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Abstract

Cross-domain Aspect-Based Sentiment Analy-
sis (ABSA) aims to leverage the useful knowl-
edge from a source domain to identify aspect-
sentiment pairs in sentences from a target do-
main. To tackle the task, several recent works
explore a new unsupervised domain adapta-
tion framework, i.e., Cross-Domain Data Aug-
mentation (CDDA), aiming to directly generate
much labeled target-domain data based on the
labeled source-domain data. However, these
CDDA methods still suffer from several is-
sues: 1) preserving many source-specific at-
tributes such as syntactic structures; 2) lack of
fluency and coherence; 3) limiting the diver-
sity of generated data. To address these issues,
we propose a new cross-domain Data Augmen-
tation approach based on Domain-Adaptive
Language Modeling named DA2LM, which
contains three stages: 1) assigning pseudo la-
bels to unlabeled target-domain data; 2) unify-
ing the process of token generation and label-
ing with a Domain-Adaptive Language Model
(DALM) to learn the shared context and an-
notation across domains; 3) using the trained
DALM to generate labeled target-domain data.
Experiments show that DA2LM consistently
outperforms previous feature adaptation and
CDDA methods on both ABSA and Aspect Ex-
traction tasks. The source code is publicly re-
leased at https://github.com/NUSTM/DALM.

1 Introduction

As an important task in sentiment analysis, Aspect-
Based Sentiment Analysis (ABSA) aims to extract
aspect terms from sentences and predict the senti-
ment polarity towards each aspect term (Liu, 2012;
Pontiki et al., 2016). For example, given a sentence
“The screen is broken", the aspect term is screen
and its sentiment polarity is Negative. With the ad-
vancements of deep learning techniques, a myriad
of neural approaches have been proposed for ABSA

*Equal contribution.
t Corresponding author.

a) MLM-based Cross-Domain Data Augmentation
Masked source data (Restaurant): Generated target data (Laptop):
panang duck lass touchpad ..
e o e s 90 o
Order the [MASK] [MASK] siiver }
it's fantastic.
b) Seq2Seqg-based Cross-Domain Data Augmentation

Masked source data ): Generated target data (Laptop):

The laptop was pretty great .
0 BASP O O B-OPO

pizza
H Encoder Decoder
The [MASK] was pretty great .

O B-ASP O O B-OPO

c) DALM-based Cross-Domain Data Augmentation (Ours)
Generated target data (Laptop):

II II Train (| T
b | Decoder Toshiba will not acknowledge
Labeled source  Pseudo-labeled this [aptop ... as a repair.

data (Restaurant) _ data (Laptop)

Figure 1: Comparison between different Cross-Domain Data
Augmentation (CDDA) methods.

and achieved promising results on several bench-
mark datasets (Li et al., 2019a; He et al., 2019;
Chen and Qian, 2020b). However, these methods
heavily rely on labeled data with fine-grained anno-
tation, which is often time-consuming and expen-
sive to obtain for many emerging domains.

To alleviate the reliance on labeled data, many
previous works resorted to unsupervised domain
adaptation techniques, which aim to transfer knowl-
edge from a resource-rich source domain to a tar-
get domain only with unlabeled data (Blitzer et al.,
2007; Pan et al., 2010; Zhuang et al., 2015). Most
existing domain adaptation methods on the ABSA
task focus on learning shared feature representa-
tions across domains (Wang and Pan, 2018; Li et al.,
2019c; Gong et al., 2020; Chen and Qian, 2021).
Although these methods have obtained promising
results, their models are only trained on the source-
domain labeled data and thus insensitive to the
important target-specific aspect and opinion terms.

To address this limitation, several recent stud-
ies have explored a new domain adaptation frame-
work named Cross-Domain Data Augmentation
(CDDA), which aims to directly generate much
target-domain labeled data based on the labeled
data from the source domain. These existing meth-
ods can be summarized into two groups: Masked
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Language Model (MLM)-based CDDA (Yu et al.,
2021; Yang et al., 2022) and Sequence-to-Sequence
(Seq2Seq)-based CDDA (Chen et al., 2021; Li
et al., 2022). As shown in Fig. 1(a) and Fig. 1(b),
the core idea behind existing CDDA methods is
to first mask source-specific words in the source-
domain labeled data, followed by using either the
well-trained MLM or Seq2Seq models to automat-
ically generate target-specific words and labels in
the masked positions. Despite achieving significant
improvements over previous feature adaptation
methods, these CDDA approaches still have several
shortcomings: 1) they only mask source-specific
words or phrases but preserve other source-specific
attributes such as syntactic structures, which make
the distribution of the generated data different from
that of the real target-domain data; 2) replacing
source-specific words with target-specific words
may destruct the semantic meaning of the original
sentence, making the generated data lack of fluency
and coherence; 3) existing CDDA methods regard
each source-domain sentence as the template, thus
limiting the diversity of the generated data.

To tackle these shortcomings, we propose a new
cross-domain Data Augmentation approach based
on Domain-Adaptive Language Modeling named
DAZLM, which consists of three stages, includ-
ing Domain-Adaptive Pseudo Labeling, Domain-
Adaptive Language Modeling, and Target-Domain
Data Generation. Specifically, the labeled source
data and unlabeled target data are first leveraged
to train a base domain adaptation model, which
is then used for predicting pseudo labels of un-
labeled data in the target domain. Secondly, we
design a novel Domain-Adaptive Language Model
(DALM), and train it on the labeled source data and
pseudo-labeled target data to learn the transferable
context and label across domains. Different from
most existing LMs, our DALM unifies the process
of data generation and fine-grained annotation, aim-
ing to simultaneously generate the next token and
predict the label of the current token at each time
step of the training stage. Finally, given the trained
DALM, we employ it to generate many labeled
target-domain data in an autoregressive manner
with a probability-based generation strategy.

