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Abstract

Existing controllable dialogue generation work
focuses on the single-attribute control and lacks
generalization capability to out-of-distribution
multiple attribute combinations. In this paper,
we explore the compositional generalization for
multi-attribute controllable dialogue generation
where a model can learn from seen attribute
values and generalize to unseen combinations.
We propose a prompt-based disentangled con-
trollable dialogue generation model, DCG. It
learns attribute concept composition by gener-
ating attribute-oriented prompt vectors and uses
a disentanglement loss to disentangle different
attributes for better generalization. Besides,
we design a unified reference-free evaluation
framework for multiple attributes with different
levels of granularities. Experiment results on
two benchmarks prove the effectiveness of our
method and the evaluation metric.

1 Introduction

Recently, large pre-trained language models
(PLMs) like DialoGPT (Zhang et al., 2020),
BlenderBot (Roller et al., 2020) and Meena (Adi-
wardana et al., 2020) can produce fluent and rel-
evant responses for dialogue contexts. However,
the generated responses are often uninformative
and factual inconsistent. Hence, controllable dia-
logue generation (CDG) is proposed to guide di-
alogue generation towards the desired attributes
such as emotions (Zhou et al., 2018), acts (Li et al.,
2017), and personas (Zhang et al., 2018). Previous
work focused on directly fine-tuning the large-scale
PLMs (Keskar et al., 2019) or using an extra at-
tribute discriminator (Krause et al., 2021; Dathathri
et al., 2019) to guide generation. The former is ex-
pensive and requires extensive annotated attribute
labels. The decoding of the latter is computation-
ally intensive, reducing the response fluency and
generation speed.

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.
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Figure 1: The difference of controllability scores on
seen and unseen multi-attribute combinations of CTRL
(Keskar et al., 2019). E-ACC and A-ACC denote emo-
tion accuracy and act accuracy.

Although these methods have made some
progress in CDG, most of them focus on single-
attribute generation where there is only one at-
tribute label like happiness in emotion and pay less
attention to the multi-attribute generation, which is
a more practical setting. Therefore, we are commit-
ted to filling this gap in CDG. Noted that different
from single-attribute, the control signal of the multi-
attribute generation is a combination of multiple
values from different attributes, which faces the
challenge of lacking sufficient annotated attribute-
specific data. We also find state-of-the-art meth-
ods for multi-attribute controllable text generation
(Yang et al., 2022; Qian et al., 2022), which com-
bine controllers learned from single-attribute, only
suitable for discrete attributes with specific labels
(Li et al., 2017) but not for continuous attributes
(Zhang et al., 2018). More importantly, we further
show directly applying all existing models achieves
superior attribute accuracy on seen attribute combi-
nations but drops significantly on unseen combina-
tions, as shown in Figure 1. It proves that previous
work lacks compositional generalization capability
from seen attribute values to unseen combinations.
Besides, the evaluation of controllability in CDG
is severely limited by attribute types and annotated
attribute data (Du and Ji, 2021), which is not ap-
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My favorite food is pizza. 
 I prefer winter.

 I love the rain.

 I drive a van.

My mom is a nurse.  

 I don’t drive. 

 I work at a bookstore. 

 I never knew my dad.

My mom is a nurse.   
 I prefer winter.

 I love the rain.

 I never knew my dad.

sadness, inform

surprise, question

surprise, inform

Discrete attribute of DailyDialog

Continuous attribute of Convai2

Seen

combinations
Unseen

Combination

Figure 2: Examples of the compositional generalization
for coarse-grained discrete attributes and fine-grained
continuous attributes.

plicable to all cases. Therefore, it is valuable to
explore a unified and efficient evaluation metric.

In this paper, we try to explore the composi-
tional generalization for multi-attribute control-
lable dialogue generation where a model could
learn from seen attribute values and generalize to
unseen combinations. Figure 2 shows two granu-
larities of multi-attribute compositional generaliza-
tion, where the token-level attribute labels are re-
garded as coarse-grained discrete attributes and the
sentence-level attribute descriptions are regarded as
fine-grained continuous attributes. Specifically, we
propose a Disentangled Controllable Generation
model (DCG), for compositional generalization
in multi-attribute controllable dialogue generation.
Inspired by prompt learning (Lester et al., 2021),
we adopt the attribute values in a combination as
attribute-oriented prompts to elicit knowledge from
PLMs where the prompts for all instances learn
a shared transformation layer, instead of learning
an independent prompt representation for each at-
tribute value (Clive et al., 2022; Qian et al., 2022;
Yang et al., 2022). Our method helps transfer at-
tribute concepts from seen values to unseen combi-
nations by learning different prompt embeddings
and is easily applied to attribute combination with a
huge number of discrete or continuous attribute val-
ues. To further disentangle different attribute val-
ues, we construct a set of pseudo combinations and
design a novel objective of controllable attribute
combinations for prompt-tuning, which separates
desired attribute combination from others.

Furthermore, to unify the evaluation of differ-
ent granularity attributes, we design a novel and
general reference-free evaluation framework, i.e.
Multiple Attribute Evaluation (MAE), to mea-
sure the consistency between desired seen/unseen

attribute combinations and generated responses.
Specifically, the evaluation of each attribute is con-
verted to a text-to-text generation task based on
T5 (Raffel et al., 2020) with handcrafted templates,
and the generated probability of "yes" is regarded
as the controllability score. To mitigate the poten-
tial bias of different handcrafted modalities (Zhao
et al., 2019; Ke et al., 2022), we add a trainable
continuous prompt to improve stability and robust-
ness. Through human evaluation, we show that
our proposed evaluation metric can handle both
coarse-grained discrete attributes and fine-grained
continuous attributes well.

Our contributions are as follows: (1) To the
best of our knowledge, we are the first to explore
the compositional generalization for multi-attribute
controllable dialogue generation and find exist-
ing models lack generalization capability to out-
of-distribution multi-attribute combinations. (2)
We propose a disentangled controllable genera-
tion, DCG, which learns attribute concepts from
seen values to unseen combinations via a shared
mapping of attribute-oriented prompts and uses a
disentanglement loss to disentangle different at-
tribute combinations. (3) We introduce a unified
reference-free evaluation framework, MAE, for dif-
ferent granularities of attributes. Two benchmarks
are established and sufficient experiment results
prove the effectiveness of our method and evalua-
tion metric.

