
uni-modal representations in ManagerTower instead of
layer-by-layer transmission in BridgeTower. Each uni-
modal or cross-modal layer is seen as a uni-modal or
cross-modal expert. The arrow between the cross-modal
expert of the previous layer and the manager of the
current layer is to get the cross-modal fused query.

the distribution of aggregation weights generated
by the AAUE manager is also very different.

5 Related Work

Vision-Language Models. Although VL models
differ in model architecture, most of them use uni-

modal encoders to extract visual and textual rep-
resentations, and then fuse them in a cross-modal
encoder, which can be unified into the Two-Tower
architecture (Lu et al., 2019; Su et al., 2020; Chen
et al., 2020; Li et al., 2020a,b; Zhou et al., 2020;
Kim et al., 2021; Radford et al., 2021; Jia et al.,
2021; Li et al., 2021a,b, 2022a; Dou et al., 2022;
Wang et al., 2021a,b, 2022a,b; Yu et al., 2022). As
a representative model, METER (Dou et al., 2022)
adopts pre-trained uni-modal encoders and feeds
their last-layer representations into the cross-modal
encoder. BridgeTower (Xu et al., 2022) proposes
building layer-by-layer connections between the
top uni-modal layers and each cross-modal layer
to utilize different uni-modal layer representations.
However, they still cannot provide adaptive and
effective aggregation of multi-layer pre-trained uni-
modal representations in each cross-modal layer.

Multi-Layer Representation Aggregation. The
effectiveness of layer representation aggregation in
learning comprehensive representations has been
well demonstrated in vision (Lin et al., 2017;
Huang et al., 2017; Yu et al., 2018; Xie et al., 2021)
and language (Peters et al., 2018a; Wang et al.,
2018, 2019; Wei et al., 2020). Recent VL models
also explore utilization of multi-layer uni-modal
representations for better cross-modal representa-
tion learning. METER feeds the weighted sum
of uni-modal representations into the first cross-
modal layer. BridgeTower introduces bridges into
METER so that different uni-modal layer represen-
tation are fed layer by layer into each cross-modal
layer. In this work, ManagerTower explores adap-
tive and effective aggregation of multi-layer uni-
modal representations via well-designed managers.

6 Conclusion

We propose ManagerTower, a novel VL model ar-
chitecture that gathers and combines the insights of
pre-trained uni-modal experts at different levels via
the introduced managers in each cross-modal layer.
The feasibility of various designs of managers is
well explored, and the effectiveness of Manager-
Tower on various downstream VL tasks is well
demonstrated. More comprehensive cross-modal
alignment and fusion in each cross-modal layer is
achieved by adaptive aggregation of different levels
of uni-modal semantic knowledge. We hope that
our work can inspire more research on how to better
exploit multi-layer pre-trained uni-modal represen-
tations for cross-modal representation learning.
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Limitations

In this work, we propose managers that allow adap-
tive aggregation of uni-modal layer representations
in each cross-modal layer. Inevitably, AAUE man-
agers significantly improve performance which
slightly increasing the computational budget, as
we detailed discussed in Appendix C. This needs
to be further optimized in the future. Analysis and
optimization are also needed for the other types
of managers as shown in Appendix D. Moreover,
as shown in Figure 5, the performance of Man-
agerTower first increases gradually with the num-
ber of uni-modal representations, but then stops
increasing and even decreases when the number
of uni-modal representations exceeds 6. How to
obtain better ManagerTower performance using a
lower computational budget while utilizing more
insights of uni-modal experts, especially when scal-
ing the model, e.g., 24-layer CLIP-ViT L-224/16
and 24-layer RoBERTaLARGE, is a question worth
further exploration. For example, designing rea-
sonable sparse activation functions for managers in
ManagerTower, instead of simple top-N or top-p
sampling (which did not work well in our prelimi-
nary experiments).
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A Implementation Details

A.1 Vision-Language Pre-training

We use two commonly used VLP objectives.