Our main contributions can be summarized as
follows:

* We propose a three-stage framework named
cross-domain Data Augmentation with Domain
Adaptive Language Modeling (DA?LM), which

can generate a large amount of labeled target-
domain data for the cross-domain ABSA task.

¢ Under the framework, we devise a new domain-
adaptive language model, which unifies the pro-
cess of data generation and labeling and captures
the domain-invariant context and annotation for
target-domain data generation.

» Experiments on four benchmark datasets demon-
strate that our framework significantly outper-
forms a number of competitive domain adapta-
tion methods on both ABSA and Aspect Extrac-
tion (AE) tasks. Further analysis on generated
data shows the superiority of our framework in
terms of data distribution, diversity, and fluency.

2 Related Work

2.1 Aspect-Based Sentiment Analysis (ABSA)

As an important task in sentiment analysis, ABSA
has been extensively studied in the last decade. Ear-
lier works mainly focus on two subtasks of ABSA,
i.e., aspect extraction (AE) (Liu et al., 2015; Chen
and Qian, 2020a) and aspect-based sentiment clas-
sification (ASC) (Zhang et al., 2016; Chen et al.,
2017; Sun et al., 2019; Wang et al., 2020). Re-
cently, many supervised methods are proposed to
solve the two sub-tasks in an end-to-end manner,
which either resort to multi-task learning to ex-
ploit the relations between AE and ASC (Luo et al.,
2019; He et al., 2019; Chen and Qian, 2020b) or
employ a collapsed tagging scheme to combine
AE and ASC into a unified label space and formu-
late the task as a sequence labeling problem (Wang
et al., 2018; Li et al., 2019a,b). Despite obtaining
promising results on several benchmark datasets,
these methods suffer from the lack of annotated
data in many emerging domains. To alleviate this
issue, we aim to propose an unsupervised domain
adaptation method to generate sufficient labeled
data for ABSA in any target domain.

2.2 Unsupervised Domain Adaptation

In the literature, a myriad of unsupervised domain
adaptation methods have been proposed for coarse-
grained sentiment analysis (Zhuang et al., 2020),
including pivot-based methods (Blitzer et al., 2007;
Yu and Jiang, 2016; Ziser and Reichart, 2018; Xi
et al., 2020), auto-encoders (Glorot et al., 2011;
Zhou et al., 2016), domain adversarial networks
(Ganin and Lempitsky, 2015; Ganin et al., 2016;
Liet al., 2018), and semi-supervised methods (He
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et al., 2018; Ye et al., 2020). These methods pri-
marily focus on learning domain-invariant repre-
sentations to alleviate the distribution discrepancy
across domains. Inspired by the success of these
representation-based methods, a few recent stud-
ies have adapted them to the cross-domain ABSA
task, in which the key idea is to learn a shared
representation for each word or aspect term across
domains (Ding et al., 2017; Wang and Pan, 2018,
2019, 2020; Liet al., 2019c; Zeng et al., 2022; Chen
and Qian, 2022). Moreover, Lekhtman et al. (2021)
proposed a customized pre-training approach with
aspect category shift for the aspect extraction task.

Despite obtaining promising results, the major
limitation of these aforementioned methods for
cross-domain ABSA is that their models for the
main ABSA task is solely trained on the source-
domain labeled data. Thus, their models are insen-
sitive to target-specific features. To address this
issue, some studies have explored a Cross-Domain
Data Augmentation framework (CDDA) to directly
generate much target-domain labeled data, includ-
ing MLM-based CDDA (Yu et al., 2021; Yang
et al., 2022) and Seq2Seq-based CDDA (Chen
et al., 2021; Li et al., 2022). However, the gen-
erated data by these methods has several limita-
tions including 1) preserving many source-specific
attributes such as syntactic structures; 2) lack of
fluency and diversity. Thus, in this work, we aim
to propose a new data augmentation framework
that can generate fluent target-domain labeled data
without any source-specific attributes.

3 Methodology

3.1 Problem Definition and Notations

Following previous studies (Li et al., 2019¢c), we
formulate ABSA and AE as a sequence label-
ing problem. Given a sentence with n words
x = {wy,ws,...,w,}, the goal is to predict its
corresponding label sequence y = {y1, Y2, ..., Yn}»
where y; € {B-P0S, I-P0S, B-NEG, I-NEG, B-NEU,
I-NEU, 0} for ABSA and y; € {B,I,0} for AE.

In this work, we focus on the unsupervised do-
main adaptation setting, in which the source do-
main has enough labeled data and the target domain
only has unlabeled data. Let D% = {(z%, y$)} Y,
denote a set of source-domain labeled data, and
DT = {x! f\gl a set of target-domain unlabeled
data. The goal is to leverage D° and DT to pre-
dict the label sequences of test data from the target
domain.