2 Related Work

Controllable Dialogue Generation Currently,
there have existed many studies on CDG (Zhou
et al., 2018; Li et al., 2017; Zhang et al., 2018).
CTRL (Keskar et al., 2019) used 55 kinds of at-
tribute control codes to finetune an LM which is ex-
pensive and requires extensive annotated attribute
labels. Krause et al. (2021); Dathathri et al. (2019);
Yang and Klein (2021); Lin and Riedl (2021) ad-
dressed these limitations by employing an attribute
discriminator to update the hidden activations or
re-weight the next token distributions, resulting in
a slow inference speed. Despite the progress, these
models all focus on the single-attribute CDG where
the attribute only contains coarse-grained discrete
values, such as happiness in emotion-controlled
generation. It is also vital to explore multi-attribute
CDG with multi-granularity attributes. Recently,
some works (Yang et al., 2022; Qian et al., 2022)
extend to multi-attribute controllable text genera-
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tion by simply concatenating the prefixes trained
for single attribute. However, they are only suit-
able for discrete attributes but not for fine-grained
continuous attributes like personas (Zhang et al.,
2018). Besides, we find all these methods have a
large performance drop from seen attribute values
to unseen combinations. Therefore, in this paper,
we are the first to explore the compositional gen-
eralization for multi-attribute CDG where a model
could learn from seen attributes and generalize to
out-of-distribution (OOD) combinations.
Compositional Generalization in NLP Compo-
sitional generalization has gradually attracted the
interest of NLP researchers. The main application
is in semantic parsing, involving grammar-based
approaches (Herzig and Berant, 2021), data aug-
mentation strategies (Oren et al., 2020), disentan-
gled representations (Zheng and Lapata, 2022), etc.
Recently, a large-scale benchmark, STYLEPTB, is
constructed to advance the development of com-
positional style transfer (Lyu et al., 2021), and
a template-based input representation is also per-
formed on the data-to-text task (Mehta et al., 2022).
Overall, the application of compositional general-
ization in NLP tasks is not widespread and there is
no related work on CDG at all.
Prompt Learning Prompt-based methods have
achieved significant success in many NLP fields
(Lester et al., 2021; Schick and Schütze, 2021). Li
and Liang (2021) proposed the task-specific con-
tinuous prompts to finetune a NLG model. For
controllable generation, Clive et al. (2022); Qian
et al. (2022); Yang et al. (2022) applied the prompt
learning to represent each attribute value as an in-
dependent prefix. However, those methods are im-
practical for fine-grained attributes with a large
value set. In contrast, we use the control codes
to generate attribute-oriented prompts to guide the
generation via a shared MLP layer.

3 Problem Formulation

Given a predefined set of attributes X =
{A,B,C, ...}, each attribute contains various val-
ues A = {a1, ..., ak} and k is the number of val-
ues of attribute A. Multi-attribute controlled di-
alogue response generation aims to generate re-
sponses r that satisfy multiple desirable attributes
c = (a1, b2, ...) conditioned on the dialogue history
d, where a1 and b2 are one value of the attribute
A and B, and c ∈ Cv is a combination of attribute
values. It can be symbolized as p(r|d, a1, b2, ...),

(surprise, inform) dialogue context randomly initialized tokens

Embedding Embedding Embedding

DialoGPT
(anger, inform )

(anger, question)

(sadness, inform)

response 4response 3response 2response 1

PLML

Pseudo 

Combinations

MLP

… …

DL

Figure 3: Overall architecture of our DCG model.

(a1 ∈ A, b2 ∈ B, ...).
In this paper, we further focus on the multi-

attribute compositional generalization, where the
combinations of multiple attribute values for the
training set and the test set are disjoint, i.e.,
Cv,train ∩ Cv,test = ∅.

4 Methodology

As shown in Figure 3, our model is on the basis of
the framework of DialoGPT (Zhang et al., 2020)
with the compositional prompt module.

4.1 Compositional Prompt

4.1.1 Prompt Design
To better use the control signals, we design two
types of prompts to elicit the attribute-related infor-
mation from the PLM:
Attribute-oriented Prompt We use the combina-
tion of controlled attribute values corresponding
to each instance as prompts to guide the model to
focus on the controlled information in the dialogue.
Here, the controlled attribute values are discrete
attribute labels in DailyDialog or continuous at-
tribute descriptions in ConvAI2. The multiple at-
tribute values ai,· in the corresponding combination
c are simply concatenated as an attribute-oriented
prompt sequence, i.e., patt = [a1, b2, ...]. We en-
code the prompt tokens using the word embedding
layer of a pre-trained DialogGPT and then employ
a shared MLPθ1 to generate the embeddings Eatt

of the attribute-oriented prompts. Note that we
don’t require independent parameters for each at-
tribute value like Clive et al. (2022); Qian et al.
(2022); Yang et al. (2022), but only a shared trans-
formation MLP layer.
Task-oriented Prompt Although attribute-oriented
prompts capture the instance-specific control sig-
nals, the dialogue response generation task also is
guided by the instance-independent global features.
Following Lester et al. (2021), we adopt a series
of randomly initialized tokens as the task-oriented
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prompt, i.e., ptask = [p1, ..., pm], where m is the
length of the task-oriented prompt sequence. We
look up this prompt sequence in the randomly ini-
tialized embedding table Mθ2 and get the prompt
embeddings Etask.

Finally, we concatenate the two prompt em-
beddings as the whole prompt embeddings, i.e.,
Ep = [Eatt;Etask].

4.1.2 Disentanglement Learning
Given an instance (d, c), d is the dialogue history
and c is the combination of controllable attribute
values. To force the model to distinguish differ-
ent combinations of multiple attribute values, we
design some pseudo combinations to enhance the
diversity of the prompts, which improves the gen-
eralization ability of our model. A disentangle-
ment loss LD is further introduced to disentangle
the combination representations and train multiple
compositional prompts simultaneously:

LD = −log
P (r|d, c)

P (r|d, c) +∑
c′∈Cpse

P (r|d, c′)
(1)

where Cpse is the set of pseudo combinations and
at least one value in the combination c

′
is differ-

ent from the corresponding value in the golden
combination.1 Here, we maximize the gener-
ated likelihood of the desirable positive combina-
tion P (r|d, c) against the generated likelihood of
pseudo combinations P (r|d, c′) to generate more
controllable responses relevant to given attributes.

