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Abstract
Pretrained Language Models (LMs) memorize
a vast amount of knowledge during initial pre-
training, including information that may vio-
late the privacy of personal lives and identities.
Previous work addressing privacy issues for
LMs has mostly focused on data preprocessing
and differential privacy methods, both requir-
ing re-training the underlying LM. We propose
knowledge unlearning as an alternative method
to reduce privacy risks for LMs post hoc. We
show that simply performing gradient ascent
on target token sequences is effective at for-
getting them with little to no degradation of
general language modeling performances for
larger-sized LMs. We also find that sequential
unlearning is better than trying to unlearn all
the data at once and that unlearning is highly
dependent on which kind of data (domain) is
forgotten. By showing comparisons with pre-
vious methods known to mitigate privacy risks
for LMs, we show that our approach can give
a stronger empirical privacy guarantee in sce-
narios where the data vulnerable to extraction
attacks are known a priori while being much
more efficient and robust 1.

1 Introduction

Recent work has shown that an adversary can ex-
tract training data from Pretrained Language Mod-
els (LMs) including Personally Identifiable Infor-
mation (PII) such as names, phone numbers, and
email addresses, and other information such as li-
censed code, private clinical notes, and 128-bit
UUIDs (Carlini et al., 2021; Lee et al., 2022; Huang
et al., 2022; Lehman et al., 2021). In 2021, an AI
chatbot Iruda became the first AI system to be sued
for violating the Personal Information Protection
Act after generating the exact home addresses and
bank account numbers of actual individuals unin-
tentionally (Park, 2021). Heikkilä (2022) has also

∗work done during internship at LG AI Research.
1We release the code and dataset needed to replicate our

results at https://github.com/joeljang/knowledge-unlearning.

shown that GPT-3 (Brown et al., 2020), one of
the most well-known LM currently in commercial
use, offered detailed private information about the
Editor-in-Chief of MIT Technology Review includ-
ing his family members, work address, and phone
number. Considering findings that show extract-
ing training data gets easier as LMs scale to larger
sizes (Carlini et al., 2022a) and that it is common
practice for practitioners to release billion parame-
ters pretrained LMs for public use (Gao et al., 2020;
Black et al., 2021; Zhang et al., 2022), it has be-
come important to provide privacy guarantees for
large LMs.

Practitioners are required to delete personal in-
formation from the LMs by individuals’ request
because each individual has the “Right To Be For-
gotten (RTBF)" (Mantelero, 2013; Graves et al.,
2021) and can limit the direct and indirect commer-
cial use of their personal information (Villaronga
et al., 2018). Previous methods addressing privacy
risks for language models attempt to remove all
private information from the training data (data pre-
processing) (Aura et al., 2006; Dernoncourt et al.,
2017; Lison et al., 2021; Kandpal et al., 2022) or at-
tempt to design algorithms that ensure differential
privacy (DP) (Dwork, 2008; Dwork et al., 2006;
Abadi et al., 2016; Anil et al., 2021; Li et al., 2022;
Yu et al., 2022). Both approaches require retrain-
ing the underlying LM every time individuals want
to practice their RTBF, which makes them inade-
quate for large LMs that are extremely costly to
retrain. Furthermore, as pointed out by Brown
et al. (2022), data preprocessing methods assume
private information to be easily identifiable, spec-
ified, and removed and DP algorithms can only
guarantee protection for information that has clear
privacy borders, which makes them inadequate in
the real-world scenarios where the standard of pri-
vacy might differ by each individual.

To this end, we propose knowledge unlearning
(Figure 1) as an efficient solution that can be ap-
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Name: Bob
Age: 27
Marital Status: Single
SSN: 123 - 4567 - 8910
Details: Got divorced by ex-wife named  
Alice and is currently undergoing custody 
battles.
Net Worth: $5,000,000

Sensitive Personal Information

Data 
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Differential 
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(~900 A100 GPU days)

LM
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Perform a few token updates 
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I practice my Right To  
Be Forgotten (RTBF)!

Pretraining 
Corpora
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Token  
Sequences

Our Proposed Approach

Bob

Figure 1: Comparison of previous approaches and knowledge unlearning when an individual practices his/her
Right-To-Be-Forgotten (RTBF).

plied with just a few parameter updates instead
of pretraining the underlying LM again. We per-
form experiments on GPT-Neo LMs (125M, 1.3B,
2.7B) (Black et al., 2021) and show that simply
changing the gradient descent to the opposite di-
rection during language modeling (which can also
be seen as maximizing instead of minimizing the
loss function) is effective at protecting target se-
quences from extraction attacks with little to no
performance degradation on the initial LM capa-
bilities measured via 13 downstream NLP tasks: 9
common classification benchmarks and 4 dialogue
tasks. For some cases, knowledge unlearning un-
expectedly shows significant improvements in LM
performance for some of the benchmarks.

We compare our approach with data deduplica-
tion method (Kandpal et al., 2022) and differential
privacy decoding method (Majmudar et al., 2022)
which are both known to mitigate privacy risks and
show the effectiveness of knowledge unlearning
by providing strong privacy protection while being
much more efficient and robust. We also provide
a general guideline that can be used to quantify
the memorization and extraction likelihood of tar-
get token sequences and suggest when we can em-
pirically consider them to have been “forgotten”.
Specifically, we introduce a novel metric that mea-
sures the extraction likelihood by varying the prefix
length of the target token sequence and quantifying

how much of the suffix is actually extracted from
the LM.

Surprisingly, for knowledge unlearning, we find
that it is easier to forget a chunk of instances se-
quentially rather than trying to forget them all at
once. We provide further analysis and show that the
difficulty of knowledge unlearning depends heavily
on the target data being forgotten, especially the
domain of the target data. We also provide em-
pirical examples of performing extraction attacks
and how exactly knowledge unlearning provides
privacy protection for the LM.

To summarize, our main contributions are four-
fold:

• We compare knowledge unlearning with two
approaches from literature known to mitigate
privacy risks: a data preprocessing approach
and a Differential Privacy (DP) Decoding ap-
proach. We show that our approach results in
little to no performance degradation of gen-
eral capabilities (sometimes resulting in im-
provement) while providing strong privacy
protections in situations individuals practice
their RTBF whereas the data preprocessing
approach provides weaker privacy protection
while being orders of magnitude computa-
tionally demanding and the DP Decoding ap-
proach results in severe degradation of LM
performance.
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• We perform additional experiments to deter-
mine which factors contribute to the difficulty
of knowledge unlearning and find that (1) try-
ing to forget many samples at once results
in substantial LM performance degradation
which can be mitigated by sequentially forget-
ting chunks of data and that (2) the domain
of the target data (Code, License, Wikipedia,
etc.) plays a critical role in determining how
hard they are to forget.

• We provide a novel metric and a general guide-
line for quantifying the privacy risks for LMs
and determine when they should be consid-
ered to have “forgotten" a given target se-
quence.

• Knowledge unlearning surprisingly seems to
make LMs stronger where the extreme cases
bring +8.0% (37.6% → 45.6%), +10.1%
(57.4% → 67.5%), and +7.9% (62.2% →
70.1%) improvements on Lambada for GPT-
NEO 125M, 1.3B, and 2.7B, respectively.

2 Related Work

2.1 Privacy Methods for Language Models

Prior work that tries to mitigate privacy risks for
LMs can be divided mainly into data pre/post-
processing methods and differential privacy meth-
ods.

(Data) Pre/Post-Processing Data preprocessing
aims to sanitize the training data; it aims to get
rid of all data that might violate any kind of pri-
vacy from the training data prior to training. These
methods mostly utilize measures such as parsers
and classification models that try to identify and
predict patterns that constitute private information.
This is effective at identifying well-formatted pri-
vate information such as social security numbers or
special forms of medical notes (Aura et al., 2006;
Dernoncourt et al., 2017; Lison et al., 2021; Kand-
pal et al., 2022). However, as pointed out by Brown
et al. (2022), considering that private information is
mostly context-dependent and sometimes in a non-
specific format, data preprocessing methods cannot
fully claim that they provide privacy guarantees,
especially guarantees that match each individual’s
standards. Methods that attempt to utilize post-
processing methods such as applying censorship to
the LM outputs still face the same limitations.

In this work, we compare our proposed method
with a data preprocessing approach proposed by
Kandpal et al. (2022) which shows that deduplicat-
ing the training corpora before pretraining helps
pretrain LMs that show stronger robustness against
extraction attacks than an LM pretrained under the
same circumstances without deduplicating the pre-
training corpora. However, we highlight that this
approach, which may still be effective at mitigating
the overall privacy risks, is not the most suitable
approach when considering a realistic scenario of
individuals requesting the removal of their infor-
mation from the implicit parameters of the LMs.