Masked Language Modeling. For MLM, we
follow the conditional masking approach used in
UNITER (Chen et al., 2020) that randomly masks
15% of the tokens in the text token sequence while
keeping the image patch sequence unchanged. The
model is then trained to predict the original masked
tokens given the incomplete text sequence and the
complete image patch sequence. The masking strat-
egy and MLM task head we use are the same as
RoBERTa. The output top-layer representation of
the textual part of the cross-modal encoder is used
as input for the MLM task head.

Image-Text Matching. For ITM, both matched
and mismatched image-text pairs are fed into the
model with equal probability. The model is trained
to predict whether a given image-text pair is a
matched (positive) or a mismatched (negative) pair.
The output top-layer representations of [class]
and [<s>] tokens are activated by the non-linear
function Tanh. Then the concatenation of the
above output representations is fed into a linear
classifier with cross-entropy loss for binary classi-
fication.

COCO VG CC SBU
# Images 113K 108K 2.9M 860K
# Captions 567K 4.8M 2.9M 860K

Table 4: Statistics of the pre-train datasets. We remove
duplicate image-caption pairs in VG (Kim et al., 2021;
Dou et al., 2022) and only 2.9M image-caption pairs
can be downloaded in CC.

Pre-training Settings. Table 4 shows the statis-
tics of the pre-train datasets. Following previ-
ous work (Kim et al., 2021; Chen et al., 2020;
Li et al., 2021a; Dou et al., 2022), we adopt four
public image-caption datasets for pre-training, in-
cluding Conceptual Captions (CC) (Sharma et al.,
2018), SBU Captions (SBU) (Ordonez et al., 2011),
MSCOCO Captions (COCO) (Chen et al., 2015),
and Visual Genome (VG) (Krishna et al., 2017).
The total numbers of the unique images and image-
caption pairs in the combined training data are 4M
and 9M. Table 8 describes the hyperparameters for
pre-training the ManagerTower. The learning rate
of the cross-modal encoder is five times higher than
that of uni-modal encoders (Dou et al., 2022).

A.2 Fine-Tuning on Downstream Tasks
Dataset Setting. Standard settings and splits are
used for all datasets. For Flickr30K dataset (Young
et al., 2014), we follow the standard Karpathy
Split (Karpathy and Li, 2015). For VQAv2 (Goyal
et al., 2017) dataset, we follow the common prac-
tice (Goyal et al., 2017; Teney et al., 2018): convert
VQAv2 to a classification task with 3, 129 answer
classes; train the model with training data and vali-
dation data, and evaluate the model on the Test-Dev
and Test-Std data.

Image Augmentation. We follow previous
works (Li et al., 2021a, 2022a) to use RandomRe-
sizedCrop, RandomHorizontalFlip, and RandAug-
ment (Cubuk et al., 2020) to augment the images.

Fine-Tuning Strategy. For visual question an-
swering, visual entailment and visual reasoning,
the fine-tuning strategy is similar to the strategy
we used in ITM. For image-text retrieval, we fol-
low the approach used in ALBEF (Li et al., 2021a)
to optimize our model with both image-text con-
trastive (ITC) and ITM objectives. In the training
phase, we first add two linear projections on top
of the uni-modal encoders and calculate the con-
trastive similarity of uni-modal representations of
image-text pairs by dot product to compute the
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Figure 9: A visualization of aggregation weights of textual and visual SAE managers in each cross-modal layer.
The X-axis is the index of the uni-modal expert, and the legend shows the index of the cross-modal layer.
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Figure 10: A visualization of aggregation weights of textual and visual AAUE managers in each cross-modal layer.
The X-axis is the index of the uni-modal expert, and the legend shows the index of the cross-modal layer.

Visual Textual VQAv2 Test-Dev Flickr30K RMEAN

Backbone Backbone BridgeTower ManagerTower BridgeTower ManagerTower
DeiT B-224/16 RoBERTa 71.22 72.20 (↑ 0.98) 87.63 88.72(↑ 1.09)

ViT B-224/16 RoBERTa 72.82 73.67 (↑ 0.85) 90.48 90.92(↑ 0.44)
ViT B-384/16 RoBERTa 72.94 73.80 (↑ 0.86) 90.51 90.96(↑ 0.45)

CLIP-ViT B-224/32 RoBERTa 73.73 74.79 (↑ 1.06) 91.33 91.76(↑ 0.43)
CLIP-ViT B-224/16 BERT 75.74 76.36 (↑ 0.62) 92.84 93.42(↑ 0.58)
CLIP-ViT B-224/16 RoBERTa 75.91 76.65 (↑ 0.74) 93.33 93.97(↑ 0.64)

Table 5: Performance of BridgeTower and ManagerTower with different visual and textual backbones. B, N and M
in “ViT B-N/M” denote the model size, image resolution and patch size, respectively.