4.2 Training Strategy

We use DialoGPT (Zhang et al., 2020) as the back-
bone of our model. Given the dialogue history d,
the embedding Ed is obtained by DialoGPT. Then,
the embeddings of the prompt sequence Ep are
prepended to the Ed as a whole input embedding
matrix. Overall, the PLM loss is calculated as:

LPLM = −
T∑

t=1

log pθ1,θ2,φ(yt|y<t, d, patt, ptask)

(2)
where T is the length of generated sequence, i.e.,
the dialogue history and response. φ is the pa-
rameter of the PLM and is fixed. The parameters
of two prompts, θ1 and θ2, are the only updated
parameters. Therefore, the training loss L is the

1We find constructing pseudo combinations with at least
one different attribute value is slightly better than with all
different attributes in the experiments.

Prompt Tokens Response

Prompt Tokens Attribute Value The [attribute]…[MASK]

Encoder

Decoder

yes

...

Mh

Me

day
Probability 

(Controllable Score)

Figure 4: Overview of our evaluation model, MAE.

weighted sum of the disentanglement loss and the
PLM loss:

L = αLD + (1− α)LPLM (3)

When the training is completed, we save all pa-
rameters of the prompt module. During the infer-
ence, the data from the test set is mapped to the
representations of prompts only via the embedding
matrices, where the features of the attributes seen
in the training set can be transferred to the unseen
combinations.

5 Method of MAE

To fill the gap in metrics for multi-attribute con-
trollable dialogue generation, we propose a unified
and efficient evaluation framework without addi-
tional large-scale labeled data, as shown in Figure
4, which converts the evaluation of each attribute to
a unified text-to-text generation task, just like Gu
et al. (2022). T5 (Raffel et al., 2020) is used as the
base model for our work. A template is designed
as discrete prompts, i.e., "The emotion/act/persona
controls the response [MASK]". To alleviate the
potential bias of different handcrafted patterns (Ke
et al., 2022), we further add a trainable continu-
ous task-oriented prompt to improve stability and
robustness.

Specifically, the continuous prompt sequence is
prepended to the response as a prefix, which makes
up the input of the encoder. Another continuous
prompt sequence, the attribute values, and the tem-
plate are concatenated and fed to the decoder. We
take the probability of generating "yes" correspond-
ing to [MASK] token as the controllability score.
In training process, only embeddings of continuous
prompts are updated and the parameters of T5 are
fixed. Note that our model-based evaluation ap-
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Split DailyDialog-CG ConvAI2-CG
Size Turn.num Att_com.num Dial.len Res.len Size Turn.num Att_com.num Dial.len Res.len

Train 12,504 6.8 18 77.6 12.9 18,000 5.0 11,566 46.5 11.7
Validation 1,390 6.5 18 75.0 13.0 2,000 5.0 1,883 46.8 11.6
Test 1970 6.0 6 69.6 13.9 2,000 5.0 873 46.1 11.6

Table 1: Statistics of DailyDialog-CG and ConvAI2-CG ("CG" means compositional generalization). "Size" and
"Att_com.num"denote the numbers of examples and attribute combinations. "Turn.num" are the average number
turns per example. "Dial.len" and "Res.len" are the average lengths of dialogue history and response.

proach gets rid of the reliance on golden response
when tested and can be uniformly applied to vari-
ous granularities of attributes.

6 Experiments

6.1 Datasets

We construct two datasets based on DailyDialog
(Li et al., 2017) and ConvAI2 (Dinan et al., 2020)
for compositional generalization in multi-attribute
controllable dialogue response generation.
DailyDialog-CG DailyDialog is an open-domain
dialogue dataset with two controllable attributes:
emotion and act. Here, we treat the labels of the
two attributes as an attribute combination, e.g., (sur-
prise, inform). For dialogues, each utterance with
two attribute labels is regarded as the response and
all preceding texts of this utterance are considered
as the corresponding dialogue history. In this way,
we get 14,879 examples. We count the attribute
combinations labeled in all examples, 18 of which
are selected as Cv,train and the other 6 are Cv,test.
Then, the examples are divided into the training set
and test set according to the combination set. We
also extract 10% samples from the training set as
the validation set.
ConvAI2-CG ConvAI2 is a persona-based dia-
logue dataset in which the persona profile of each
dialogue is consisting of 4 or 5 personalized sen-
tences. We treat each sentence as an attribute value
and the sentences in the same position belong to
the same attribute. The persona profile is regarded
as an attribute combination, e.g., ("My mom is my
best friend.", "I’ve four sisters.", "I believe that
mermaids are real.", "I love iced tea."). For each
dialogue, we choose the first 4 utterances as the
dialogue history and the 5th utterance as the re-
sponse. Consistent with the processing method of
DailyDialog-CG, we select 11,566 combinations as
Cv,train

2 and the other 873 combinations as Cv,test.

2The 1,883 combinations of the validation set are included
in the 11,566 combinations of the training set.

After that, we obtain the corresponding training set,
validation set, and test set.

The statistics about the two datasets are shown
in Table 1.

6.2 Baselines

We compare our methods with several competitive
baselines. The common dialogue generation mod-
els are included: (1) DialoGPT-Ori (Zhang et al.,
2020); (2) FUDGE (Yang and Klein, 2021); (3)
PPLM (Dathathri et al., 2019); (4) Cocon (Chan
et al., 2020); (5) Fine-tuning; (6) CTRL (Keskar
et al., 2019). We also implement some prompt-
based methods for comparison: (1) Prompt-tuning
(Lester et al., 2021); (2) CatPrompt (Yang et al.,
2022). More details can be seen in Appendix A3.

6.3 Evaluation Metrics

In this work, we focus on evaluating the attribute
controllability and text quality for different control-
lable generation methods.
Attribute Controllability It aims to evaluate
whether the method can generate responses con-
strained by multiple attributes successfully.

1. For the control of coarse-grained discrete
attributes in DailyDialog-CG, we use the classifi-
cation accuracy, i.e., E-ACC and A-ACC, for each
attribute computed by an independently trained
Roberta classifier (Liu et al., 2019), respectively.