3.2 Overview

As illustrated in Figure 2, our Cross-Domain Data
Augmentation framework contains three key stages,
including 1) Domain-Adaptive Pseudo Labeling,
2) Domain-Adaptive Language Modeling, and 3)
Target-Domain Data Generation. In the first stage,
an aspect-aware domain adaptation model is trained
to assign pseudo labels to unlabeled data in the tar-
get domain. In the second stage, the labeled source
data and the pseudo-labeled target data are used
to train a domain-adaptive language model, which
integrates data generation and sequence labeling
in a unified architecture to capture the transfer-
able context and annotation across domains. After
training the DALM, the last stage uses probability-
based generation strategy to generate diverse target-
domain data with fine-grained annotations in an
autoregressive manner.

3.3 Domain-Adaptive Pseudo Labeling

In this stage, our goal is to assign the pseudo la-
bels to each unlabeled data in the target domain.
Since the data distribution of the source domain is
different from that of the target domain, directly
training a classifier on the labeled source data to
predict the pseudo labels of the unlabeled target
data will bring much noise. Thus, it is necessary
to alleviate the domain discrepancy to improve the
quality of pseudo-labels. Since aspect terms are
shown to play a crucial role in ABSA (Gong et al.,
2020), we attempt to explicitly minimize the dis-
tance between source-domain and target-domain
aspect term representations via Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012).

Specifically, given the labeled source data D°
and the unlabeled target data DT, we first obtain
the aspect terms in D° via the gold labels and
extract the aspect terms in D7 based on a rule-
based algorithm named Double Propagation (Qiu
et al., 2011). Let us use = = {w?d, wg,...,wl}
to denote a source or target domain sentence and
use a? = {w?, ...,wjl} to denote one of the as-
pect terms in the sentence, where d € {s,t}. We
then employ a pre-trained BERT model to obtain
the hidden representation of the sentence H? =
{h{,hg, ..., h?} and the aspect term representation
a? = g(h{, ...,h;-l), where h? € R", r refers to
the hidden dimension, and g(-) denotes the mean-
pooling operation. Next, we propose an aspect-
level MMD loss to alleviate the distribution dis-
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Figure 2: Overview of cross-domain Data Augmentation with Domain-Adaptive Language Modeling (DAZLM).
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where Das and D! respectively denote the sets of
aspect term representations in the source domain
and the target domain, N2 and N refer to the num-
ber of aspect terms in the two domains, and k()
denotes the Gaussian Kernel function.
Meanwhile, for each source sample, the hidden
representation H? is fed into a Conditional Random
Field (CRF) layer to predict the label sequence for
the ABSA or AE task p(y*|H?®). The goal is to
minimize the negative log-probability of the correct
label sequence of each source-domain sample:
NS
Lot =~ logp(y;[H;). (1)
i=1
The CREF loss for the ABSA or AE task and the
aspect-level MMD loss are combined to train the
base model Cy:

L = Lot + aLinmd, (2)

where « is the hyper-parameter.
Finally, we use C} to assign pseudo labels
to each sample in DT, and obtain DFT =

t . ptyy N
{7 H

3.4 Domain-Adaptive Language Modeling

To generate a large amount of target-domain la-
beled data with diverse syntactic structures, we
propose a Domain-Adaptive Language Model
(DALM), which leverages the labeled source data
DS and the pseudo-labeled target data D7 to learn
the shared distribution of words and labels across
domains. Since our DALM unifies the process of
word generation and sequence labeling, at each
time step, we employ the current input token and
the predicted label at the previous step to simulta-
neously maximize the probabilities of predicting
the next token and the label of the current token.

Specifically, for each sample (x,y) € D U
DPT | we first construct an input token se-
quence, in which we insert a special token
(BOS) to denote the sentence beginning, fol-
lowed by a domain-specific token (i.e., [source]
or [target]) to distinguish the domain that x be-
longs to. Let @i, = {(BOS), wo, w1, wa, ..., wy }
denote the expanded input sentence, where
wo € {[source], [target]}. Moreover, we con-
struct another input label sequence, denoted
by yin = {(BOL),yos)s ¥0: Y1,Y2; s Yn—1}s
where (BOL) denotes the initial state of the la-
bel sequence, yos) 18 0, and y; refers to the
label of w;. According to the input, the out-
put token sequence is oy = {wo, w1, W2, ..., Wy,
(EOS)}. The output label sequence is y,, =

{?J(BOS)ﬁUOa Y1, Y2, - yn} The tOp of Figure 2
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shows an example of two input and two output
sequences for a sample from the source domain.

Next, for the input token sequence xj,, we em-
ploy a decoder such as LSTM and the pre-trained
GPT-2 model (Radford et al., 2019) to get its hid-
den representation as follows:

w
,e,, = Decoder(w_1, wg, wy, ...

w w
e’ ey, ... , W),

where w_1 denotes (BOS), e’ € R? is the token
representation, and d is the hidden dimension. For
the input label sequence y;,, a label embedding
layer is used to get the label representation:
e’,,...,e’ | = LabelEmb(y_2,Y_1, ..., Yn—1),

where y_2 and y_; denote (BOL) and ygos), and
e/ € R Next, at each time step ¢, we add ey
and e]_; to produce a token and label-aware repre-
sentation (i.e., e; = e}’ + etyfl), which is then fed
into two different full-connected softmax layers to
predict the probabilities of the next token wy41 and
the label y; as follows:

P(wi1|w<s, y<i—1) = o(Wyer + by),  (3)
P(yilw<i, y<i—1) = oc(Wyer + by),  (4)

where o is the softmax function, and W, €
RWVelxd W, € RIVvIxd and |V,| and |V, | are the
vocabulary size and the label size. For each sample
(x,y) € DY UDPT, we optimize the parameters
for DALM by minimizing the combination of cross
entropy losses for the output token sequence and
label sequence as follows:

L=Ly+ Ly, 5)

Ly=— Y logP(wiii|lwes,y<i—1), (6)
t=—1

n
L,=— Z log P (y¢|w<t, Y<i—1)- 7
t=—1

3.5 Target-Domain Data Generation

After training the DALM, we employ it to generate
target-domain data with fine-grained annotations in
an autoregressive manner. As shown in the bottom
of Figure 2, the (BOS) token and the target-specific
token [target| are fixed as the first two input tokens
of the DALM, and (BOL) and O are fixed as the
first two input labels. Next, we adopt a probability-
based generation strategy to generate the following
tokens and their corresponding labels.

At each time step ¢, we first rank all the tokens
in V,, based on the probabilities computed by Eq. 3
and pick top-k tokens as a candidate set Cy41. We
then sample a token w; 1 from C, 1 as the next to-
ken. As the candidate tokens in Cy are predicted
with higher probabilities, the generated data are
generally fluent and close to the real target-domain
data. Moreover, given the same context, the DALM
can choose a synonym as the next token due to the
randomness of sampling, which is conducive to
diversifying the generated data.

Next, for the label generation at each time step ¢,
we directly select the label with the highest proba-
bility computed by Eq. 4 as the label of the current
token ¢, which can ensure the quality of the gener-
ated label sequence.

The above process of token generation and label-
ing will be stopped when the next token is predicted
as (EOS). Because of the randomness brought by
sampling, the trained DALM can be used to gener-
ate any amount of labeled data. However, generat-
ing more data may lead to significant vocabulary
redundancy of generated data. Thus, once the size
of generated data equals to N9, we will stop gener-
ating target-domain labeled data.

3.6 Generated Data Filtering

To mitigate the presence of low-quality labels in the
target data generated from the probability-based
generation strategy, we introduce the following
steps for generated data filtering: 1) Delete data
with the illogical labels that violate the prefix order
of the BIO tagging schema (e.g., having O before
I in the AE task and having B-Positive before I-
Neutral in the ABSA task); 2) Delete repetitive
data whose token and label sequences are the same,
and only keep one of the duplicate samples; 3) Use
the base model Cj, in Section 3.3 to predict the la-
bel sequences of the generated sentences and delete
data whose label sequences are different from those
predicted by C,.

Let us use DY = {(z7, y?)}1¥| to denote the set
of generated target-domain data. We then train a
standard BERT-CRF model (Li et al., 2019b) on
DY, and use it to predict the label sequences of test
data from the target domain.

4 Experiments

4.1 Experimental Settings

Datasets. To evaluate the effectiveness of the
proposed DA?LM framework, we conduct experi-
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Dataset Sentences  Training  Testing
Laptop (L) 3845 3045 800
Restaurant (R) 6035 3877 2158
Device (D) 3836 2557 1279
Service (S) 2239 1492 747

Table 1: Basic statistics of the datasets.

ments on four benchmark datasets, namely Laptop
(L), Restaurant (R), Device (D), and Service (S), as
shown in Table 1. L contains data from the laptop
domain in SemEval 2014 (Pontiki et al., 2014). R
is the union set of the restaurant data from SemEval
2015 (Pontiki et al., 2015) and SemEval 2016 (Pon-
tiki et al., 2016). D contains device data about 5
digital products (Hu and Liu, 2004). S contains
data from web services (Toprak et al., 2010).

Evaluation. Following (Li et al., 2019¢c), we
choose 10 different source — target domain pairs
for experiments. L — D and D — L are removed
since the two domains are very similar. For each
cross-domain pair, DA?’LM generates sufficient
target-domain labeled data and then directly trains
a BERT-CRF classifier on the generated target-
domain data. We evaluate the model predictions
based on Micro-F1 under the exact match, which
means that the predicted aspect-sentiment pairs are
considered as correct only if they exactly match
with the gold aspect-sentiment pairs.

Parameter Setting. For the BERT-CRF model
used in DA’LM, we employ a domain-specific
BERT-base model named BERT-Cross (Xu et al.,
2019), which was post-trained on a large amount
of Yelp and Amazon Electronic data (He and
McAuley, 2016). For Domain-Adaptive Pseudo La-
beling, the hyper-parameter « in Eq. 2 is set as 0.01,
and we adopt the Adam algorithm with a learn-
ing rate of 3e-5 to optimize the parameters. For
Domain-Adaptive Language Modeling, we fine-
tune the LSTM and the pre-trained language model
GPT-2 (Radford et al., 2019) on DS U DFT, and
using the Adam algorithm as the optimizer with
a learning rate of 3e-3 and 3e-4 respectively. For
Target-Domain Data Generation, we choose the
top-k tokens (i.e., k=100) as the candidate set and
the maximum number of generated data N9 is set
to 10000 in token-sampling generation. All the ex-
periments are run on a single Nvidia 1080Ti GPU.

4.2 Main Results

To show the effectiveness of our DA’LM ap-
proach, we consider the following competitive do-
main adaptation comparison systems for the cross-

domain ABSA task.