ITC loss. Formerly, negative image-text pairs in
ITM loss are sampled randomly. However, after
computing the ITC loss, we can use contrastive
similarity distribution to sample one hard in-batch
negative text (image) for each image (text) in a
mini-batch. In the inference phase, we first com-
pute the contrastive similarity for all images and
texts, and then select the top-k candidates based on
their contrastive similarity. We then calculate their
ITM scores for these candidates to determine the
final ranking.

Fine-Tuning Settings. Similar to the image-text
matching (ITM) pre-training objective, we pass
the final representation of [class] token and
[<s>] token to the non-linear layer activated by
Tanh, and feed the concatenation of the output
into a linear classifier (Flickr30K) or an MLP
classifier(VQAv2, SNLI-VE and NLVR2). We
apply cross-entropy loss for SNLI-VE, NLVR2

and Flickr30K and binary cross-entropy loss for
VQAv2 (Kim et al., 2021; Dou et al., 2022). Fine-

tuning hyperparameters for VQAv2, SNLI-VE,
NLVR2, and Flickr30K are given in Table 9.

B Switch Visual and Textual Backbones

We experiment with different pre-trained visual
and textual backbones as uni-modal encoders to
further investigate the impact on performance of
the managers of ManagerTower compared to the
bridges of BridgeTower. As shown in Table 5, re-
gardless of the visual and textual backbones we ap-
ply, ManagerTower significantly and consistently
outperforms BridgeTower on both datasets. This
further proves the effectiveness and generalization
of our proposed ManagerTower architecture and
managers, which can provide adaptive and effective
aggregation of multi-layer uni-modal representa-
tions for vision-language representation learning.

C Computational Budget

Table 6 shows the computational budget and
downstream task performance without VLP for
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Model
Manager Manager # Params # FLOPs Inference Time VQAv2 Flickr30K

Type Visual Query (M) (G) (ms) Test-Dev RMEAN

BridgeTowerBASE * - - 326.58 101.25 39.43±1.55 75.91 93.33
ManagerTowerBASE SAUE - 326.77 101.34 41.12±1.41 76.55 (↑ 0.64) 93.73 (↑ 0.40)
ManagerTowerBASE AAUE CV

`−1 326.77 101.35 41.80±1.05 76.52 (↑ 0.61) 93.84 (↑ 0.51)
ManagerTowerBASE AAUE CV

`−1,C
T
`−1 338.64 105.52 43.20±1.37 76.65 (↑ 0.74) 93.97 (↑ 0.64)

Table 6: Computational budget and downstream task performance without VLP for BridgeTower and ManagerTower.
* denotes our re-implementation.

BridgeTower and ManagerTower, including the
number of parameters, the number of FLoating-
Point operations (FLOPs)5. We measure the aver-
age inference time of processing 1 VQA instance
over 10K runs on 1 NVIDIA TITAN V GPU. The
sequence length is 50, and the image resolution is
384× 384. Compared with BridgeTower (1st row),
ManagerTower (4th row) uses an acceptable addi-
tional computational budget (3.69% parameters,
4.22% FLOPs, and 3.77ms inference time) and
achieves significant performance improvements of
0.74% and 3.1% on VQAv2 and Flickr30K, respec-
tively. We further analyze other well-performed
variants of ManagerTower in the 2nd and 3rd rows.
It is worth noting that the two variants share a
similar computational budget as BridgeTower, but
achieve better performance. This not only demon-
strates the efficiency and effectiveness of our Man-
agerTower architecture, but also reminds us that
the cross-modal fused query via the cross-attention
mechanism is the main reason for the additional
computational budget of ManagerTower (4th row),
as it is the only difference between the 3rd and 4th

row models. This inspires us to explore a more
efficient method to fuse CV

`−1 and CT
`−1 to get the

cross-modal fused query in the future.