2. For the control of fine-grained continuous
attributes in ConvAI2-CG, we calculate the co-
sine similarity between the representations of at-
tribute sentences and the generated response, i.e., P-
SIM(Du and Ji, 2021). We also evaluate the model
by measuring the consistency of attribute sentences
with the generated response via a Roberta-based
Natural Language Inference (NLI) model, i.e., P-
NLI(Madotto et al., 2019).

3. We propose a unified model-based evalua-
tion metric, i.e., MAE, for various granularities of

3Our code, models and other related resources are publicly
available at https://github.com/Zeng-WH/Seen-to-Unseen.
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Controllability Text Quality
Method E-ACC ↑ E-MAE ↑ A-ACC ↑ A-MAE ↑ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

DialoGPT-Ori 50.36 60.46 27.82 31.61 11.53 1.58 9.03
FUDGE 60.10 64.29 27.21 29.21 12.24 1.13 8.67
PPLM 51.57 56.87 33.60 33.71 11.77 1.34 9.26
CoCon 52.79 59.99 29.44 34.51 6.91 0.42 11.50
Fine-tuning 62.74 66.77 35.66 37.02 21.64 10.19 19.15
CTRL 67.34 69.55 33.50 36.15 24.76 11.42 20.45
Prompt-tuning 57.06 62.78 30.36 32.53 19.71 7.36 15.13
CatPrompt 60.91 66.50 36.75 38.43 24.07 11.17 20.72
DCG (ours) 70.66 72.61 38.98 41.63 26.33 14.16 24.57
DCG w/o AOP (Prompt-tuning) 57.06 62.78 30.36 32.53 19.71 7.36 15.13
DCG w/o TOP 66.80 68.02 41.83 41.50 19.18 6.74 15.63
DCG w/o DL 60.41 64.57 38.07 39.45 22.45 9.20 19.55

Table 2: The performance of compositional generalization in multi-attribute controllable dialogue generation for
DailyDialog-CG. "E" and "A" denote controllable attributes of "Emotion" and "Act". "AOP", "TOP", and "DL"
mean attribute-oriented prompt, task-oriented prompt, and disentanglement learning. Results are averaged over
three random runs. ↑ means a higher score is better. (p < 0.01 under t-test)

Controllability Text Quality
Method P-SIM ↑ P-NLI ↑ P-MAE↑ BLEU-1↑ BLEU-2↑ METEOR↑

DialoGPT-Ori 60.16 72.47 23.12 12.33 1.54 8.95
PPLM 59.90 75.98 25.03 13.20 1.65 9.06
Fine-tuning 65.48 69.50 19.21 16.53 2.40 10.96
CTRL 65.20 77.65 26.12 18.39 3.12 12.23
Prompt-tuning 64.84 74.30 24.56 17.59 2.60 11.22
DCG (ours) 69.03 81.20 30.42 19.55 2.68 12.42
DCG w/o AOP (Prompt-tuning) 64.84 74.30 24.56 17.59 2.60 11.22
DCG w/o TOP 67.35 78.50 28.44 12.18 1.05 7.61
DCG w/o DL 68.25 79.00 28.53 18.34 2.39 11.63

Table 3: The performance of compositional generalization in multi-attribute controllable dialogue generation for
ConvAI2-CG. "P" denotes controllable attribute of "Persona". Results are averaged over three random runs. ↑
means a higher score is better. (p < 0.01 under t-test)

attributes, the details can be seen in Section 5.
Text Quality We use the BLEUs (Papineni et al.,
2002) and METEOR (Banerjee and Lavie, 2005)
to measure the match scores between generated
responses and ground-truth references.

6.4 Main Results

Results on DailyDialog-CG Table 2 presents the
results of controllable dialogue generation about
unseen attribute combinations for DailyDialog-
CG. 4 We conduct experiments based on some
strong controllable dialogue generation models
and novel prompt-based methods. In general, our
DCG outperforms all other baselines in terms of
attribute controllability and text quality. Compared
to CTRL, our model improves by 1.6%, 2.7%, 4.1%
in BLEU-1, BLEU-2, METEOR for text quality,
and 3.3%, 3.1%, 5.5%, 5.5% in E-ACC, E-MAE,
A-ACC, A-MAE for attribute controllability. We
also find the FUDGE and PPLM, two methods
based on the decoding strategy, perform poorly

4Our DCG improves text quality and controllability. The
BLEUs seem low because we adopt the same calculation as
ParlAI (Miller et al., 2017), which is lower than results in (Li
et al., 2017) for different smooth functions.

here, especially in text quality, which illustrates
the incompatibility of these decoding strategies
for combinatorial generalization. Besides, as ob-
served, Catprompt is a relatively well-performing
prompt-based baseline, but it is still far worse than
our method. This is because it directly concate-
nates all trained single-attribute prompts as the
multi-attribute prompt for test. This inconsistency
between training and testing stages decreases the
performance. Different from these methods, our
method optimizes the language modeling loss only
based on discrete prompts for attribute combination
and continuous task-oriented prompt, which can
focus on the features of multiple attributes at the
same time also during the training and achieve a
better transfer via a learnable mapping.

Besides, we also concern whether DCG bene-
fits from attribute-oriented prompt, task-oriented
prompt, and disentanglement learning. We find
that DCG w/o AOP is the same with Prompt-tuning
and it performs poorly in attribute controllability,
which shows attribute-oriented prompt plays an im-
portant role in guiding the model to focus on the
controlled information. After removing the task-
oriented prompt, the DCG w/o TOP decreases to
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19.18%, 6.74%, and 15.63% on text quality, but
still maintains high controllability. It proves task-
oriented prompt helps improve text quality. We
also conduct experiments to prove that TOP can
improve text quality when combined with other
methods. (See Appendix H). Besides, after remov-
ing disentanglement learning, the DCG w/o DL
drops significantly, which shows disentanglement
learning effectively disentangles attribute combi-
nations and improves the ability of compositional
generalization.
Results on ConvAI2-CG Table 3 presents the re-
sults of generalization on unseen attribute combi-
nations for ConvAI2-CG. Due to the diversity of
attribute values and attribute combinations, it is
very difficult to implement CatPrompt in ConvAI2-
CG. Therefore, we remove this baseline. We also
remove FUDGE and Cocon for their poor gener-
ation quality and slow decoding speed, which is
shown in Table 2 and Table 5. We can observe that
the trend of overall performance is consistent with
that of DailyDialog-CG. Compared to CTRL, our
model achieves a great improvement in attribute
controllability and text quality, which proves the
generality of our methods on the coarse-grained
discrete attribute control and fine-grained contin-
uous attribute control. It also shows the effective-
ness of our method when more attributes are com-
bined. However, all BLEU scores are low, which
is because the ConvAI2-CG has more diverse and
complex attribute combinations and leads to the
instability of models facing new attribute combina-
tions. Generally, the results show that the compo-
sitional generalization for multi-attribute control-
lable dialogue generation is necessary and mean-
ingful. Noted that we also conduct experiments on
the setting with changed number of attributes from
training to inference (See in Appendix G).