« BERT-NoDA (Kenton and Toutanova, 2019):
a baseline system without domain adaptation,
which directly fine-tunes a BERT-base model
on labeled source-domain data.

BERT-Cross (Xu et al., 2019): a domain-
adaptive BERT-CRF model, in which the BERT-
base model was post-trained on a myriad of E-
commerce data and the full model is fine-tuned
on labeled source-domain data.

UDA (Gong et al., 2020): a unified domain adap-
tation approach that integrates feature-based

and instance-based adaptation for cross-domain
ABSA.

FMIM (Chen and Wan, 2022): a feature-
based domain adaptation method, using the fine-
grained mutual information maximization tech-
nique.

CDRG (Yu et al., 2021): a cross-domain re-
view generation approach that exploits each la-
beled source-domain review to generate a la-
beled target-domain review based on masked
language models.

GCDDA (Li et al., 2022): a generative cross-
domain data augmentation framework that lever-
ages a pre-trained sequence-to-sequence model
BART to generate target-domain data with fine-
grained annotation.

The comparison results on the cross-domain
ABSA and AE task are reported in Table 2. For
our proposed framework, we present the results
of both LSTM and GPT-2-based DA2LM. We can
observe that our framework generally achieves the
best performance on most cross-domain pairs and
DAZLM outperforms the state-of-the-art method
by 1.86% and 0.90% on average for the ABSA and
AE task respectively. We conjecture the reasons
as follows. First, DA’LM can directly generate
numerous high-quality target domain labeled data,
thereby overcoming the sensitivity to source data
in feature-based domain adaptation methods. Sec-
ond, there is still a considerable distribution dis-
crepancy between the generated data in previous
cross-domain data augmentation methods and the
real target-domain data because these methods pre-
serve source-specific attributes such as syntactic
structures. Moreover, since previous cross-domain
data augmentation methods are based on the word
replacement technology, the fluency and diversity
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Tasks | Methods SSR_SoL SD R3S RoL R-D L3S LR | DS DR ] AVE
BERT-NoDA 4985 33.08 3597 | 27.63 32.69 3245 | 27.77 3738 | 31.87 42.74 | 35.14
BERT-Cross 5136 3433 36.28 | 2638 4242 40.82 | 2835 4991 | 27.31 47.92 | 3851
UDA 5204 3541 3806 | 30.76 46.00 40.81 | 3034 49.97 | 33.28 50.72 | 40.74

ABSA | FMIM 4946 31.83 3246 | 40.59 39.26 33.11 | 41.61 57.02 | 40.76 55.68 | 42.21
CDRG 5293 3333 36.14 | 43.07 4470 30.82 | 4151 57.77 | 4030 53.18 | 43.38
GCDDA 55.66  36.53  36.87 | 3207 47.79 4035 | 27.22 5050 | 28.52  49.47 | 40.50
DA’LM (LSTM) | 56.26 36.54 39.80 | 40.38 4249 40.55 | 3593 5947 | 33.55 57.28 | 4422
DA’LM (GPT-2) | 58.64 3697 40.28 | 4044 4291 41.28 | 36.84 60.39 | 35.75 58.98 | 45.24
BERT-NoDA 5772 4033 39.69 [ 3121 3838 35.15 | 3144 4111 | 3446 45.79 | 39.53
BERT-Cross 5808 4047 39.89 | 2774 5149 4252 | 30.84 54.96 | 28.69 5097 | 42.57
UDA 57.98 4244 4024 | 3529 57.58 43.07 | 33.96 54.79 | 3578 53.85 | 45.50

AE | FMIM 5743 39.14 3526 | 47.60 50.57 36.11 | 51.68 68.67 | 49.53 61.64 | 49.76
CDRG 60.20 39.49 3859 | 49.97 5550 34.89 | 51.07 68.63 | 43.19 57.51 | 49.90
GCDDA 63.53 4395 39.16 | 35.69 64.06 44.25 | 3031 58.00 | 30.74 5370 | 46.34
DA’LM (LSTM) | 63.63 4439 42.39 | 4338 57.12 43.64 | 3944 67.24 | 36.16 62.66 | 50.00
DA’LM (GPT-2) | 65.78 44.96 43.24 | 4341 5455 44.29 | 41.06 68.72 | 38.20 63.86 | 50.80

Table 2: Main results for Cross-Domain ABSA and AE based on Micro-F1. All results are based on our re-implementation.

of generated data in these methods are inferior to
our DA?LM approach.

In addition to the above observations, Table
2 shows that LSTM-based DA?LM is similar to
GPT-2-based DA%LM and also outperforms previ-
ous domain adaptation methods on average, which
implies that our cross-domain data augmentation
framework is robust and does not rely on the pre-
trained language model.

Furthermore, as shown in Table 1 and Table 2,
the proposed model underperforms several baseline
systems when the source/target sample size ratio
is larger than 1 (e.g., R - S, L - S,D —+ S, R
— L). We believe the reason of the performance
drop is as follows: when the number of target-
domain data is less than that of source-domain data,
it will inevitably lead the Domain-Adaptive Lan-
guage Model (DALM) to pay more attention to
source-domain data instead of target-domain data.
Hence, in the target-domain data generation pro-
cess, the trained DALM may still generate source-
specific words, and thus bring negative effects to
the final performance.

4.3 Ablation Study

To explore the effects of each component in
DA?LM, we show the results of our ablation study
in Table 3.