Differential Privacy Differential Privacy (DP)
aims to guarantee that the effect of an individ-
ual input on the output of a specific function is
bounded (Dwork, 2008; Dwork et al., 2006). In
the context of deep neural networks, DP, which
needs to be applied during the training phase, aims
to construct models that can provide general guar-
antees that the individual information within the
training data cannot be inferred (Abadi et al., 2016).
While DP has shown to be surprisingly effective at
fine-tuning LMs (Li et al., 2022; Yu et al., 2022),
pretraining LMs with DP still suffers from sub-
stantial performance gap, expensive computation,
and slow convergence (Anil et al., 2021). Further-
more, as pointed out by Brown et al. (2022), DP
can only provide limited guarantees for LMs be-
cause DP requires a unified definition for privacy
boundaries, which is inherently impossible for nat-
ural language data. Most importantly, in a realis-
tic scenario where individuals may practice their
Right-To-Be-Forgotten (RTBF) dynamically after
model deployment, it is nontrivial to apply existing
descent-based DP algorithms such as DP-SGD to
only protection against targeted extraction attacks.

2.2 Machine Unlearning

Machine unlearning has received attention as an
alternative approach to overcome data privacy is-
sues in machine learning (Cao and Yang, 2015;
Ginart et al., 2019; Bourtoule et al., 2021; Graves
et al., 2021). Several studies attempt to explore
machine unlearning for deep neural networks (Go-
latkar et al., 2020; Mehta et al., 2022). However,
they mostly focus on proposing algorithms for im-
age classification models where they aim to forget
a whole class; that is, achieve random performance
for specific image classes such as “cats” or “ships”.
We are the first, to the best of our knowledge, to
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explore unlearning a specific sequence of tokens
for LMs which is a quite different set-up from tradi-
tional image classification models (∼tens of image
classes vs. a sequence of tokens that can each be
classified into V ∈ R∼50,000). In this work, we
coin this approach as knowledge unlearning since
we are more focused on forgetting specific knowl-
edge represented by sequences of tokens.

Zhou et al. (2022) focus on how forgetting can
be leveraged to improve the performance of the un-
derlying model. They propose “forget-and-relearn”
that unifies existing iterative training algorithms
by selectively removing undesirable information
and re-learning good features, helping boost per-
formance for the task of image classification and
multi-agent emergence communication. The under-
lying assumption is that it is often easier to define
and stop unwanted behavior than to teach good be-
havior. We also show this phenomenon in Section
4 where we unintentionally find unlearning just a
few sequences of tokens sometimes boosts general
LM capabilities.

2.3 Memorization in Language Models

Previous work that explores to which extent LMs
have memorized their training data approach the
phenomenon with two different viewpoints. Some
work view memorization of LMs simply as a threat
to individual privacy (Carlini et al., 2021, 2022a;
Jagielski et al., 2022) and utilize metrics that quan-
tify how much the LMs are susceptible to adver-
sarial attacks. These metrics are mostly dependent
on the specific types of attacks such as the mem-
bership inference attack (Shokri et al., 2017) and
measure the privacy risks of LMs by quantifying
the success rate of these attacks. In our work, we
instead focus on more targeted extraction attacks.

Another line of work simply quantifies how
much knowledge is accumulated and forgotten dur-
ing pretraining by extracting relational knowledge
about the world (Petroni et al., 2019; Lazaridou
et al., 2021; Jang et al., 2022b,a). This line of
work does not view memorization as a negative
trait, but as a positive one that can be leveraged to
extract world knowledge from its implicit param-
eters and perform knowledge-intensive tasks such
as question answering or training knowledgeable
conversation agents.

Our work is highly related to Jagielski et al.
(2022)’s work where they also assert that forget-
ting can be a relaxed version of differential privacy.

However, there are two main differences between
our work and theirs. First, they only analyze for-
getting as a passive form of mitigating privacy,
asserting that data seen early in large-scale training
obtain privacy benefits, whereas we suggest a more
active form of forgetting. Second, they only show
analysis results with image classification and audio
generation models while we specifically focus on
large LMs.

3 Knowledge Unlearning

3.1 Methodology
We propose simply negating the original training
objective of minimizing the negative log-likelihood
of the token sequences as our main method of
knowledge unlearning in LMs. Specifically, given
a sequence of tokens x = (x1, ..., xT ), our un-
learning training objective is simply maximizing
the following loss function:

LUL(fθ,x) = −
T∑

t=1

log(pθ(xt|x<t)) (1)

where x<t denotes the token sequence x =
(x1, ..., xt−1) and pθ(xt|x<t) denotes the condi-
tional probability of predicting the next token to be
xt when given x<t to an LM f with parameters θ.

3.2 Quantifying Privacy Risks of Language
Models

In this subsection, we introduce two metrics we
use to quantify the privacy risks given a specific
token sequence and how we empirically define the
token sequence to be forgotten. In this work, we do
not utilize metrics such as membership inference
attack recall (Shokri et al., 2017) since we are not
interested in quantifying the general privacy risks
of LMs, but instead the privacy risks on the specific
target token sequences.

Extraction Likelihood (EL) We first introduce
a new metric, EL. Given a sequence of tokens
x = (x1, ..., xT ) and an LM f with pre-trained
parameters θ, we define EL to be as follows:

ELn(x) =

∑T−n
t=1 OVERLAPn(fθ(x<t), x≥t)

T − n
(2)

OVERLAPn(a, b) =

∑
c∈ng(a) 1{c ∈ ng(b)}

|ng(a)|
(3)
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where ng(·) denotes the list of n-grams in the given
token sequence and fθ(x<t) denotes the output
token sequences from the LM fθ when given x<t

as input that can have max lengths |x≥t| but may
be shorter when the EOS (end-of-sequence) token
is generated beforehand.

The process of varying the prefix length |x<t|
can be seen as varying the strength of adversarial
attacks. This is based on the assumption that the
more prior information is provided about the target
token sequence, the easier the LM will be able to
extract it. Overall, EL can be seen as estimating the
general extraction likelihood since we are measur-
ing the average success rate of varying extraction
attacks quantified via getting the n-gram overlap of
generated and target token sequences. While pre-
vious metrics quantifying the privacy risks of LMs
are dependent on specific adversarial attacks, this
characteristic of EL allows it to quantify the general
likelihood of extraction without any dependency
on specific extraction attacks.

We regard n to be a hyper-parameter that can
be varied depending on the stringency of privacy
standards. The higher n is set, the stricter we set
the standard for a successful extraction attack.

Memorization Accuracy (MA) First proposed
by Tirumala et al. (2022), Memorization Accuracy
(MA) is defined as follows:

MA(x) =

∑T−1
t=1 1{ argmax(pθ(·|x<t)) = xt}

T − 1
(4)

MA quantifies how much fθ has memorized the
given token sequences and can be used to analyze
the training dynamics of large LMs.

Empirical Definition of Forgetting By utilizing
both ELn and MA, we empirically define a specific
token sequence x to be forgotten and is no longer
susceptible to extraction attacks when both of the
following conditions are met:

ELn(x) ≤
1

|D′|
∑

x′∈D′
ELn(x

′) (5)

and
MA(x) ≤ 1

|D′|
∑

x′∈D′
MA(x′) (6)

where D′ represents a validation corpora not seen
during training. In other words, we define x to
be forgotten when the ELn(x) and MA(x) reach

a value that is lower than the average ELn and
MA on token sequences that were not seen during
training.

4 Experiments

4.1 Models, Datasets, and Configurations

Baselines For the experiments, we use the GPT-
NEO (125M, 1.3B, 2.7B) LMs (Black et al., 2021)
initially pretrained on all of the Pile corpora
(825GB) (Gao et al., 2020), and the OPT (125M,
1.3B, 2.7B) LMs (Zhang et al., 2022), pretrained
on a subset of the deduplicated version of the Pile
as well as other corpora from different domains.
For the experiments, we perform unlearning the
GPT-NEO LMs and quantify the privacy risks of
the target data compared to the OPT LMs to mea-
sure how effective our proposed approach is in
contrast to deduplicating the training corpora be-
fore pretraining the underlying LM Kandpal et al.
(2022). We do not use the exact LMs from Kand-
pal et al. (2022) because the LMs were not open-
sourced, and thus use the OPT LMs instead. We
also consider the Differential Privacy (DP) Decod-
ing (Majmudar et al., 2022) as one of the base-
lines; This approach proposes a decoding strategy
that performs linear interpolation of the original
logits with the uniform distribution and performs
nucleus sampling, which they theoretically show
provides DP guarantees. λ is set as the linear in-
terpolation weight where λ = 0 performs nucleus
sampling from the uniform distribution and λ = 1
performs regular nucleus sampling, using the logits
as weights during random sampling.