7 Qualitative Analysis

7.1 Comparison between Seen and Unseen
Attribute Values

Figure 5 displays the comparison of the perfor-
mance on seen and unseen attribute combinations
for DailyDialog-CG. We report the controllabil-
ity metrics, E-ACC (emotion) and A-ACC (act),
and the BLEUs of the Fine-tuning, CTRL, and our
DCG. The top of each box denotes the result of seen
attribute combinations and the bottom represents
unseen attribute combinations. We find all meth-
ods achieve significantly superior performance on

seen attribute combinations than on unseen com-
binations. For example, CTRL achieves 71.27%
E-ACC and 43.15% A-ACC on seen attribute com-
binations but drops to 67.34%(-3.93) and 33.50%(-
9.65) on unseen combinations. It strongly proves
previous methods suffer from the difficulty of com-
positional generalization for the multi-attribute con-
trollable dialogue generation. However, we find our
proposed DCG can greatly alleviate this gap. The
DCG has a smaller drop of 0.41% and 0.11% for
E-ACC and A-ACC, and it also outperforms CTRL
on both controllability and text equality of unseen
attribute combinations. The results confirm the
effectiveness of our method for transferring seen
attributes to unseen combinations. We find CTRL
achieves a higher A-ACC on seen combinations but
a lower score on unseen combinations than Fine-
tuning, which demonstrates directly adding control
codes may cause overfitting to seen attribute com-
binations.

7.2 Correlation Results on Metrics

Following Guan and Huang (2020), we adopt Pear-
son (r), Spearman (ρ), and Kendall (τ ) correlation
coefficients between our proposed automatic met-
ric, MAE, and human judgments (details can be
seen in Appendix D) to measure the quality of dif-
ferent metrics. Table 4 shows the overall results
on the controllability of coarse-grained discrete
attributes, emotion and act, and the fine-grained
continuous attributes, persona description. We can
observe that our MAE outperforms classic metrics,
E-ACC, A-ACC, P-SIM, and P-NLI, by a large mar-
gin, indicating the effectiveness of our unified met-
ric on different granularities. We also conducted
experiments on some variants of MAE. After the
removal of continuous prompts, the correlation
scores decrease. It is because the task-oriented
prompts are the only parameters can be fine-tuned,
which is important for MAE. We also implement
MAE on another PLM, BART, to demonstrate gen-
erality for our model.
Robustness Analysis To verify the effect of the
bias of the handcrafted template, we design another
two templates. The Template 1 is "The response is
related to the emotion/act/persona [MASK]" and
Template 2 is "The response is about the emo-
tion/act/persona [MASK]". As shown in Table 4,
MAE (T1) and MAE (T2) achieve similar corre-
lation results (within 0.50%) while the results of
MAE w/o Prompt (T1) and MAE w/o Prompt (T2)
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Figure 5: Comparision of performance for Fine-tuning, CTRL, and DCG on seen and unseen multi-attribute
combinations for DailyDialog-CG in terms of E-ACC, A-ACC, BLEU-1, and BLEU-2.

Metrics
DailyDialog-CG ConvAI2-CG

Emotion Act Persona
Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

ACC 0.5242 0.4936 0.4834 0.3852 0.4077 0.4027 \ \ \
P-SIM \ \ \ \ \ \ -0.0683 0.0065 0.0098
P-NLI \ \ \ \ \ \ -0.0881 -0.0741 -0.0706
MAE 0.6821 0.7500 0.6242 0.5446 0.4661 0.3936 0.5793 0.5768 0.4418
MAE w/o Prompt 0.3665 0.4802 0.3857 -0.2832 -0.2136 -0.1789 -0.0529 0.2591 0.2062
MAE (BART) 0.6829 0.7396 0.6102 0.5478 0.4358 0.3697 0.5550 0.5848 0.4517
MAE (T1) 0.6801 0.7661 0.6382 0.5557 0.4661 0.3935 0.6037 0.6235 0.4811
MAE (T2) 0.6758 0.7070 0.5851 0.5357 0.4055 0.3458 0.5724 0.5767 0.4418
MAE w/o Prompt (T1) 0.1158 0.1053 0.0912 -0.3035 -0.2684 -0.2266 0.0835 0.0984 0.0884
MAE w/o Prompt (T2) 0.0417 -0.0257 -0.0210 -0.2680 -0.1040 -0.0835 -0.0512 -0.0199 -0.0295

Table 4: Pearson (r), Spearman (ρ), and Kendall (τ ) correlations of attribute controllability evaluation metrics on
DailyDialog-CG and ConvAI2-CG. "T1" and "T2" denote the Template 1 and Template 2.

are quite different. It suggests the trainable continu-
ous task-oriented prompt can alleviate the potential
bias of different handcrafted templates and further
improve the robustness of MAE.