Firstly, after removing the aspect-level MMD
loss in the domain-adaptive pseudo labeling
(DAPL) stage, the average performance on 10
cross-domain pairs drops dramatically, which in-
dicates that it is important to alleviate the domain
discrepancy via the MMD loss in DAPL. Secondly,
removing the domain-adaptive language modeling

Methods [ ABSA | AE

DAZLM 45.24 | 50.80
- w/o MMD loss in DAPL 3944 | 43.57
- w/o DALM & DG 42.53 | 48.03
- w/o source-domain data in DALM | 43.82 | 50.16
- w/o malposed generation 42.82 | 48.23
- replace DALM with DAGA 4423 | 50.40

Table 3: Ablation studies of each component in DA?LM.
DAPL, DALM, and DG respectively denote Domain-Adaptive
Pseudo Labeling, Domain-Adaptive Language Modeling, and
target-domain Data Generation. Ablation without malposed
generation means that the next token and label are generated
simultaneously in one time step.

(DALM) and target-domain data-generation (DG)
stages decreases the average F1 score by 2.71 ab-
solute percentage points. This shows that automati-
cally generating a large amount of target-domain
labeled data plays an indispensable role in our
DAZLM framework. Thirdly, for the training of
DALM, the removal of source-domain labeled data
also leads to a significant drop in the average F1
score. This implies that the source-domain data
is indeed helpful for capturing domain-invariant
context and annotation.

Moreover, we remove the malposed generation
strategy, which means it does not take the current
token into account when predicting the label of the
current token. As shown in Table 3, the perfor-
mance of DA?LM drops dramatically since it gen-
erates low-quality label sequences. Lastly, because
a language model-based data augmentation method
DAGA (Ding et al., 2020) has shown success in
standard in-domain ABSA tasks, we propose to
replace DALM in our DA?LM framework with a
variant of DAGA, i.e., a language model trained
on source and target-domain data with linearized
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Criterion | Methods | S*R_S—L S»D | R—»S R-L R-D [ LS LR | DS DR | AVE
CDRG | 0.133 0.134 0.146 | 0250 0235 0289 | 0.229 0.193 | 0.293 0.264 | 0.2165

Diversity | GCDDA | 0226 0203 0207 | 0236 0.208 0.227 | 0247 0241 | 0.297 0.266 | 0.2362
DA’LM | 0.275 0309 0.354 | 0472 0269  0.374 | 0.416 0.252 | 0.503 0.257 | 0.3487

CDRG | 5838 611.0 4842 9718 11069 9715 | 5675 6209 | 6254 697.0 | 724.00

Perplexity | GCDDA | 2449 2152 217.8 | 806.0 782.0 763.8 | 469.1 392.0 | 442.9 480.0 | 481.35
DA’LM | 3628 237.4 2149 | 1821 257.8 254.9 | 204.8 389.8 | 200.6 360.3 | 266.53

Source | 0.733 0.651 0.650 | 0.724 0.634 0.763 | 0.657 0.091 | 0.624 0.693 | 0.6819

Mvp | CDRG | 0603 0697 0576 | 0.604 0552 0.631 | 0.631 0622 | 0.556 0617 | 0.6088
GCDDA | 0.800 0.541 0559 | 0772 0.547 0561 | 0.759 0.567 | 0.603 0.600 | 0.6310

DA’LM | 0.560 0.566 0.498 | 0.548 0.487 0.559 | 0.597 0.533 | 0.677 0.535 | 0.5564

Table 4: Comparison results between the generated data in DA2LM and those in CDRG and GCDDA.

Source Data Source Data
Torget Data Target Data
Generated Data in CORG Generated Data in GCDDA

Methods [ ABSA [ AE
DAZLM 45.24 | 50.80
UDA 40.74 | 45.50
DA2LM-UDA 42.02 | 47.30
FMIM 3931 | 49.26
DAZLM-FMIM | 45.94 | 53.79
CDRG 4338 | 49.90
v DAZLM-CDRG | 45.71 | 52.99

Figure 3: Visualization of the distribution discrepancy between the generated
data in different methods and the source/target-domain data on a cross-domain

pair S — R. Each point represents a sample.

labels before each aspect term. For fair comparison,
we also employ GPT-2 (Radford et al., 2019) as the
pre-trained language model. As shown at the bot-
tom of Table 3, replacing DALM with DAGA leads
to a moderate performance drop, which proves the
importance of DALM in our DA2LM approach.

4.4 Evaluation on Generated Data

In this subsection, we conduct additional experi-
ments to evaluate the quality of data generated by
DAZLM and report the performance in Table 4.

Diversity. Diversity denotes the percentage of
unique aspect terms in all aspect terms. The results
in Table 4 clearly show that DA’LM can gener-
ate more aspect terms since other methods need
to regard source-domain sample as the template.
Moreover, our framework employs a probability-
based sampling strategy to generate the next token,
which can improve the diversity of generated aspect
terms.

Perplexity. To evaluate the coherence of gener-
ated data, we further calculate the perplexity' of
data generated from each compared method based
on a pre-trained language model GPT-2.2 In the
fourth to sixth rows of Table 4, it is clear to see

"https://huggingface.co/spaces/
evaluate-measurement/perplexity

Note that different from Li et al. (2022) which uses 2 as
the base of the exponential function, we employ e as the base.

