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Abstract

Argument summarisation is a promising but
currently under-explored field. Recent work
has aimed to provide textual summaries in the
form of concise and salient short texts, i.e., key
points (KPs), in a task known as Key Point
Analysis (KPA). One of the main challenges
in KPA is finding high-quality key point candi-
dates from dozens of arguments even in a small
corpus. Furthermore, evaluating key points is
crucial in ensuring that the automatically gen-
erated summaries are useful. Although auto-
matic methods for evaluating summarisation
have considerably advanced over the years,
they mainly focus on sentence-level compar-
ison, making it difficult to measure the quality
of a summary (a set of KPs) as a whole. Ag-
gravating this problem is the fact that human
evaluation is costly and unreproducible. To ad-
dress the above issues, we propose a two-step
abstractive summarisation framework based on
neural topic modelling with an iterative cluster-
ing procedure, to generate key points which are
aligned with how humans identify key points.
Our experiments show that our framework ad-
vances the state of the art in KPA, with per-
formance improvement of up to 14 (absolute)
percentage points, in terms of both ROUGE
and our own proposed evaluation metrics'. Fur-
thermore, we evaluate the generated summaries
using a novel set-based evaluation toolkit. Our
quantitative analysis demonstrates the effective-
ness of our proposed evaluation metrics in as-
sessing the quality of generated KPs. Human
evaluation further demonstrates the advantages
of our approach and validates that our proposed
evaluation metric is more consistent with hu-
man judgment than ROUGE scores.

1 Introduction

Automated summarisation of salient arguments
from texts is a long-standing problem, which has

'Our code can be found on Github: https://github.
com/HarrywillDr/keypoint-Analysis

attracted a lot of research interest in the last decade.
Early efforts proposed to tackle argument summari-
sation as a clustering task, implicitly expressing the
main idea based on different notions of relatedness,
such as argument facets (Misra et al., 2016), sim-
ilarity (Reimers et al., 2019) and frames (Ajjour
et al., 2019). However, they do not create easy-to-
understand summaries from clusters, which leads
to unmitigated challenges in comprehensively nav-
igating the overwhelming wealth of information
available in online textual content.

Recent trends aim to alleviate this problem by
summarising a large collection of arguments in the
form of a set of concise sentences that describe
the collection at a high-level—these sentences are
called key points (KPs). This approach was first
proposed by Bar-Haim et al. (2020a), consisting
of two subtasks, namely, key point generation (se-
lecting key point arguments from the corpus) and
key point matching (matching arguments to these
key points). Later work applied it across different
domains (Bar-Haim et al., 2020b), for example for
product/business reviews (Bar-Haim et al., 2021).
While this seminal work advanced the state of the
art in argument summarisation, a bottleneck is the
lack of large-scale datasets. A common limitation
of such an extractive summarisation method, is
that it is difficult to select candidates that concisely
capture the main idea in the corpus from dozens
of arguments. Although Bar-Haim et al. (2021)
suggested extracting key point candidates from the
broader domain (e.g. selecting key point candidates
from restaurant or hotel reviews when the topic is
“whether the food served is tasty”) to overcome this
fundamental limitation, it is impractical to assume
that such data will always be available for selec-
tion. An alternative, under-explored line of work
casts the problem of finding suitable key points
as abstractive summarisation. Research work in
this direction aims to generate key points for each
given argument, without summarising multiple of
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them (Kapadnis et al., 2021). As such, their ap-
proach rephrases existing arguments rather than
summarising them.

One possible reason for key point generation
being under-explored, is the lack of reliable auto-
mated evaluation methods for generated summaries.
Established evaluation metrics such as ROUGE
(Lin, 2004) and BLEU (Papineni et al., 2002) rely
on the n-gram overlap between candidate and ref-
erence sentences, but are not concerned with the se-
mantic similarity of predictions and gold-standard
(reference) data. Recent trends consider automated
evaluation as different tasks, including unsuper-
vised matching (Zhao et al., 2019; Zhang et al.,
2020b), supervised regression (Sellam et al., 2020),
ranking (Rei et al., 2020), and text generation (Yuan
et al., 2021). While these approaches model the se-
mantic similarity between prediction and reference,
they are limited to per-sentence evaluation. How-
ever, this is likely insufficient to evaluate the qual-
ity of multiple generated key point summaries as a
whole. For instance, the two key points “Govern-
ment regulation of social media contradicts basic
rights” and “It would be a coercion to freedom of
opinion” essentially contain the same information
as the reference “Social media regulation harms
freedom of speech and other democratic rights”,
but individually contain different pieces of infor-
mation.