D Details on Cross-Attention and
Concat-Attention Managers

Cross-Attention Managers. We implement the
standard cross-attention mechanism (Vaswani et al.,
2017) and reduce the linear projection layer for
value to save computational budget.6 Take the vi-
sual manager for example, it takes CV

`−1 ∈ RL×D

as the query, and the first token of multi-layer uni-
modal representations, i.e., V[:, 0] ∈ RN×D, as
the key. Hence, the shape of generated aggrega-
tion weights is N× L, which can be broadcast to

5We use Facebook Research’s fvcore to calculate FLOPs.
6The calculation of cross-modal fused query also uses this

simplified version of the cross-attention mechanism.

the aggregation weights WA∈RN×L×D. The fol-
lowing calculation is the same as AAUE managers
in Figure 4. The results in Table 1 show a sig-
nificant decrease compared to other managers on
Flickr30K. We leave the detailed analysis of this
phenomenon to the future work.

Concat-Attention Managers. Take the visual
manager as an example, it broadcasts CV

`−1 ∈
RL×D to RN×L×D, and concatenates it with V ∈
RN×L×D along the last dimension as the concate-
nated query. It then directly projects the query to
WA∈RN×L×D. The following calculation is the
same as AAUE managers in Figure 4. In fact, this
type of manager is different from all other man-
agers from the perspectives of the generated aggre-
gation weights. Although its aggregation weights
delve into the feature dimension of CV

`−1 and V,
the substantially increased number of parameters
and computational cost do not result in a signifi-
cant performance gain, making it impractical and
inefficient. More efficient variants of this type of
manager should be investigated in the future.

E Detailed Comparison with Previous
Arts

Due to the space limitations, we omit some base-
lines and details in Table 3. Here we provide more
details on the comparison with previous arts in Ta-
ble 7.
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Model
# Pre-train Visual VQAv2 SNLI-VE NLVR2 Flickr30K

Images Backbone Test-Dev Test-Std Dev Test Dev Test-P IR@1 TR@1
Base-size models pre-trained on 4M public data
ViLTBASE (Kim et al., 2021) 4M ViT B-384/32 71.26 - - - 75.70 76.13 64.4 83.5
UNITERBASE (Chen et al., 2020) ∗ 4M Faster R-CNN 72.70 72.91 78.59 78.28 77.18 77.85 72.52 85.90
VILLABASE (Gan et al., 2020) ∗ 4M Faster R-CNN 73.59 73.67 79.47 79.03 78.39 79.30 74.74 86.60
UNIMOBASE (Li et al., 2021b) 4M Faster R-CNN 73.79 74.02 80.00 79.10 - - 74.66 89.70
ALBEFBASE (Li et al., 2021a) ∗ 4M DeiT B-224/16 74.54 74.70 80.14 80.30 80.24 80.50 82.8 94.3
VinVLBASE (Zhang et al., 2021) 5.7M ResNeXt-152 75.95 76.12 - - 82.05 83.08 - -
METER-SwinBASE (Dou et al., 2022) 4M Swin B-384/32 76.43 76.42 80.61 80.45 82.23 82.47 79.02 92.40
VLMOBASE (Wang et al., 2021a) 4M BEiT B-224/16 76.64 76.89 - - 82.77 83.34 79.3 92.3
METER-CLIPBASE (Dou et al., 2022) 4M CLIP-ViT B-224/16 77.68 77.64 80.86 81.19 82.33 83.05 82.22 94.30
BridgeTowerBASE (Xu et al., 2022) 4M CLIP-ViT B-224/16 78.66 78.73 81.11 81.19 81.85 83.09 85.83 94.73
ManagerTowerBASE (Ours) 4M CLIP-ViT B-224/16 79.39 79.15 81.26 81.44 82.81 83.34 86.56 95.64
Models pre-trained on more data and/or with larger size
UNITERLARGE (Chen et al., 2020) ∗ 4M Faster R-CNN 73.82 74.02 79.39 79.38 79.12 79.98 75.56 87.30
VILLALARGE (Gan et al., 2020) ∗ 4M Faster R-CNN 74.69 74.87 80.18 80.02 79.76 81.47 76.26 87.90
UNIMOLARGE (Li et al., 2021b) 4M Faster R-CNN 75.06 75.27 81.11 80.63 - - 78.04 89.40
ALBEFBASE (Li et al., 2021a) ∗ 14M DeiT B-224/16 75.84 76.04 80.80 80.91 82.55 83.14 85.6 95.9
VinVLLARGE (Zhang et al., 2021) 5.7M ResNeXt-152 76.52 76.63 - - 82.67 83.98 - -
BLIPBASE (Li et al., 2022a) ∗ 14M DeiT B-224/16 77.54 77.62 - - 82.67 82.30 87.2 96.6
SimVLMBASE (Wang et al., 2021b) ? 1.8B ResNet-101 77.87 78.14 84.20 84.15 81.72 81.77 - -
BLIPBASE (Li et al., 2022a) ∗ 129M DeiT B-224/16 78.24 78.17 - - 82.48 83.08 87.3 97.3
SimVLMLARGE (Wang et al., 2021b) ? 1.8B ResNet-152 79.32 79.56 85.68 85.62 84.13 84.84 - -
VLMOLARGE (Wang et al., 2021a) 4M BEiT L-224/16 79.94 79.98 - - 85.64 86.86 84.5 95.3
SimVLMHUGE (Wang et al., 2021b) ? 1.8B Larger ResNet-152 80.03 80.34 86.21 86.32 84.53 85.15 - -