Table 5: Average results of replacing
our base model in DAPL with existing
domain adaptation methods.

that the perplexity of our DA?LM framework is
significantly lower than that of other methods. This
shows that for MLM-based and Seq2Seq-based
CDDA methods, simply replacing source-specific
attributes with target-specific attributes may break
the syntactic structure of the original sentence and
thus the generated sentences are not coherent. In
contrast, our DA?LM framework relies on language
modeling to automatically generate tokens and their
corresponding labels in an autoregressive manner.
Maximum Mean Discrepancy (MMD). MMD
is used to measure the distribution distance between
the generated data in different methods and the real
target-domain test data. The results in the last four
rows show that the generated data in DA?LM are
much closer to the target domain than other meth-
ods, which indicates DA?’LLM can generate more
authentic target-domain data and better alleviate
the distribution discrepancy across domains.
Visualization. To visually verify the superiority
of our DA2LM framework, we further utilize t-SNE
(Van der Maaten and Hinton, 2008) to perform a vi-
sualization of the sentence representations obtained
by a pre-trained language model BERT (Kenton
and Toutanova, 2019). Figure 3 shows the visual-
ization result on a cross-domain pair S — R. As
shown in Figure 3, the distribution of generated
data in CDRG and GCDDA is still similar to that
of source-domain data because these methods still
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preserve many source-domain attributes including
contexts and syntactic structures. In contrast, there
is almost no discrepancy between the generated
data in DA’LM and the target-domain data, as
shown in the right of Figure 3.

These observations demonstrate the advantage
of DA%2LM over previous CDDA methods in terms
of diversity, fluency, and data distribution.

4.5 Compatibility with Existing DA Methods

To show the compatibility of our DA2LM frame-
work, we replace the base model C} in the first
stage (i.e., domain-adaptive pseudo labeling) with
other existing domain adaptation methods includ-
ing UDA (Gong et al., 2020), FMIM (Chen and
Wan, 2022) and CDRG (Yu et al., 2021).

Table 5 shows the average results of different
base models with their DA2LM variants on 10
source — target domain pairs for the cross-domain
ABSA task and the cross-domain AE task, respec-
tively. Firstly, we can find that by using the target-
domain labeled data from our DA2LM framework,
the performance of existing domain adaptation
methods is generally boosted on average for cross-
domain ABSA and AE, which demonstrates the
usefulness of our DA?LM framework and the ro-
bustness of the generated target-domain data. Sec-
ondly, by comparing all DA?LM variants, we can
observe that DA2LM-FMIM consistently obtains
the best average performance on cross-domain
ABSA and AE. This suggests that our DA2LM
framework is compatible with any domain adap-
tation method, and it can generally achieve better
results with better base models.

5 Conclusion

In this paper, we proposed a cross-domain
Data Augmentation framework based on Domain-
Adaptive Language Modeling (DA%2LM), which
contains three key stages to automatically gen-
erate sufficient target-domain labeled data, in-
cluding 1) Domain-Adaptive Pseudo Labeling,
2) Domain-Adaptive Language Modeling, and 3)
Target-Domain Data Generation. Experiments on
four benchmark datasets show that our DA2LM
framework consistently outperforms the state-of-
the-art method for the cross-domain ABSA task.
Moreover, further evaluation results demonstrate
the superiority of the generated data in terms of
diversity, fluency, and data distribution.

Limitations

Despite obtaining promising results, our proposed
approach still has the following limitations.

First, although our DA2LM approach can gener-
ate a large amount of target-domain data with high
diversity, the generated words are still limited by
the source-domain labeled data and target-domain
unlabeled data. How to make the model generate
novel target-domain words is a challenging prob-
lem to explore in the future.

Second, our DA?LM model is primarily pro-
posed for the ABSA and AE tasks, which are not
directly applicable for the other information ex-
traction tasks with more than two elements, such
as Aspect Sentiment Triplet Extraction (ASTE).
Therefore, cross-domain data augmentation for
multiple-element information extraction tasks may
be a promising followup direction.

Ethics Statement

We conduct experiments on four publicly available
datasets, i.e., Laptop (L), Restaurant (R), Device
(D), and Service (S). These datasets do not share
personal information and do not contain sensitive
content that can be harmful to any individual or
community. Due to the lack of ethics and bias con-
straint in the data generation process, the generated
data from our trained Domain-Adaptive Language
Model may contain sensitive and misleading con-
tent. Therefore, it is necessary to manually check
these generated data when applying them to real-
world applications.
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A Appendix
A.1 Case Study and Error Analysis

In this section, we select several representative ex-
amples generated by different methods to demon-
strate the effectiveness of our DA%2LM framework.

Case Study. Table 6 shows several examples of
CDRG, GCDDA and DA2LM on a cross-domain
pair L — R. Firstly, we can observe that the MLM-
based approach CDRG and the Seq2Seq-based
approach GCDDA fail to replace some source-
specific words such as “laptop” and “Miscrosoft of-
fice” with target-specific words. Besides, it is clear
that the generated target-domain data in CDRG and
GCDDA are lack of fluency, coherence, and diver-
sity, because they both generate target-domain data
based on a source template sentence by replacing
words. In contrast, our DA2LM approach can gen-
erate much more diverse target-domain data due to
the randomness of sampling. Moreover, because
the DALM in our framework is based on the lan-
guage model, it is not surprising that the sentences
generated in DA?LM are generally fluent and co-
herent.