Target Data For the actual target data used to
quantify the privacy risks of the LMs, we sample
instances from the Training Data Extraction Chal-
lenge 2 where 15,000 examples (each are 200 token
sequences long) from 16 different domains of the
Pile corpora that are identified to be somewhat easy-
to-extract are provided. For our experiments, we
randomly sample s samples from the 15,000 ex-
amples and make the underlying LM forget the s
samples at once. As a default, we show the average
results of 5 random samplings of s samples for all
of our experimental settings. We only provide the
average of the 5 samplings and do not separately
report the standard deviation. Instead, we provide
the results of each individual run in Appendix A.

2https://github.com/google-research/lm-extraction-benchmark
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Evaluation Datasets Providing stronger privacy
protections for LMs may become meaningless if it
requires sacrificing their original capabilities. Thus,
while quantifying the privacy risks of LMs, we
also quantify the original LM capabilities by eval-
uating the LMs on 9 classification tasks quantify-
ing the general capabilities: Hellaswag (Zellers
et al., 2019) and Lambada (Paperno et al., 2016)
benchmarks to measure linguistic reasoning abil-
ities, Winogrande (Sakaguchi et al., 2021) and
COPA (Gordon et al., 2012) to measure common-
sense reasoning abilities, and ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018),
Piqa (Bisk et al., 2020), MathQA (Amini et al.,
2019), PubmedQA (Jin et al., 2019) benchmarks
to measure the scientific reasoning abilities. We
also evaluate on 4 dialogue tasks (Wizard of
Wikipedia (Dinan et al., 2019), Empathetic Di-
alogues (Rashkin et al., 2019), Blended Skill
Talk (Smith et al., 2020), and Wizard of Inter-
net (Komeili et al., 2022)) to evaluate the gener-
ation capabilities of the LMs. We use the test set
for Lambada and the validation set for the rest of
the datasets. We also show the results of measuring
the perplexity on the validation corpora of Pile and
Wikitext in Appendix B. We do not include mea-
suring perplexity as one of the main evaluations
because perplexity might not be the most suitable
metric for quantifying general LM performance,
especially in the case of unlearning (further ex-
planation given in Appendix B. We evaluate DP
Decoding only on the 4 dialogue tasks because the
decoding strategy cannot be applied for perform-
ing the classification tasks which is evaluated by
utilizing a verbalizer.

Configurations For the learning rate, we set it to
5e-5. We show the effect of varying learning rates
in Appendix D. We use a constant learning rate
scheduling throughout the run. We fix the global
batch size to be the same as s (how many samples
are forgotten at once) because having global batch
sizes smaller than s proved to degrade general LM
capabilities 3. For ELn, we set n=10 which means
EL measures the extraction likelihood of extract-
ing n consecutive tokens of varying extraction at-
tack 4. For calculating EL10 and MA, we use a

3In Section 4.3, We show that s plays a critical role in determining how
much the unlearning will degrade in general capabilities of the LM since s =
128 shows to result in much degradation. Method to mitigate this is proposed
in Section 4.3 as well.

4We set the n value to 10 since we empirically consider an extraction to be
successful when 10 consecutive token sequences are successfully generated by
the LM. We show varying the n with values from [5,10,20,40] in Appendix I.

Model (Size) EL10(%) MA(%)
Threshold Threshold

GPT-NEO (125M) 4.99 29.94
GPT-NEO (1.3B) 5.68 33.27
GPT-NEO (2.7B) 5.53 34.02

Table 1: Forgetting Threshold for GPT-NEO LMs

naïve greedy decoding strategy. We set both the
dropout and weight decay rates to 0. Lastly, while
we provide a guideline of empirically deciding a
single token sequence to be forgotten in Section
3.2, for considering a chunk of s token sequences
to be forgotten, we use the average EL10 and MA
as an approximation of the individual EL10 and
MA.

4.2 Main Experiments

Forgetting Threshold First, we show how we
get the Forgetting Threshold for EL10 and MA, the
values where we consider the token sequence to be
forgotten and unsusceptible from extraction attacks,
for all model sizes of GPT-NEO LMs in Table
1. For D′, we perform weighted sampling (same
domain distribution as the Pile training corpora)
of 10,000 instances each with token lengths 200
from the Pile validation corpora, and measure the
average EL10 and MA (Equation 5-6), which are
empirically set as the Forgetting Threshold values.

Main Results Table 2 shows the main results of
performing unlearning on LMs of varying sizes
and the baselines. While we provide the average
performances of the 5 random samplings in Table
2, we provide each individual runs in Appendix A
for reference.

We highlight five main observations regarding
the results. (1) OPT LMs show a much lower
EL10 and MA than GPT-NEO LMs, confirming
that deduplicating the pretraining corpora is in-
deed helpful for mitigating privacy risks. (2) +
DPD+ enables effective protection against extrac-
tion attacks demonstrated via the lowest EL and
MA score; however, it brings severe degradation
of generation capabilities measured via the average
F1 score of the 4 dialogue generation tasks. (3)
+ UL+ results in severe degradation of both clas-
sification and dialogue tasks for the 125M, only
severe degradation of dialogue tasks for 1.3B LM
while for the 2.7B LMs, it enables retaining most
of its previous capabilities. (4) While the LMs
scale to larger sizes, it takes fewer epochs for the
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Model # EL10 MA Classification Avg. Dialogue Avg. EpochParams (%) ↓ (%) ↓ (ACC) ↑ (F1) ↑
OPT 125M 8.6 52.9 42.4 10.2 -

NEO 125M 30.9 77.4 43.4 9.4 -
+ DPD+ 125M 0.0 27.4 N/A 7.3 -
+ UL 125M 3.7 50.1 42.6 8.0 11.0
+ UL+ 125M 1.0 27.4 39.9 2.6 17.2

OPT 1.3B 23.3 67.1 50.6 12.4 -

NEO 1.3B 67.6 92.2 49.8 11.5 -
+ DPD+ 1.3B 0.0 21.4 N/A 7.1 -
+ UL 1.3B 11.0 62.2 49.7 11.6 8.0
+ UL+ 1.3B 1.9 30.4 49.7 8.5 13.8

OPT 2.7B 25.6 69.2 52.7 12.9 -

NEO 2.7B 70.4 93.4 52.3 11.5 -
+ DPD+ 2.7B 0.0 24.2 N/A 6.9 -
+ UL 2.7B 13.0 66.0 52.3 12.5 5.4
+ UL+ 2.7B 1.6 31.0 51.9 11.1 10.8

Table 2: Main Results showing the average of 5 random sampling of s = 32 (forgetting 32 samples at once).
OPT represents the LM with deduplication applied. NEO denotes the initial GPT-NEO LM, + DPD+ represents
applying the DP Decoding strategy by varying the λ to match the forgetting criteria, + UL represents performing
unlearning on the initial NEO until it provides stronger security for the target sequences than OPT, + UL+ represents
performing unlearning on NEO until target sequences match the forgetting criteria, Classification Avg. denotes the
average accuracy of the 9 classification datasets, and Dialogue Avg. denotes the average F1 score of the 4 dialogue
datasets. The best comparable performances are bolded and second best underlined.

target sequences to be forgotten. Together with (3),
this implies that larger LMs are strong unlearners.
(5) While + UL+ provides stronger privacy protec-
tion than OPT without sacrificing its performance
from NEO for the 2.7B LM, it is much more com-
putationally efficient (3,500,000x) than re-training
the underlying LM, which is required for all data
preprocessing approaches 5.

Overall, results show unlearning to be an effec-
tive approach to providing strong privacy protec-
tion while retaining and sometimes even improving
general LM capabilities.

Sequential Unlearning is more Stable than
Batch Unlearning We show the effect of varying
s (the # of data instances to be forgotten at once)
in Figure 2 across model scales. We denote this
approach as batch unlearning. As shown by the
s = 128 results, it is harder to forget more sam-
ples at once, resulting in substantial degradation of
average LM performance regardless of how large
the LM is. Since s ≤ 32 does not show much

5Computational efficiency is measured via FLOPs which is calculated by
(6 × Total Training Tokens × Parameter Size) as in Brown et al. (2020). FLOPs
for OPT LMs were estimated using information from Zhang et al. (2022). We
provide the FLOPs for the methods in Appendix C.

degradation, we explore if sequentially unlearning
can be a solution. In Figure 2b, we show the result
of dividing the 128 samples into 4 chunks of 32
and performing sequential unlearning; we unlearn
each chunk at a time until the chunk reaches the
forgetting threshold. Surprisingly, as shown by the
performance gap at s = 128 between the dotted
lines (the s = 128 performance of Figure 2a) and
straight lines, the end result is vastly different even
though exactly the same instances were forgotten.
Sequential unlearning shows almost no degrada-
tion of average LM performance. In Appendix H,
we show that chunks once forgotten stay forgot-
ten and that later chunks are forgotten much faster
compared to the initial chunk. This result hints
at the generalization of unlearning, which we do
not further explore in the scope of this work. The
result also suggests that knowledge unlearning can
be continually applied to LMs when needed.