Table 7: Comparisons with previous models on various downstream VL tasks. The best score is bolded. B, N and M
in “ViT B-N/M” denote the model size, image resolution and patch size, respectively. ∗ indicates that the model
also uses VG-QA data to fine-tune on VQAv2. ? denotes the model is trained from scratch. “# Pre-train Images”
denotes the number of unique images used in VLP.
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Hyperparameters ManagerTower
Number of Layers 6

Hidden size 768

FFN inner hidden size 3, 072

Number of Attention heads 12

Dropout Ratio 0.1

Attention dropout 0.1

Total Steps 100k
Batch Size 4, 096

Optimizer AdamW

Learning Rate 1e−5

Learning Rate Decay Linear

Weight Decay 0.01

Warmup Steps 10k
Adam ε 1e−8

Adam β1 0.9

Adam β2 0.98

Center-Crop 3

Random Resized Crop 7

Random Augmentation 7

Random Horizontal Flipping 7

Textual Encoder RoBERTaBASE

Visual Encoder CLIP-ViT B-224/16
Patch Size 16

Image Resolution for VLP 288

Table 8: Hyperparameters for pre-training. The first block is the hyperparameters for the cross-modal encoder.

Hyperparameters VQAv2 SNLI-VE NLVR2 Flickr30K
Total Epochs 10 4 5 20

Batch Size 576 64 256 512

Optimizer AdamW AdamW AdamW AdamW

Learning Rate 9e−6 3e−6 1.4e−5 6e−6

Learning Rate Decay Linear Linear Linear Linear

Weight Decay 0.06 0.01 0.01 0.01

Warmup Ratio 0.06 0.06 0.1 0.1

Adam ε 1e−8 1e−8 1e−8 1e−8

Adam β1 0.9 0.9 0.9 0.9

Adam β2 0.98 0.98 0.98 0.98

Center-Crop 7 7 7 7

Random Resized Crop 3 3 3 3

Random Augmentation 3 3 3 3

Random Horizontal Flipping 7 3 3 3

Textual Encoder RoBERTaBASE RoBERTaBASE RoBERTaBASE RoBERTaBASE

Visual Encoder CLIP-ViT B-224/16 CLIP-ViT B-224/16 CLIP-ViT B-224/16 CLIP-ViT B-224/16
Patch Size 16 16 16 16

Image Resolution for FT 576 384 384 384

Loss Function BCE CE CE CE

Table 9: Hyperparameters for fine-tuning ManagerTower on various downstream VL tasks. FT denotes fine-tuning.
CE and BCE are short for cross-entropy loss and binary cross-entropy loss, respectively.
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