Error Analysis. Furthermore, we also manually
verify the label correctness of the target-domain
data generated from our DA?LM framework, and
show two generated samples with incorrect labels
at the bottom of Table 6. We find that DA?LM is
prone to identify a target-specific attribute as an as-
pect term, even if it is not the target of the sentiment
expression (e.g., “restaurants”) or is an incomplete
aspect term (e.g., “sake”). We conjecture the reason
is our adoption of a rule-based algorithm to obtain
the target-domain aspect terms to minimize the dis-
tance between source-domain and target-domain

aspect term representations in Section 3.3, which
may result in the noise in the pseudo-labeled target
data for Aspect Term Extraction. However, the re-
sults and analysis in Section 4.5 demonstrate that
our DA’LM framework is generally compatible
with various domain adaptation methods and has
the potential to deliver better performance when
employed in conjunction with more powerful base
models.

A.2 Detailed Evaluation on the Compatibility
with Existing DA Methods

Table 7 and Table 8 show the detailed comparison
results of different base models with their DA?LM
variants on all domain-pairs for the cross-domain
ABSA task and the cross-domain AE task. We can
observe that the variants of our DA?’LM show con-
sistent improvements over different base models
on most domain pairs for both tasks.
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Examples

Source | The [engineering design]posiive and [warranty Jpositive are superior—covers damage from dropping the laptop.

CDRG | The [wait service]positive and [flavoring]pesiive are superior—keep distract from dropping the laptop.
GCDDA | The [engineering design]posiive and [service]posiive are superior—covers damage from dropping the food.

Source | There is no [cd drive]negaive ON the computer, which defeats the purpose of keeping files on a cd.

CDRG | There is no [fire place]egaive On the computer, which defeats the purpose of keeping files on a cd.
GCDDA | There is no [cheese plate]negaive in the menu, which defeats the purpose of keeping files on a cd.

Source | It’s [applications]pesiive are terrific, including the replacements for [Microsoft office]positive-

CDRG It’s [drinks]positive are terrific, including the noodles for [cheeses]positive-
GCDDA | It’s [salads]pesiive are terrific, including the replacements for [Microsoft office]positive-

we always have a delicious [meal]yositive and always leave feeling satisfied. v/

the [prices]positive Were exceptionally reasonable for the [appetizers]posiive and [food]pesiive We ordered. v/
the [stuff tilapia]negaive Was horridtasted like cardboard. v/

DAZLM | the place is a bistro which means, simple [dishes]posiive served efficiently in a bustling [atmosphere]lyositve. v/
the [food]pesitive Was adequate, but the [restaurant]negative Was too tiny. v/

but, i think citysearch is a great place to find [restaurants]positive. X

their [sake]positive list was extensive, but we were looking for purple haze, which wasn’t listed. X

Table 6: Examples of different methods on a cross-domain pair L — R. For baseline systems, text chunks in blue
indicate the replaced target-specific attributes and text chunks in red indicate the remaining source-specific attributes
in generated target-domain data. For our DA%2LM approach, v and X indicate that the generated label sequences are
correct and incorrect, respectively.

Methods [S2R S—L S—=D[R—=S R—-L R—=D[L—=S L—R[D—=S D—R ][ AVE
DA’LM [ 58.64 3697 40.28 | 4044 4291 41.28 [ 36.84 60.39 [ 3575 58.98 | 45.24
UDA 52.04 3541 38.06 | 30.76 46.00 40.81 | 30.34 49.97 [ 3328 50.72 | 40.74
DA’LM-UDA | 56.05 35.15 4045 | 2640 4578 44.18 | 2843 53.28 | 37.90 5257 | 42.02
FMIM 4946 31.83 3246 [ 4059 3926 33.11 [41.61 57.02 [ 40.76 55.68 | 42.21
DA’LM-FMIM | 54.05 3236 3557 | 47.01 41.78 38.93 | 4580 59.66 | 47.66 56.62 | 45.94
CDRG 5293 3333 36.14 [ 43.07 4470 30.82 [ 41.51 57.77 | 40.30 53.18 | 4338
DA’LM-CDRG | 56.81 34.10 3843 | 45.06 44.85 30.11 | 4944 61.02 | 40.56 56.80 | 45.71

Table 7: Compatibility with existing domain adaptation methods for Cross-Domain ABSA.

Methods [S2R S—L S—=D[R—=S R—=L R—=D[L—=S L—R[D—=S D—R ][ AVE
DA’LM [ 6578 4496 4324 [ 4341 5455 4429 [ 41.06 68.72 [ 3820 63.86 | 50.80
UDA 5798 4244 40243529 5758 43.07 | 33.96 5479 [ 3578 5385 | 4550
DA’LM-UDA | 6242 42.12 42.84 | 3229 59.84 46.60 | 31.69 58.23 | 41.07 55.85 | 47.30
FMIM 5743 39.14 3526 [ 47.60 5057 36.11 | 51.68 68.67 | 4953 61.64 | 49.76
DA’LM-FMIM | 62.37 41.90 3843 | 5298 56.24 42.29 | 55.63 70.95 | 53.46 63.63 | 53.79
CDRG 6020 3949 3859 [ 4997 5550 34.89 [ 51.07 68.63 [ 4319 57.51 | 49.90
DA’LM-CDRG | 64.20 41.78 41.58 | 52.81 59.16 34.88 | 56.32 71.29 | 46.18 61.66 | 52.99

Table 8: Compatibility with existing domain adaptation methods for Cross-Domain Aspect Extraction (AE).
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