7.3 Prompt Visualization

To show the effect of prompts for composi-
tional generalization, we display a visualization
of the concatenated prompt embeddings of two at-
tributes via PCA (Jolliffe and Cadima, 2016) on
DailyDialog-CG in Figure 6. For CatPrompt in
Figure 6(a), all the multi-attribute combinations
(6(emotion)× 4(act) = 24) almost collapse into
four dots where each dot is of the same act attribute
value but of different emotion values. We find di-
rectly concatenating two single-attribute prompts
makes the model only focus on the latter attribute
(act), i.e., position sensitive, so that the CatPrompt
cannot distinguish different combinations with the
other attribute (emotion). Therefore, it’s hard for
CatPrompt to learn multi-attribute compositional
generalization. In Figure 6(b), We find that DCG
w/o DL can distinguish different multi-attribute
combinations to some extent. However, the com-
binations of different attribute values are tightly
entangled, such as (a0, b2) and (a4, b1). Figure
6(c) shows that our DCG has a close distribution

with prompts of the same attribute value, i.e., (a0,
b0), (a0, b1), (a0, b2), and a sparse distribution
with prompts of different attribute values, e.g., (a0,
b2) and (a4, b1). It proves our DCG can disen-
tangle attribute combinations and learn relations
between different attributes. Furthermore, DCG
learns generalization capability from seen attributes
to unseen combinations. For example, (a2, b1) ->
(a0, b1) (unseen path) is equal to (a2, b0) -> (a0,
b0) (seen path). The results confirm that our pro-
posed attribute-oriented prompt outperforms the
models that learn an independent prompt for each
attribute value. The shared embedding mapping
helps learn attribute concepts from seen values to
unseen combinations.

7.4 Few-shot Learning

To study the effect of few-shot learning, we ran-
domly select a ratio of original training data from
DailyDialog-CG to train CTRL or DCG in low-
resource settings and evaluate the model perfor-
mance on the original test set. "Full" denotes the
same setting as the main results. 5000, 1000, and
500 denote the number of examples chosen from
the original training data respectively. The results
are shown in Figure 7. Note that we keep the orig-
inal test set fixed for a fair comparison. As the
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Figure 6: Visualization of prompts from different models on DailyDialog-CG. Each dot denotes the prompt
embeddings of a multi-attribute combination (a∗, b∗)|a∗ ∈ A, b∗ ∈ B, where A is the attribute Emotion and B is
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Figure 7: Few-shot learning of our DCG and CTRL on
DailyDialog-CG.

size of training data decreases, the performance of
both CTRL and DCG presents a dropping trend and
our DCG model is consistently better than CTRL,
which confirms our model has a strong capability
for multi-attribute controllable dialogue generation.

8 Case Study

Figure 9 (See in Appendix) shows two examples
from Dailydialog-CG and ConvAI2-CG, respec-
tively. For example one in the DailyDialog-CG,
the CTRL generates the word "great", showing that
the generated response is emotionally controllable.
However, both sentences in the response are declar-
ative sentences, which does not control the act ques-
tion. As observed, the response generated by our

DCG contains the word "Wow", which strongly
expresses the emotion of happiness. Besides, a
question sentence is also generated. Example two
in ConvAI2-CG needs to control 5 attributes, of
which the golden response contains 2 attributes.
The CTRL only controls "like to skate", while
our DCG controls "like to write poetry and skate",
which is highly consistent with the golden response.
Compared with previous models, our model ad-
dresses many difficult issues in compositional gen-
eralization for multi-attribute controllable dialogue
generation. With an attribute-oriented prompt and
a task-oriented prompt, our method learns attribute
concepts from seen attribute values to unseen at-
tribute combinations. Through a disentanglement
learning, some artificial-constructed unseen pseudo
combinations are injected into the training process,
which greatly improves the generalization ability
of our model.

9 Conclusion

In this paper, we study the compositional gener-
alization for multi-attribute controllable dialogue
generation. We propose a prompt-based disentan-
gled controllable dialogue generation model which
generates attribute-specific prompt vectors from
control codes and uses a disentanglement loss to
disentangle different attributes. Further, we de-
velop a unified reference-free evaluation frame-
work, MAE, for multi-attribute generation with
different levels of granularities. Experiments and
analysis show our method achieves better text qual-
ity and controllability scores. Moreover, our pro-
posed MAE has a higher correlation with human
judgments for evaluation on CDG.
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Limitations

Although DCG achieves significant improvements
compared with existing baselines, there are still
avenues to be explored in future research. (1) DCG
in this paper focuses on the compositional general-
ization for multi-attribute on controllable dialogue
generation. We hope to extend the method to other
generative tasks, including but not limited to di-
alogue summarization and story generation. (2)
In this paper, we explored the control of coarse-
grained discrete attributes and the control of fine-
grained ones separately, and we intend to study
the combination of these two attributes in future
research.

Ethics Statement

Controllable dialogue generation(CDG) is an essen-
tial task in Natural Language Processing (NLP) and
has been widely studied for decades, which aims
to guide dialogue generation toward the desired at-
tributes such as emotions, acts, and personas. In the
open-domain dialogue scenario, CDG can gener-
ate emotional and diverse responses to enhance the
user’s sense of participation. In the task-oriented di-
alogue scenario, CDG can generate responses that
meet the user’s needs according to the user’s intent.
However, most previous works focus on single-
attribute generation where there is only one at-
tribute label like happiness in emotion and pay less
attention to the multi-attribute generation, which
is a more practical setting. Different from single-
attribute, the control signal of the multi-attribute
generation is a combination of multiple values from
different attributes, which faces the challenge of
lacking sufficient annotated attribute-specific data.
Therefore, we explore the compositional gener-
alization for multi-attribute controllable dialogue
generation where a model could learn from seen