4.3 Analysis of Knowledge Unlearning

To measure why some instances are harder to for-
get, we perform 5 random samplings of s = 8
from 8 different domains from the Training Data
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Figure 2: Average LM performance on the 9 classification benchmarks when varying the total number of samples
forgotten at once is shown in (a) and the average LM performances when the 128 samples are divided into 4 chunks
and are forgotten sequentially is shown in (b). The lines denote the average performances of 5 random samplings
and the standard deviation is shown as the shaded regions. The dotted lines in (b) denotes the s = 128 performance
in (a) for comparison purposes.

Domains Initial Final Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg.
EL10 EL10 (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

INITIAL - - 37.0 57.4 54.9 70.0 56.6 25.8 70.4 21.9 53.8 49.8 (0.0)

FREELAW 60.4 12.1 37.2 52.2 53.9 68.4 55.5 26.2 70.1 21.7 53.5 48.7 (-1.1)
GIT. (CODE) 63.9 0.6 37.3 53.4 54.4 69.2 56.3 26.0 69.9 21.5 49.8 48.7 (-1.1)
GIT. (LICENSE) 75.8 0.0 37.1 52.0 54.2 69.0 56.4 26.4 70.1 21.8 51.8 48.8 (-1.0)
ENRON EMAILS 77.3 0.0 36.9 57.2 54.8 68.4 55.8 26.3 69.8 21.8 53.1 49.4 (-0.4)
BOOKS3 70.2 0.0 36.4 49.5 54.2 70.8 55.6 25.5 69.9 21.7 47.4 47.9 (-1.9)
PILE CC 67.8 0.0 35.7 45.9 53.8 70.4 54.2 26.9 69.7 21.8 52.0 47.8 (-2.0)
USPTO BACK. 59.4 0.0 33.7 44.7 53.5 67.0 45.9 24.0 67.0 21.5 50.3 45.3 (-4.5)
PUBMED CENT. 71.8 0.0 36.5 44.5 54.1 69.6 55.6 24.8 70.0 21.9 46.4 47.0 (-2.8)

Table 3: Unlearning GPT-NEO 1.3B on token sequences sampled from 8 different domains. We fix the epoch to 10,
set s = 8, and show the result of the average of 5 random samplings. Italicized () denotes the ∆ from INITIAL.

Extraction Challenge 6 and perform unlearning on
the GPT-NEO 1.3B LM. We also show the re-
sults of each individual run in Appendix A. As
shown in Table 3, despite undergoing the same
number of token updates (10 epochs of unlearn-
ing), different domains result in vastly different
outcomes; ENRON EMAILS results in the average
LM performance degradation of only -0.4% while
USPTO BACKGROUNDS results in -4.5% degrada-
tion. Furthermore, the final EL10 varies depend-
ing on the domain, suggesting that some domains
(e.g., FREELAW) are harder to forget than others.
Lastly, domains that are more structured, which
means the data consists of some kind of patterns
such as a list of emails (ENRON EMAILS) or code
(GITHUB (CODE)), seem to result in less degrada-
tion of LM performance in contrast to domains that
are more unstructured, which means the data con-
sist of mostly raw English text such as a review
for journal submission (PUBMED CENTRAL). For
further analysis, we provide examples from each

6https://github.com/google-research/lm-extraction-benchmark

domain in Appendix F as well as the individual task
performance change during knowledge unlearning
in Appendix E.

5 Conclusion

In this paper, we propose knowledge unlearning
as a method for mitigating privacy risks in LMs
that provides a strong privacy protection with lit-
tle to no degradation of general LM capabilities
measured by evaluating on 9 common LM classi-
fication benchmarks and 4 dialogue benchmarks
for the larger sized LMs. As large LMs expand
their use cases, potentially affecting the daily lives
of people, the research community should make
sure that the privacy of individuals is not violated
intentionally or unintentionally by the knowledge
stored in the implicit parameters of these models.
Since it is inherently impossible to prevent and
predict all future privacy concerns prior to pretrain-
ing the LM, we suggest the community consider
knowledge unlearning for ensuring privacy upon
individuals’ requests post hoc pretraining.

14396

https://github.com/google-research/lm-extraction-benchmark


6 Limitations

While we provide a privacy guarantee through un-
learning, our Forgetting Threshold is dependent
on which data samples are chosen as D′. Further-
more, varying the prefix length can be seen as a
naïve way of varying the strength of the extrac-
tion attacks. In a real-world scenario, extraction
attacks may be more complicated and may require
other prevention methods. Also, we could not di-
rectly compare our approach with a Differential
Privacy (DP) (Anil et al., 2021) approach because
there are no open-sourced LMs pretrained with
a DP algorithm. We could not replicate the pre-
trainig phase because of the heavy computational
resources needed to pretrain an LM with DP which
is estimated to require thousands of GPU hours.
We leave this comparison for future work. Finally,
a recent work (Carlini et al., 2022b) has suggested
that machine unlearning (for the vision domain)
can bring negative effects harming the privacy of
other users. Future work should explore this phe-
nomenon in the setting of performing unlearning
on large LMs as well.

7 Acknowledgements

This work was partly supported by Institute of In-
formation communications Technology Planning
Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No.2022-0-00113, Developing
a Sustainable Collaborative Multi-modal Lifelong
Learning Framework, 80%; No.2021-0-02068, Ar-
tificial Intelligence Innovation Hub, 20%).

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308–318.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar,

and Pasin Manurangsi. 2021. Large-scale differen-
tially private bert. arXiv preprint arXiv:2108.01624.

Tuomas Aura, Thomas A Kuhn, and Michael Roe. 2006.
Scanning electronic documents for personally iden-
tifiable information. In Proceedings of the 5th ACM
workshop on Privacy in electronic society, pages 41–
50.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.
If you use this software, please cite it using these
metadata, 58.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. 2021. Ma-
chine unlearning. In 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pages 141–159. IEEE.

Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, and Florian Tramèr.
2022. What does it mean for a language model to
preserve privacy? arXiv preprint arXiv:2202.05520.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yinzhi Cao and Junfeng Yang. 2015. Towards making
systems forget with machine unlearning. In 2015
IEEE Symposium on Security and Privacy, pages
463–480. IEEE.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022a. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang,
Nicolas Papernot, Andreas Terzis, and Florian
Tramer. 2022b. The privacy onion effect: Memoriza-
tion is relative. In Advances in Neural Information
Processing Systems.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

14397

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://openreview.net/forum?id=ErUlLrGaVEU
https://openreview.net/forum?id=ErUlLrGaVEU


Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner,
and Peter Szolovits. 2017. De-identification of pa-
tient notes with recurrent neural networks. Journal
of the American Medical Informatics Association,
24(3):596–606.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Cynthia Dwork. 2008. Differential privacy: A survey
of results. In International conference on theory and
applications of models of computation, pages 1–19.
Springer.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography
conference, pages 265–284. Springer.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Antonio Ginart, Melody Guan, Gregory Valiant, and
James Y Zou. 2019. Making ai forget you: Data
deletion in machine learning. Advances in neural
information processing systems, 32.

Aditya Golatkar, Alessandro Achille, and Stefano
Soatto. 2020. Eternal sunshine of the spotless net: Se-
lective forgetting in deep networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9304–9312.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roem-
mele. 2012. SemEval-2012 task 7: Choice of plau-
sible alternatives: An evaluation of commonsense
causal reasoning. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 394–398, Montréal,
Canada. Association for Computational Linguistics.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh.
2021. Amnesiac machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11516–11524.

Melissa Heikkilä. 2022. What does gpt-3 "know" about
me?

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang.
2022. Are large pre-trained language models leak-
ing your personal information? arXiv preprint
arXiv:2205.12628.