In this work, we propose a novel framework
for generative key point analysis, in order to re-
duce the reliance on large, high-quality annotated
datasets. Compared to currently established frame-
works (Bar-Haim et al., 2020a,b), we propose a
novel two-step abstractive summarisation frame-
work. Our approach first clusters semantically sim-
ilar arguments using a neural topic modelling ap-
proach with an iterative clustering procedure. It
then leverages a pre-trained language model to gen-
erate a set of concise key points. Our approach
establishes new state-of-the-art results on an ex-
isting KPA benchmark without additional anno-
tated data. Results of our evaluation suggest that
ROUGE scores that assess generated key points
against gold standard ones do not necessarily cor-
relate with how well the key points represent the
whole corpus. The novel set-based evaluation met-
ric that we propose, aims to address this.

Opverall, the main contributions of this work are
as follows: We propose a novel framework for key
point analysis, depicted in Figure 1, which signifi-

KPM Input: Arguments

()

Children express themselves through the clothes they wear and should be able to

do this at school O
Children should be able to dress as they wish, within reason, at school rather than

being restricted from expressing themselves through their clothes.

School uniform is unaffordable for many single parents and should be abandoned.
Children should be allowed to express themselves

School uniforms are an expense that many families can't afford. there are plenty
of ways to get very cheap clothing, but discounted uniforms are more difficult to
obtain.

Key Point Modelling

School unforms stifle freedom of expression. they can be costly and make
circumstances difficult for those on a budget

School uniforms are expensive and puts an undue burden on the parents of the
students.

KPG Input:
School uniforms are expensive for the school and take money from other

important programs.
] +

[ Key Point Modelling Output ]

Clustering
Output: Key Points
Topic: We should abandon the use of school
(-] uniform

School uniform is harming the student's self

School uniforms are expensive

Key Point Generation

Figure 1: Visual depiction of our proposed framework.
Colours illustrate the correspondences between argu-
ments and key points. Nodes in [orange represent
many-to-many matches, i.e., key points that are shared
between both clusters. The input for key point gener-
ation (KPG) is composed of a single cluster from Key
point Modelling (KPM) with its corresponding stance
and topic. Key point importance is measured by the size
of the clusters. For example, KEY POINT: SCHOOL
UNIFORMS ARE EXPENSIVE ( yellow ) has an impor-

tance of 5 (including the |argument| that belongs to both
clusters).

cantly outperforms the state of the art, even when
optimised on a limited number of manually anno-
tated arguments and key points. The framework
improves upon an existing neural topic modelling
approach with a semantic similarity-based proce-
dure. Compared to previous work, it allows for bet-
ter handling of outliers, which helps to extract topic
representations accurately. Furthermore, we pro-
pose a toolkit for automated summary evaluation
taking into account semantic similarity. While pre-
vious approaches concentrated on sentence-level
comparisons, we focus on corpus-level evaluation.

2 Related work

Argument Summarisation: The field of argu-
ment summarisation has developed considerably
in recent years. Syed et al. (2020, 2021) used an
attention-based neural network to construct concise
and fluent summaries of opinions in news editorials
or social media. Alshomary et al. (2020), focussing
on web search, introduced an unsupervised extrac-
tive summarisation approach to generate argument
snippets representing the key claim and reason. All
of these efforts tackled single document summari-
sation where only one argumentative text is sum-
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marised at a time. The earliest multi-document
summarisation work attempted to summarise ar-
gumentative discussions in online debates by ex-
tracting summaries in the form of salient “points”,
where a point is a verb and its syntactic arguments
(Egan et al., 2016). However, their approach relies
on lexical features that make it difficult to capture
variability in claims that share the same meaning
but are expressed differently. The work of Ajjour
et al. (2019) and Reimers et al. (2019) aimed to
cluster semantically similar arguments. However,
these efforts did not attempt to summarise these
clusters, hence main points in the corpus remained
implicit. Recent work proposed Key Point Anal-
ysis, which aims to extract salient points from a
corpus of arguments, providing a textual and quan-
titative view of the data (Bar-Haim et al., 2020a,b).
Alshomary et al. (2021) contributed to the develop-
ment of this framework by proposing a graph-based
extractive summarisation approach. One common
limitation of extractive summarisation methods,
however, is that it is difficult to select key point
candidates that truly capture salient points from
dozens of arguments . Kapadnis et al. (2021) used
an abstractive summarisation method, where each
single argument and its topic were used as input in
order to generate summaries. A set of sentences
which have the highest scores based on ROUGE
(Lin, 2004) ranking, is then selected as key points.
However, in practice this is not feasible as the com-
putation of ROUGE scores requires the availability
of gold standard key points.