attribute values and generalize to unseen combina-
tions. We also design a novel and general reference-
free evaluation framework to unify the evaluation
of different granularity attributes. The experimen-
tal results prove the effectiveness of our model and
evaluation framework. Besides, there is no huge
biased content in the datasets and the models. If
the knowledge base is further used, the biased con-
tent will be brought into the generated responses,
just like biased content posted by content creators
on the Web which is promoted by a search engine.
To prevent the technology from being abused for
disinformation, we look forward to more research
effort being paid to fake/biased/offensive content
detection and encourage developers to carefully
choose the proper dataset and content to build the
knowledge base.
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multi-attribute control codes with dialogue history
to fine-tune the DialoGPT.
CoCon: Proposed by (Chan et al., 2020), this
method uses a content input to control an GPT’s
output text at a fine-grained level.
PPLM: Proposed by (Dathathri et al., 2019), this
method is a gradient-based baseline that uses a
plug-and-play language model(PPLM) to guide the
language model. We train a joint classifier of emo-
tion and dialogue act which takes a single response
as input and predicts the attribute combination of
the emotion and dialogue act on DailyDialog-CG.
Noted that the attribute classifiers of PPLM can not
directly generalize to unknown attribute combina-
tions, so we use both training data and test data
to train the attribute classifiers. We use the bag-
of-words attribute model which encodes persona
profile to control the DialoGPT on ConvAI2-CG.
FUDGE: Proposed by (Yang and Klein, 2021), this
method is a weighted decoding baseline which uses
a future discriminator for generation(FUDGE) to
guide the DialoGPT. We train a joint discrimina-
tor that takes the dialogue history and the current
response as input and predicts the attribute combi-
nation of emotion and dialogue act on DailyDialog-
CG.
Prompt-tuning: Proposed by (Lester et al., 2021),
this method uses continue prompts to fine-tune lan-
guage models. We apply this method to the Di-
aloGPT for dialogue generation.
CatPrompt: Inspired by Yang et al. (2022); Qian
et al. (2022), we initialize an unique prompt for
each single attribute value and concatenate single-
attribute prompts as the multi-attribute prompts.
We fine-tune multi-attribute prompts for dialogue
generation. Note that CatPrompt is only applied
to coarse-grained discrete attributes like emotion
and act instead of persona. Because persona has a
large value set, resulting in numerous parameters
(see Table 6).

B Implementation Details

Our implementation is based on the Hugging Face
Transformer models5. DialoGPTSmall is used
as a backbone and the input sequence length is
truncated to 512 tokens. Following the Hugging-
Face default setup, we use an AdamW optimizer
(Loshchilov and Hutter, 2017) and a linear learn-
ing rate scheduler with an initial rate of 7.5 · 10−5,
and the batch size is set to 8. The prompt lengths

5https://github.com/huggingface/transformers

Method Decoding Speed ↑
DialoGPT-Ori 1.1837x
FUDGE 0.0041x
PPLM 0.0006x
CoCon 0.0044x
Fine-tuning 1.1347x
CTRL 1.1673x
Prompt-tuning 1.0000x
CatPrompt 1.0408x
DCG (ours) 1.0490x
DCG w/o DL 1.0122x

Table 5: The decoding speed of different models, which
takes the decoding speed of the model relative to the
Prompt as a metric.

are set to 50 and 150, the attribute-oriented prompt
lengths are set to 6 and 100, the disentanglement
loss weight is set to 0.1 and 0.03, and the num-
ber of Pseudo Combinations is set to 8 and 6 for
DailyDialog-CG and ConvAI2-CG, respectively.
Our model is trained on Tesla V100 machines, tak-
ing 24 minutes per epoch on DailyDialog-CG and
36 minutes per epoch on ConvAI2-CG. For all ex-
periments, we set the number of training epochs to
30. At the decoding phase, we use a greedy search
and max generated tokens of 150.

C Inference Efficiency

We compare the average inference efficiency of
our methods with the baselines. As we can ob-
serve from Table 5, the inference speed of PPLM,
FUDGE, and CoCon is far slower than the original
GPT-2 model. Prompt-based methods are much
faster than that decoding strategy based methods.
The inference speed of our method is close to the
original DialoGPT methods. As shown in Table
6, with the growth of attribute combinations, the
trainable parameters of CatPrompt increase rapidly,
from 0.84M to 224M, which even exceeds the
117M trainable parameters of full DialoGPT. While
our method achieves better results with a lower
number of trainable parameters on DialyDialog-
CG and ConvAI2-CG.

D Human Evaluation

To validate the good performance of DCG, we fur-
ther deploy a set of human evaluations to compare
the controllability and text quality between several
methods. We randomly sample 100 examples from
two datasets and collect the corresponding gener-
ated responses of CTRL, DCG, and DCG w/o DL.
For the controllability, 5 human annotators are in-
vited to evaluate on a scale of 1-3, where score 1
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Model DailyDialog-CG ConvAI2-CG
Traninable Parameters Percent Trainable Traninable Parameters Percent Trainable

Fine-tuning 117M 100% 117M 100%
CTRL 117M 100% 117M 100%
Prompt-tuning 0.13M 0.11% 0.21M 0.18%
CatPrompt 0.84M 0.71% 244M 205%
DCG (ours) 0.66M 0.56% 0.66M 0.56%
DCG w/o DL 0.66M 0.56% 0.66M 0.56%

Table 6: Number of parameters used for different models. Trainable parameters is the number of parameter used for
training in models. Percent Trainable is the ratio of trainable parameters to original GPT-2.

Model
DailyDialog-CG ConvAI2-CG

Controllability Text Quality Controllability Text Quality
Emo. Act. Flu. Rel. Per. Flu. Rel.

CTRL 2.20 2.05 4.19 3.35 1.70 4.02 3.25
DCG 2.35 2.85 4.42 3.89 2.17 4.03 3.26
DCG w/o DL 1.70 2.30 4.04 3.18 1.61 4.07 3.22

Table 7: Human evaluation on controllability and text quality for DailyDialog-CG and ConvAI2-CG. Emo., Act.,
and Per. are the attributes of emotion, act, and persona. Flu. and Rel. are the fluency and context relevancy.

means that the generated response is completely
inconsistent with the expected attribute label, score
2 denotes that the generated response has the same
meaning as the expected attribute label, but no ex-
plicit attribute-related words, and score 3 means
that the generated response contains some clear
attribute words. For the text quality, we ask the
annotators to evaluate the fluency and context rele-
vancy of the generated responses on a scale of 1-5,
where a higher score indicates better quality. The
inter-annotator agreement on the controllability and
text quality is 0.63 and 0.61 for DailyDialog-GC,
and 0.58 and 0.60 for ConvAI2-CG. For all metrics,
the average score of the 5 annotators is treated as
the final score.

As shown in Table 7, the text quality scores of all
models are high, which is because the models fine-
tuned on contextualized language backbones can
generate fluent sentences with relevant information.
For controllability, our DCG achieves better per-
formance than CTRL both on the coarse-grained
discrete attributes and fine-grained continuous at-
tributes, which suggests that our shared prompt
mapping can learn the attribute concepts from seen
attribute values to unseen attribute combinations
and is useful for diverse attributes. Besides, when
removing the disentanglement learning, the scores
of our DCG w/o DL drop significantly, which fur-
ther shows the effectiveness of the combination
disentanglement to improve the generation ability.