Matthew Jagielski, Om Thakkar, Florian Tramèr,
Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Thakurta,

Nicolas Papernot, et al. 2022. Measuring forget-
ting of memorized training examples. arXiv preprint
arXiv:2207.00099.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang,
Joongbo Shin, Janghoon Han, Gyeonghun Kim, and
Minjoon Seo. 2022a. Temporalwiki: A lifelong
benchmark for training and evaluating ever-evolving
language models. arXiv preprint arXiv:2204.14211.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun KIM, Stanley Jungkyu
Choi, and Minjoon Seo. 2022b. Towards continual
knowledge learning of language models. In Interna-
tional Conference on Learning Representations.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2567–2577.

Nikhil Kandpal, Eric Wallace, and Colin Raffel. 2022.
Deduplicating training data mitigates privacy risks in
language models. arXiv preprint arXiv:2202.06539.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8460–8478, Dublin, Ireland. Association
for Computational Linguistics.

Angeliki Lazaridou, Adhi Kuncoro, Elena Gribovskaya,
Devang Agrawal, Adam Liska, Tayfun Terzi, Mai
Gimenez, Cyprien de Masson d’Autume, Tomas Ko-
cisky, Sebastian Ruder, et al. 2021. Mind the gap:
Assessing temporal generalization in neural language
models. Advances in Neural Information Processing
Systems, 34:29348–29363.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Gold-
berg, and Byron C. Wallace. 2021. Does bert pre-
trained on clinical notes reveal sensitive data? In
NAACL-HLT, pages 946–959.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori
Hashimoto. 2022. Large language models can be
strong differentially private learners. In International
Conference on Learning Representations.

Pierre Lison, Ildikó Pilán, David Sanchez, Montser-
rat Batet, and Lilja Øvrelid. 2021. Anonymisation
models for text data: State of the art, challenges and
future directions. In Proceedings of the 59th Annual

14398

https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://openreview.net/forum?id=vfsRB5MImo9
https://openreview.net/forum?id=vfsRB5MImo9
https://doi.org/10.18653/v1/2022.acl-long.579
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2021.naacl-main.73
https://doi.org/10.18653/v1/2021.naacl-main.73
https://openreview.net/forum?id=bVuP3ltATMz
https://openreview.net/forum?id=bVuP3ltATMz
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323
https://doi.org/10.18653/v1/2021.acl-long.323


Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4188–4203, Online. Association for
Computational Linguistics.

Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami
Smaili, Rahul Gupta, and Richard Zemel. 2022. Dif-
ferentially private decoding in large language models.
arXiv preprint arXiv:2205.13621.

Alessandro Mantelero. 2013. The eu proposal for a
general data protection regulation and the roots of
the ‘right to be forgotten’. Computer Law & Security
Review, 29(3):229–235.

Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N
Ravi. 2022. Deep unlearning via randomized con-
ditionally independent hessians. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10422–10431.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Jasmine Park. 2021. South korea: The first case where
the personal information protection act was applied
to an ai system.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? In EMNLP.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5370–5381, Florence, Italy. Association for
Computational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Reza Shokri, Marco Stronati, Congzheng Song, and Vi-
taly Shmatikov. 2017. Membership inference attacks
against machine learning models. In 2017 IEEE sym-
posium on security and privacy (SP), pages 3–18.
IEEE.

Eric Michael Smith, Mary Williamson, Kurt Shuster,
Jason Weston, and Y-Lan Boureau. 2020. Can you
put it all together: Evaluating conversational agents’
ability to blend skills. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2021–2030, Online. Association
for Computational Linguistics.

Kushal Tirumala, Aram H Markosyan, Luke Zettle-
moyer, and Armen Aghajanyan. 2022. Memoriza-
tion without overfitting: Analyzing the training dy-
namics of large language models. arXiv preprint
arXiv:2205.10770.

Eduard Fosch Villaronga, Peter Kieseberg, and Tiffany
Li. 2018. Humans forget, machines remember: Arti-
ficial intelligence and the right to be forgotten. Com-
puter Law & Security Review, 34(2):304–313.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulka-
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz,
Sergey Yekhanin, and Huishuai Zhang. 2022. Differ-
entially private fine-tuning of language models. In
International Conference on Learning Representa-
tions.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron
Courville. 2022. Fortuitous forgetting in connec-
tionist networks. In International Conference on
Learning Representations.

A Full Results

We provide all of the results for the 5 random sam-
plings for our main experimental setting in Table 4
and the full results for the domain analysis setting
in Table 5. We also provide the evaluation of the
4 dialogue tasks for s = 32 for all model sizes in
Table 6.

B Measuring Pile and Wikitext Perplexity

Table 7 shows the results of measuring perplexity
on 500 samples from the validation set of Pile and
Wikitext corpora on the LMs from the main exper-
imental setting (Table 2). Results show that LMs
that underwent knowledge unlearning show higher
perplexity while the main experimental table (Ta-
ble 2) does not show degradation of performance
on 9 different LM benchmarks. We believe the
discrepancy to be due to the inherent attributes of
performing unlearning: since we are doing gradient
ascent, we are likely softening the probability to
generate each token from the vocabulary, giving
it a more uniform distribution that will inevitably
result in a higher perplexity. However, since it does
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Table 4: All of the individual runs for the Main Results

Model (s) # EL10 MA Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg. EpochParams (%) ↓ (%) ↓ (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

NEO 125M 30.9 77.4 28.2 37.6 51.8 62.0 45.6 22.0 63.3 22.5 57.6 43.4 -
∆ - - - +0.2 +8.0 +1.9 +5.0 +0.0 +2.2 +0.0 +0.3 +0.0 +2.0 -

NEO + UL+ (s = 1)

125M 3.1 28.1 28.1 41.0 52.5 62.0 43.2 21.0 63.0 22.8 57.6 43.5 14.0
125M 0.0 27.6 28.1 24.9 50.8 67.0 42.3 23.7 62.8 21.9 57.6 42.1 10.0
125M 0.0 27.1 28.1 42.1 52.5 63.0 44.1 20.3 62.6 22.5 57.6 43.7 5.0
125M 0.0 25.6 28.2 44.9 52.0 62.0 41.8 21.4 62.6 22.2 57.6 43.6 11.0
125M 0.0 28.1 28.4 33.9 51.5 66.0 44.8 21.7 62.8 22.3 57.6 43.2 10.0

NEO + UL+ (s = 4)

125M 0.9 28.8 27.8 44.1 51.9 52.0 37.4 19.7 60.5 22.3 57.6 41.5 16.0
125M 0.0 28.6 27.4 2.5 49.4 59.0 38.6 23.1 60.5 21.2 43.8 36.2 19.0
125M 3.6 28.8 27.7 33.4 51.8 55.0 37.7 21.0 61.0 22.3 57.6 40.8 20.0
125M 2.6 28.9 27.6 29.9 52.4 50.0 36.5 19.0 60.3 22.2 57.6 39.5 18.0
125M 0.0 28.4 27.6 6.7 49.7 61.0 42.5 22.7 61.0 21.4 50.6 38.1 16.0

NEO + UL+ (s = 8)

125M 0.0 28.5 27.6 35.0 51.8 51.0 37.6 18.0 60.1 22.4 57.6 40.1 16.0
125M 2.2 28.1 27.7 5.4 49.6 62.0 40.6 21.0 61.2 21.8 52.4 38.0 19.0
125M 0.3 29.6 28.0 41.2 52.2 55.0 40.2 21.4 61.0 21.9 57.6 42.0 18.0
125M 5.0 25.3 27.4 1.3 49.6 65.0 37.6 24.4 59.2 21.2 33.8 35.5 23.0
125M 0.0 28.2 27.9 5.3 50.5 61.0 41.6 22.4 60.7 21.5 51.4 38.0 18.0

NEO + UL+ (s = 32)

125M 0.3 28.4 27.2 42.3 53.7 56.0 38.1 21.0 59.7 22.4 57.6 42.0 20.0
125M 0.8 27.1 27.0 17.1 52.4 53.0 34.0 20.0 59.8 21.5 57.6 38.0 18.0
125M 0.2 24.1 27.3 45.6 51.9 50.0 38.6 20.7 59.6 22.6 57.6 41.5 13.0
125M 3.0 28.7 27.5 2.6 49.2 59.0 37.7 21.4 58.4 20.9 46.8 35.9 20.0
125M 0.7 28.5 27.3 44.5 53.0 54.0 39.0 20.3 59.5 22.5 57.6 42.0 15.0

NEO + UL+ (s = 128)