E Effect of Model Parameters

Prompt Length Figure 8 (a) displays the effect
of overall prompt lengths of Ep. Since the length
of attribute-oriented prompt is fixed to the number
of control code, we change the length of the task-
oriented prompt. We find that our DCG achieves
superior performance when the prompt length is
between 20 and 100, and gets the best scores when
the prompt length is 50. The DCG outperforms the
strong baseline CTRL by the 3.19% (averaged) for
MAE and 2.16% (averaged) for BLEUs but uses
only 56% trainable parameters of CTRL, which
verifies the effectiveness and robustness of our
method.
Weight of Disentanglement Loss Figure 8 (b)
shows the effect of different weight ratios α for
the disentanglement loss LD. We observe that
α ∈ (0.05, 0.15) achieves consistent improve-
ments than CTRL and we take α = 0.10 in all
experiments.
Number of Pseudo Combinations Figure 8 (c)
shows the effect of the number of pseudo com-
binations in the disentanglement loss. We find a
larger number will improve the controllability of
our model. It’s because more pseudo attribute val-
ues help the model to separate the desired attribute
combination from the others.

F Comparison with CTRLEval

Automatic evaluation metrics are important for text
generation tasks, including reference-based like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
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Figure 8: Effect of prompt length, disentanglement loss weight, and number of pseudo combinations for DailyDialog-
CG. The dotted lines denote the performance of CTRL. We report the MAE and BLEU scores for all settings.

Metrics
DailyDialog-CG ConvAI2-CG

Emotion Act Persona
Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

CTRLEval 0.6927 0.6994 0.5961 0.1232 0.3391 0.2743 0.4059 0.3622 0.2847
MAE 0.6821 0.7500 0.6242 0.5446 0.4661 0.3936 0.5793 0.5768 0.4418

Table 8: Pearson (r), Spearman (ρ), and Kendall (τ ) correlations of attribute controllability in DailyDialog-CG and
ConvAI2-CG. We use the attribute relevance of CTRLEval as the controllability score.

BERTScore (Zhang et al., 2019) and unreferenced
like perplexity (Brown et al., 1992), discriminator
scores (Dathathri et al., 2019), BARTScore (Yuan
et al., 2021). To evaluate controllability, (Dathathri
et al., 2019; Yang and Klein, 2021) trained an at-
tribute classifier to predict the probability using la-
beled external data, which is hard to multi-attribute
controllable generation. As a concurrent work,
CTRLEval (Ke et al., 2022) proposes an evalua-
tion method for controllable text generation. Dif-
ferent from our MAE, CTRLEval uses handcrafted
prompts to evaluate attribute relevance. However,
handcrafted prompts are hard to construct for new
tasks and cause generation bias. In contrast, our
MAE uses a learnable soft prompt based on PLMs
to enhance the generalization capability and robust-
ness. We also provide a performance comparison
in Table 8. Results show our MAE shows superior
correlations of attribute controllability.

G Performance on Number of Attribute

To prove our model still be useful when the number
of attributes varies from training to inference, we
train CTRL and our DCG with 4 attributes and in-
ference with 5 attributes in ConvAI2-CG. As shown
in Table 9, DCG outperforms the strong baseline
CTRL by 3.54% , 5.99%, 4.8% in P-SIM, P-NLI

and P-MAE on controllability and achieves compa-
rable BLEU scores. It proves DCG can also handle
well with changed number of attributes.

H Impact of TOP on Text Quality

We prove that task-oriented prompts (TOP) can also
improve text quality when combined with other
methods. Specifically, we trained CTRL with TOP
in our experiments. As Table 10 shows, the results
of CTRL for BLEU-1, BLEU-2, and METEOR
are 24.76%, 11.42%, and 20.45%, respectively.
Meanwhile, the results of CTRL+TOP for BLEU-
1, BLEU-2, and METEOR are 25.88%, 14.36%,
and 21.82%. These results indicate that CTRL can
utilize TOP to enhance text quality.
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Example one in DailyDialog

Dialogue History:
A: Smells good! What’s for breakfast? 

B: Well, since we are getting up so late, 

    I decided to make a big breakfast!” 
A: Nice! Brunch!” 
B: Kind of, I made scrambled and soft boiled  

    eggs, some French toast and buttermilk   

    pancakes!

Example two in Convai2

Dialogue History:
A: Hi! how are you doing today?

B: I am doing good and yourself?

A: I am doing alright. What are some of your  

    hobbies?

B: I love the outdoors and camping”

Controllable Attribute Combination:
(happiness, question)

Controllable Attribute Combination:
I sometimes write poetry.

My favorite color is black. 

I sing in a punk band. 

I like to skate. 

I want to visit the uk.

Golden Response

Wow! You really went all out! Did you make 

any coffee?

CTRL

That sounds like a great breakfast! I'll make 

a big omelet, toast, and buttermilk 

pancakes!

DCG (ours)

Wow! You really went all out with it! Did you 

make any coffee?

Golden Response

That sounds fun. I like to write poetry and to 

go ice stating haha.

CTRL
Just like to skate and ski.

DCG (ours)

That is cool. I like to write poetry and skate.

Figure 9: Case study for two examples from DailyDialog-CG and ConvAI2-CG. We present the dialogue history, its
corresponding controllable attribute combination, golden response, CTRL prediction, and prediction of our DCG.

Model Controllability Text Quality
P-SIM ↑ P-NLI ↑ P-MAE ↑ BLEU-1 ↑ BLEU-2 ↑ METEOR ↑

CTRL 67.09 77.21 26.38 19.44 3.20 12.51
DCG 70.63 83.20 31.18 18.63 2.32 11.87

Table 9: The performance of CTRL and DCG for ConvAI2-CG when the number of attributes varies. We train
models with 4 attributes and inference with 5 attributes. Results are averaged over three random runs. ↑ means a
higher score is better. (p < 0.01 under t-test)

Model BLEU-1 ↑ BLEU-2 ↑ METEOR ↑
CTRL 24.76 11.42 20.45
CTRL+TOP 25.88 14.36 21.82
DCG 26.33 14.16 24.57

Table 10: The performance of CTRL , CTRL+TOP and DCG for DailyDialog-CG. Results are averaged over three
random runs. ↑ means a higher score is better. (p < 0.01 under t-test)
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