125M 1.3 28.1 27.1 4.6 50.5 58.0 37.9 21.3 57.5 21.4 47.8 36.2 16.0
125M 3.1 27.5 26.9 1.8 50.5 60.0 36.4 22.3 56.6 21.2 41.8 35.3 18.0
125M 3.9 26.7 27.0 3.9 50.9 59.0 35.2 21.3 56.0 21.3 49.6 36.0 17.0
125M 2.4 26.6 26.9 2.7 50.2 56.0 35.9 22.3 57.2 21.2 43.8 35.1 16.0
125M 3.8 27.3 27.0 6.4 50.9 57.0 37.3 21.3 57.2 21.2 52.0 36.7 17.0

NEO 1.3B 67.6 92.2 37.0 57.4 54.8 70.0 56.6 25.8 70.4 21.9 53.8 49.8 -
∆ - - - +0.4 +10.1 +2.1 +2.0 +1.1 +3.4 +0.3 +0.4 +3.8 +2.6 -

NEO + UL+ (s = 1)

1.3B 0.0 27.6 36.8 52.1 54.7 72.0 55.9 27.8 69.7 21.5 53.0 49.3 9.0
1.3B 0.0 30.2 36.6 54.6 54.9 69.0 55.4 26.8 70.7 21.7 53.4 49.2 6.0
1.3B 0.0 29.7 36.7 58.2 55.4 70.0 56.1 25.4 69.9 22.0 53.2 49.7 4.0
1.3B 0.0 32.2 37.1 52.4 53.7 68.0 56.1 24.4 70.1 21.8 54.2 48.6 8.0
1.3B 0.0 27.6 37.3 60.1 55.6 70.0 57.5 25.1 70.0 21.7 55.2 50.3 10.0

NEO + UL+ (s = 4)

1.3B 0.0 30.3 37.3 48.3 54.4 70.0 55.0 29.2 69.9 20.6 56.0 49.0 12.0
1.3B 0.0 29.7 36.8 49.4 53.4 69.0 55.2 26.8 70.6 21.4 52.8 48.4 9.0
1.3B 1.0 29.2 36.8 51.3 54.9 70.0 55.2 26.8 70.3 21.5 54.0 49.0 10.0
1.3B 4.8 31.4 37.2 59.2 54.8 71.0 54.9 25.8 69.5 21.9 50.2 49.4 10.0
1.3B 1.7 31.8 37.0 58.4 54.4 71.0 57.7 24.7 70.2 22.0 54.0 49.9 9.0

NEO + UL+ (s = 8)

1.3B 0.3 29.7 37.1 66.5 54.5 70.0 52.0 26.8 69.4 21.7 56.8 50.5 13.0
1.3B 1.9 29.5 36.8 43.0 53.1 71.0 51.3 27.5 70.4 21.0 42.4 46.3 13.0
1.3B 0.2 26.2 37.2 47.3 54.2 72.0 55.2 25.8 70.4 21.8 54.8 48.7 12.0
1.3B 3.1 32.0 37.4 57.6 54.3 70.0 56.1 26.8 69.8 21.5 54.8 49.8 14.0
1.3B 1.4 32.0 37.1 57.4 54.5 71.0 57.0 26.1 70.0 21.9 54.2 49.9 11.0

NEO + UL+ (s = 32)

1.3B 0.7 33.0 36.5 63.2 55.9 70.0 52.4 25.1 69.7 21.8 55.4 50.0 13.0
1.3B 1.7 29.8 36.7 50.9 53.5 71.0 56.3 27.8 70.7 22.0 39.4 47.6 14.0
1.3B 0.7 28.4 37.0 64.8 56.9 69.0 54.3 26.4 69.1 21.9 55.8 50.6 13.0
1.3B 4.2 31.2 35.8 67.5 55.3 67.0 51.5 25.4 68.1 21.3 56.6 49.8 14.0
1.3B 2.1 29.5 35.8 63.9 55.7 70.0 54.1 26.4 69.5 22.3 56.8 50.5 15.0

NEO + UL+ (s = 128)

1.3B 0.4 24.5 31.1 54.2 55.2 69.0 53.2 24.7 66.1 21.9 56.4 48.0 6.0
1.3B 4.9 19.8 27.8 2.2 54.8 69.0 50.9 23.3 57.9 21.8 55.8 40.4 8.0
1.3B 4.2 30.2 30.6 41.6 55.1 69.0 54.4 26.0 63.8 22.1 55.0 46.4 6.0
1.3B 2.9 23.6 27.6 8.8 52.9 68.0 44.5 18.9 57.7 21.6 57.4 39.7 9.0
1.3B 1.3 23.1 28.5 48.6 55.5 69.0 48.8 21.6 62.3 22.2 57.6 46.0 8.0

NEO 2.7B 70.4 93.4 40.8 62.2 56.4 75.0 59.6 25.4 73.0 21.4 57.0 52.3 -
∆ - - - +0.8 +7.9 +1.0 +0.0 +1.5 +4.3 +0.3 +1.1 +1.0 +2.0 -

NEO + UL+ (s = 1)

2.7B 0.0 3.0 40.8 62.2 56.6 72.0 55.7 26.4 73.1 21.8 57.6 51.8 10.0
2.7B 0.0 23.6 40.5 56.8 54.4 74.0 59.6 26.1 72.8 21.3 56.6 51.3 8.0
2.7B 0.0 27.6 40.6 62.5 57.0 75.0 59.1 24.7 73.0 21.5 56.6 52.2 6.0
2.7B 0.0 20.6 40.5 60.3 55.8 74.0 58.9 25.8 73.0 21.7 57.2 51.9 10.0
2.7B 0.0 29.7 40.6 62.2 56.4 72.0 58.0 27.1 72.2 21.2 57.4 51.9 9.0

NEO + UL+ (s = 4)

2.7B 0.4 22.6 41.5 60.0 54.9 72.0 55.0 26.4 69.9 21.3 57.8 51.0 12.0
2.7B 0.0 30.0 41.6 46.5 53.4 71.0 55.6 25.1 72.0 21.3 57.2 49.3 9.0
2.7B 0.7 23.7 40.4 59.7 54.9 74.0 58.7 23.7 72.5 20.8 57.4 51.3 9.0
2.7B 3.2 32.4 41.2 67.2 56.0 73.0 57.3 28.1 73.3 22.3 57.2 52.8 8.0
2.7B 0.2 31.9 40.3 61.2 55.7 74.0 60.0 27.5 72.0 21.4 57.2 52.1 10.0

NEO + UL+ (s = 8)

2.7B 0.3 29.5 41.2 64.6 55.4 71.0 52.9 27.1 69.5 21.7 58.0 51.3 10.0
2.7B 2.1 26.4 40.6 48.7 52.9 67.0 55.0 25.8 72.1 21.8 57.2 49.0 11.0
2.7B 0.5 31.2 41.1 54.1 55.0 74.0 59.3 25.1 72.5 22.1 57.4 51.2 11.0
2.7B 1.9 33.8 40.7 65.7 57.4 72.0 58.4 27.1 72.6 21.9 57.0 52.5 8.0
2.7B 0.0 20.4 40.0 60.7 55.8 73.0 60.1 28.5 72.5 21.5 57.2 52.2 11.0

NEO + UL+ (s = 32)

2.7B 0.6 31.7 40.8 68.2 56.1 68.0 54.4 28.0 71.9 21.4 57.0 51.8 11.0
2.7B 1.1 32.4 40.9 56.9 55.6 69.0 58.1 26.7 71.8 22.1 56.8 50.9 10.0
2.7B 1.2 29.0 41.5 65.8 56.9 68.0 59.3 27.0 72.0 22.3 57.8 52.3 11.0
2.7B 3.4 29.9 39.7 70.1 57.7 68.0 54.8 29.7 71.6 22.0 57.6 52.4 11.0
2.7B 1.9 31.9 41.4 61.6 56.6 73.0 61.1 26.4 72.7 21.7 57.0 52.4 11.0

NEO + UL+ (s = 128)

2.7B 0.4 31.5 35.3 64.2 56.8 68.3 51.8 26.7 70.2 21.9 56.7 50.2 10.0
2.7B 3.8 16.5 26.0 0.4 51.6 57.7 29.0 16.6 54.2 20.0 57.9 34.8 10.0
2.7B 0.6 31.4 34.9 58.9 55.2 69.2 54.8 24.7 70.0 22.5 57.7 49.8 9.0
2.7B 2.2 31.1 31.3 22.9 50.6 62.5 40.0 18.2 60.8 21.3 40.9 38.7 8.0
2.7B 4.7 29.0 33.5 56.5 55.0 66.3 51.9 23.6 68.6 22.4 57.7 48.4 9.0
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Table 5: All of the individual runs for the Domain Analysis Results for GPT-NEO 1.3B LM.

Domains Initial Final Hella. Lamba. Wino. COPA ARC-E ARC-C Piqa MathQ PubQ Avg.
EL10 EL10 (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC) (ACC)

INITIAL - - 37.0 57.4 54.9 70.0 56.6 25.8 70.4 21.9 53.8 49.8

FREELAW

64.6 4.8 37.3 53.5 54.1 68.0 57.5 27.1 70.5 21.5 54.0 49.3
52.0 2.4 37.3 62.9 54.2 67.0 52.9 26.1 69.2 21.5 54.4 49.5
60.6 15.2 36.8 42.0 54.5 67.0 56.6 25.1 70.1 21.7 51.4 47.2
55.2 13.8 37.3 51.4 53.5 69.0 55.4 26.8 70.5 21.9 54.6 48.9
69.5 24.1 37.4 51.4 53.2 71.0 54.9 26.1 70.0 21.8 53.0 48.7

GITHUB (CODE)

67.0 1.2 37.3 51.1 54.1 71.0 57.3 27.1 70.1 21.3 41.2 47.8
56.7 0.3 37.1 49.9 54.9 68.0 56.1 26.4 69.1 21.4 48.4 47.9
62.0 0.2 37.2 50.2 54.2 68.0 56.6 25.8 70.5 21.8 54.4 48.7
60.4 1.1 37.5 59.7 54.7 68.0 55.9 25.4 70.1 21.9 53.8 49.7
73.6 0.0 37.3 55.9 54.1 71.0 55.4 25.4 69.9 21.2 51.4 49.1

GITHUB (LICENSE)

87.5 0.2 37.5 57.4 54.5 68.0 56.8 26.4 70.1 21.8 53.8 49.6
74.3 0.0 37.3 48.9 54.1 70.0 57.1 27.1 70.7 21.7 48.4 48.4
70.7 0.0 36.4 40.6 53.1 70.0 55.2 25.4 70.2 21.8 49.0 46.9
74.8 0.0 37.3 60.3 54.8 69.0 55.9 27.1 70.0 21.5 55.6 50.2
71.8 0.0 37.0 52.6 54.3 68.0 56.8 26.1 69.5 22.0 52.2 48.7

ENRON EMAILS

81.6 0.0 36.4 59.8 55.2 69.0 53.6 27.5 69.0 21.9 54.8 49.7
70.3 0.0 37.2 54.9 54.5 68.0 57.5 25.4 70.1 22.4 51.8 49.1
74.2 0.0 37.1 56.3 55.0 68.0 55.6 25.1 69.8 21.6 54.2 49.2
83.9 0.0 36.7 55.2 54.8 69.0 55.9 25.4 70.4 21.7 52.2 49.0
76.8 0.0 36.9 60.0 54.6 68.0 56.4 28.1 69.9 21.5 52.4 49.7

BOOKS3

59.7 0.0 36.2 39.4 53.9 72.0 55.2 24.4 69.9 21.9 50.0 47.0
65.4 0.0 35.9 65.2 55.7 67.0 53.3 25.1 69.9 21.6 55.8 49.9
71.7 0.0 37.1 47.4 54.6 74.0 57.0 26.8 69.8 21.7 44.2 48.1
74.7 0.0 36.4 40.7 53.4 70.0 55.7 25.4 69.6 21.6 41.2 46.0
79.5 0.0 36.7 54.9 53.6 71.0 56.6 25.8 70.2 21.8 46.0 48.5

PILE CC

74.9 0.0 35.3 30.7 53.0 68.0 55.2 26.4 69.9 22.1 50.4 45.7
68.0 0.0 36.3 45.9 53.4 72.0 55.6 27.1 69.6 21.7 51.4 48.1
71.6 0.0 36.3 48.9 52.9 70.0 55.9 26.4 70.2 21.9 51.8 48.3
57.8 0.0 34.0 66.3 55.7 69.0 49.9 26.1 69.0 21.4 57.4 49.9
66.6 0.0 36.4 37.7 54.0 73.0 54.5 28.1 69.9 22.1 49.2 47.2

USPTO BACKGROUNDS

53.7 0.0 30.7 48.4 53.4 68.0 39.0 22.0 64.2 20.7 55.2 44.6
56.7 0.0 31.0 19.4 50.6 69.0 36.9 24.1 63.3 21.2 33.4 38.8
64.9 0.0 36.0 51.4 54.1 68.0 50.8 24.4 70.0 22.1 56.6 48.2
54.6 0.0 35.5 57.2 55.1 65.0 52.0 23.7 68.9 22.0 56.2 48.4
67.2 0.0 35.3 47.4 54.3 65.0 50.8 25.8 68.4 21.7 50.2 46.5

PUBMED CENTRAL

73.8 0.0 35.7 39.0 53.5 69.0 55.6 25.1 69.6 21.9 44.2 46.0
75.1 0.0 36.1 36.3 53.2 69.0 54.1 25.1 69.8 22.6 44.4 45.6
67.4 0.0 37.0 47.5 54.0 71.0 56.3 24.4 69.9 21.1 48.4 47.7
71.1 0.0 37.2 55.3 55.6 68.0 57.0 24.7 70.0 22.0 51.0 49.0
71.9 0.0 36.8 44.4 54.1 71.0 55.0 24.7 70.6 22.1 43.8 46.9

not show much degradation in the LM benchmarks,
it also means that the argmax of the most likely
token to be generated has not changed much. How-
ever, further exploration of what exactly knowledge
unlearning does to the representations of the LM
should be done in future work.

C Computation Comparison Between
DEDUPLICATION and Knowledge
Unlearning

We show the FLOPs of pretraining OPT denoted
as DEDUPLICATION and the average FLOPs of
performing knowledge unlearning until s = 32
token sequences reach the Forgetting Threshold
denoted as UNLEARNING in Table 8. We calculate
FLOPs by (6 × Total Training Tokens × Parameter
Size) following Brown et al. (2020).

D Varying the Learning Rate

In Figure 3, we show the results of varying the
learning rate for knowledge unlearning where we
fix the total epoch to 10 and perform 3 random
runs with s = 32 on the GPT-NEO 1.3B. Overall,
we observe that higher learning rates lead to faster
forgetting, but with substantial LM performance
degradation. While lower learning rates retain the
LM performance, they fail to meet the Forgetting
Threshold within 10 epochs. Thus, we set the learn-
ing rate to 5e-5 for our experiments to get the best
trade-off.

E Individual Task Performance During
Knowledge Unlearning

To show exactly what happens to the LM during
knowledge unlearning, we show how the perfor-
mance of each of the LM benchmarks changes as
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Table 6: All of the individual runs for s = 32 for the dialogue tasks in the Main Results.

Model (s) # EL10 MA WoW ED BST WoI Avg. EpochParams (%) ↓ (%) ↓ (F1) (F1) (F1) (F1) (F1)

NEO 125M 30.9 77.4 8.4 8.4 9.6 11.2 9.4 -
∆ - - - +0.0 +0.0 +0.0 +0.0 +0.0 -

NEO + UL+ (s = 32)

125M 0.3 28.4 1.6 1.8 0.9 1.8 1.5 20.0
125M 0.8 27.1 0.1 0.1 0.0 0.0 0.0 18.0
125M 0.2 24.1 6.9 6.7 7.0 7.9 7.1 13.0
125M 3.0 28.7 2.1 2.5 1.4 2.3 2.1 20.0
125M 0.7 28.5 2.0 3.5 1.3 2.2 2.2 15.0

NEO 1.3B 67.6 92.2 9.6 10.5 12.2 13.7 11.5 -
∆ - - - +2.3 +0.0 +0.0 +0.0 +0.0 -

NEO + UL+ (s = 32)

1.3B 0.7 33.0 10.0 8.4 9.3 10.9 9.6 13.0
1.3B 1.7 29.8 11.9 8.4 10.6 12.4 10.8 14.0
1.3B 0.7 28.4 10.0 8.3 9.5 10.8 9.6 13.0
1.3B 4.2 31.2 6.4 5 4.9 6.8 5.8 14.0
1.3B 2.1 29.5 6.9 5.9 5.9 7.5 6.5 15.0

NEO 2.7B 70.4 93.4 9.2 10.9 12.4 13.6 11.5 -
∆ - - - +3.8 +1.8 +0.0 +0.5 +1.5 -

NEO + UL+ (s = 32)

2.7B 0.6 31.7 10.8 8.6 9.6 11.1 10.1 11.0
2.7B 1.1 32.4 11.9 9.7 11.5 12.1 11.3 10.0
2.7B 1.2 29.0 12.4 10.5 12.0 13.3 12.1 11.0
2.7B 3.4 29.9 8.8 8.2 8.4 10.3 8.9 11.0
2.7B 1.9 31.9 13.0 12.7 12.4 14.1 13.0 11.0

Table 7: Measuring perplexity on Pile and Wikitext
corpora for the main unlearning experiments (Table 2).

Model # Pile Wikitext
Params (PPL) ↓ (PPL) ↓

NEO 125M 17.83 38.27
NEO + UL 125M 34.02 75.24
NEO + UL+ 125M 577.56 1986.07
OPT 125M 32.26 38.74

NEO 1.3B 11.46 18.63
NEO + UL 1.3B 15.56 20.26
NEO + UL+ 1.3B 15.83 26.82
OPT 1.3B 19.55 19.39

NEO 2.7B 10.44 16.15
NEO + UL 2.7B 11.32 16.84
NEO + UL+ 2.7B 17.93 21.13
OPT 2.7B 17.81 16.81

we perform 10 runs of unlearning to the GPT-NEO

(1.3B) model (each run with s = 1) in Figure 4. As
shown in the figure, the LM performance for each
benchmark varies tremendously on which sample
is chosen to be forgotten. Furthermore, the end-
ing time of each run is different, indicating that
some samples are forgotten faster than others. We
also show empirical examples of performing ac-
tual extraction attacks with prefix length of 100 in
Appendix G.

Table 8: Training compute comparison of methods miti-
gating privacy risks in LMs for sizes 125M, 1.3B, and
2.7B measured via FLOPs.

Method (Size) FLOPs

DEDUPLICATION (125M) 2.25E+20
UNLEARNING (125M) 5.28E+13

DEDUPLICATION (1.3B) 2.34E+21
UNLEARNING (1.3B) 6.69E+14

DEDUPLICATION (2.7B) 4.86E+21
UNLEARNING (2.7B) 1.12E+15

F Text Example from Each Domain

We show an example token sequence from each of
the 8 domains used for the analysis section in Table
9.

G More examples of performing
extraction attacks

In addition to the extraction attack example shown
in the analysis section, we provide 3 additional
examples to provide readers with more empirical
examples of how knowledge unlearning ensures
protection against extraction attacks in Table 10.
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Figure 3: Varying the learning rate for unlearning the GPT-NEO 1.3B with s = 32. We report the average
of 3 random samplings and display the standard deviations as the shaded regions. Red dotted lines denote the
memorization accuracy forgetting threshold of the 1.3B model reported in Table 1.

H Additional Results of Sequential
Knowledge Unlearning

We show how the EL10 of each individual chunks
and the average LM performance change as we
perform sequential unlearning in Figure 5. Results
show that the chunks that are forgotten stay forgot-
ten and that later chunks are forgotten much faster
(one or two epochs) compared to the initial chunk.
We hypothesize that this might be because of the
similarity of the token sequences from the 15,000
examples from the Training Extraction Challenge
Benchmark. Also, this result hints at the gener-
alization of unlearning, which we do not further

explore because of the scope of this work.

I The Effect of Varying N for Extraction
Likelihood (EL) Metric

First, we show the Extraction Likelihood (EL) For-
getting Threshold values for n=[5,10,20,40] by
measuring the value on the 10,000 validation in-
stances unseen during training in Table 11. Next,
we show the average LM performance (on the 9
classification benchmarks) where we perform un-
learning on the LM on 32 samples until the target
token sequences are forgotten (the EL & MA value
are both lower than the threshold values) in Table
12. Performance shows the average of 5 random
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Figure 4: Performance on the 9 classification benchmarks as we perform 10 different unlearning runs on GPT-NEO
1.3B where s = 1.

Table 9: Examples from each of the 8 domains from the Pile corpora.

Domain Text

FREELAW

U. S. (2010) 1 Opinion of the Court NOTICE: This opinion is subject to formal revision before publication in the preliminary print of the
United States Reports. Readers are requested to notify the Reporter of Decisions, Supreme Court of the United States, Washington, D. C. 20543,
of any typographical or other formal errors, in order that corrections may be made before the preliminary print goes to press. SUPREME COURT
OF THE UNITED STATES

GITHUB (CODE)

= pc func (iov *Iovec) SetLen(length int) { iov.Len = uint64(length) } func (msghdr *Msghdr) SetControllen(length int) { msghdr.Controllen
= uint64(length) } func (cmsg *Cmsghdr) SetLen(length int) { cmsg.Len = uint64(length) } //sys poll(fds *PollFd, nfds int, timeout int)
(n int, err error) func Poll(fds []PollFd, timeout int) (n int, err error) { if len(fds) == 0 { return poll(nil, 0, timeout) } return poll(&fds[0],
len(fds), timeout)

GITHUB (LICENSE)

## Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files
(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the
following conditions: ## The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the
Software. ## THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE

ENRON EMAILS

To: Hedy Govenar hgovenar@govadv.com , Mike Day MDay@GMSSR.com , Bev Hansen bhansen@lhom.com , Jeff Dasovich jdasovic@
enron.com , Susan J Mara smara@enron.com , Joseph Alamo JAlamo@enron.com , Paul Kaufman paul.kaufman@enron.com , David Parquet
David.Parquet@enron.com , Rick Johnson rick.johnson@enron.com , Marcie Milner mmilner@enron.com , Sandra
McCubbin Sandra.McCubbin@enron.com , Tim Belden Tim.Belden@enron.com

BOOKS3

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada
http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand
http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK
http://www.harpercollinsebooks.co.uk

PILE CC

This website and its associated newspaper adheres to the Independent Press Standards Organisation’s Editors’ Code of Practice. If you have
a complaint about editorial content which relates to inaccuracy or intrusion, then contact the Editor by clicking here. If you remain dissatisfied
with the response provided then you can contact the IPSO by clicking here. Bury Free Press provides news, events and sport features from the
Bury St Edmunds area. For the best up to date information relating to Bury St Edmunds and the surrounding areas visit us at Bury Free Press
regularly or bookmark this page. For you to enjoy all the features of this website Bury Free Press requires permission to use cookies. Find Out
More What is a Cookie? What is a Flash Cookie? Can I opt out of receiving Cookies?

USPTO BACKGROUNDS

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared
according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into
association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly
and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary,
shaping the product. The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not
limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas.

PUBMED CENTRAL

I am pleased to inform you that your manuscript has been formally accepted for publication in PLOS Computational Biology. Your manuscript
is now with our production department and you will be notified of the publication date in due course. The corresponding author will soon
receiving a typeset proof for review, to ensure errors have not been introduced during production. Please review the PDF proof of your manuscript
carefully, as this is the last chance to correct any errors. Please note that major changes, or those which affect the scientific understanding of the
work, will likely cause delays to the publication date of your manuscript. Soon after your final files are uploaded, unless you have opted out, the
early version of your manuscript will be published online. The date of the early version will be your articleś publication date.
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Table 10: Examples performing extraction attacks on token sequences, showing knowledge unlearning provides
protection against extraction attacks. Underlined denotes the model generated text given the prefix of length 100 as
input. For the extraction attack, we utilize a naïve greedy decoding strategy.

Domain Status Text

BOOKS3

Original

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
http://www.harpercollinsebooks.com.au Canada HarperCollins Publishers Ltd. 55 Avenue Road, Suite 2900 Toronto, ON, M5R, 3L2, Canada
http://www.harpercollinsebooks.ca New Zealand HarperCollins Publishers (New Zealand) Limited P.O. Box 1 Auckland, New Zealand
http://www.harpercollinsebooks.co.nz United Kingdom HarperCollins Publishers Ltd. 77-85 Fulham Palace Road London, W6 8JB, UK
http://www.harpercollinsebooks.co.uk

Text

Before

About the Publisher Australia HarperCollins Publishers (Australia) Pty. Ltd. 25 Ryde Road (PO Box 321) Pymble, NSW 2073, Australia
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Table 11: Forgetting Threshold for GPT-NEO LMs for varying n.

Model (Size) EL5(%) EL10(%) EL20(%) EL40(%) MA(%)
Threshold Threshold Threshold Threshold Threshold

GPT-NEO (1.3B) 7.85 5.68 4.07 2.66 33.27

samplings.
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Figure 5: Additional results of sequential unlearning for GPT-NEO 125M, 1.3B, and 2.7B. Red dotted lines denote
the memorization accuracy forgetting threshold reported of each model in Table 1.

Table 12: The average of the 9 classification tasks for
GPT-NEO + UL+ for the 1.3B LM when performing
unlearning until the Forgetting Threshold for each n.

Model (Size) LM Avg. (Acc)

EL5 49.93
EL10 49.93
EL20 49.85
EL40 49.88
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