Automatic Evaluation of Generated Sum-
maries: Most of the current work relies on human-
centric evaluation methods (Alshomary et al., 2021;
Kapadnis et al., 2021; Friedman et al., 2021). How-
ever, they are time-consuming, costly and difficult
to replicate. Some of the work attempts to use
automated evaluation methods such as ROUGE, a
metric widely used to evaluate automatically gen-
erated summaries (Lin, 2004). This type of auto-
matic metric compares generated sentences with
gold standard ones, but it is difficult to measure
their accuracy and effectiveness in terms of cap-
turing semantic similarity. Recent trends consider
automated evaluation as different tasks. Zhang et al.
(2020b) proposed unsupervised matching metrics,
aimed at measuring semantic equivalence by map-
ping candidates and references to a distributed rep-
resentation space. Sellam et al. (2020) presented
a supervised learning evaluation metric that can

model human judgments by a novel pre-training
scheme. Their work demonstrates that pre-training
a metric on task-specific synthetic data, before fine-
tuning it on handpicked human ratings can improve
metric robustness. Rei et al. (2020) considered
the problem as a ranking task, leveraging break-
throughs in multilingual pre-trained models to gen-
erate ratings that resemble human judgments. Yuan
et al. (2021) instead suggested that evaluating the
quality of summaries can be treated as a text gen-
eration task. The main idea is that converting a
well-performing generated text to/from a reference
text would easily achieve higher scores. While
these approaches have advanced the field, they all
focus on sentence-level evaluation. Our task, how-
ever, requires the evaluation of a set of key points.
The reason is that when comparing generated key
points to gold-standard annotations at a sentence
level, important information could be lost. This
can only be retained by considering all sentences
at once.

3 Methodology

In this section, we describe our framework in detail.
As can be seen from Figure 1, for each debate topic
such as “Should we abandon the use of school uni-
forms?”, we take a corpus of relevant arguments
grouped by their stance towards the topic (i.e. “pro”
or “con”) as input, as mined from online discus-
sion boards. As part of KPM, these arguments are
clustered using a neural topic modelling approach
to group them by their common theme. The clus-
ters are then used as input to the KPG model for
summarisation, which is optimised to generate a
key point for each argument cluster. During the
training of our model for KPM, we employ data
augmentation.

3.1 Key Point Modelling (KPM)

In previous work, researchers made the simplify-
ing assumption that each argument can be mapped
to a single key point (Alshomary et al., 2021; Ka-
padnis et al., 2021). As a consequence, finding
this mapping was modelled as a classification task.
In practice, however, a single argument may be
related to multiple key points. For instance, the ar-
gument: “School uniforms stifle freedom of expres-
sion; they can be costly and make circumstances
difficult for those on a budget.” expresses the key
points “School uniform is harming the student’s self
expression.” and “School uniforms are expensive.”.
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Inspired by this observation, we approach KPM
as clustering, by grouping together similar argu-
ments. This naturally allows us to map arguments
to multiple key points. Unlike key point match-
ing using a classifier, this step can be performed
without any labelled data, since clustering is an un-
supervised technique. If training data in the form
of argument-key point mappings is available, it is
desirable to incorporate this information, as latest
work shows that supervision can improve clustering
performance (Eick et al., 2004). To that end, we use
BERTopic as our clustering model (Grootendorst,
2022), which facilitates the clustering of sentences
based on their contextualised embeddings obtained
from a pre-trained language model (Reimers and
Gurevych, 2019), as well as fine-tuning them fur-
ther for the clustering task. We convert the key
points into numbers as labels for training; argu-
ments that do not match any key points are dropped.

A common challenge of clustering algorithms is
the difficulty of clustering data in high-dimensional
space. Although several methods to overcome the
curse of dimensionality were proposed recently
(Pandove et al., 2018), the most straightforward
way is to reduce the dimensionality of embeddings
(Molchanov and Linsen, 2018). We achieve this by
applying UMAP on the raw embeddings (MclInnes
and Healy, 2018) to reduce their dimension while
preserving the local and global structure of embed-
dings. HDBSCAN (Mclnnes et al., 2017) is then
used to cluster the reduced embeddings.

The output of this step is a set of clusters and
the probability distribution of each argument be-
longing to each cluster. Based on this, we discre-
tise the probability distribution, i.e. represent each
argument-cluster pair as a value, which allows us
to map arguments to multiple clusters; the formu-
lae and details can be seen in Appendix B.2. As
shown in Figure 1, these clustered arguments serve
as input for the Key Point Generation model.

3.2 TIterative Clustering (IC)

The output of KPM includes a set of arguments
that are unmatched, i.e., not assigned to any cluster,
represented as a cluster with the label “-1”, be-
cause HDBSCAN is a soft clustering approach that
does not force every single node to join a cluster
(Mclnnes et al., 2017). In order to increase the “rep-
resentativeness” of generated KPs, it is reasonable
to maximise the number of arguments in each clus-
ter. To this end, we propose an iterative clustering

Algorithm 1 KPM with Iterative Clustering
Input: Clusters C'; Unclassified Arguments Arg
Parameter: Threshold A
Output: Algorithm Result IC
1. IC+C,¢p <+ 0,1+ len(Arg), w < len(C)
2: foritol do
3:  for Jtowdo

4: [ <+ compute anchor of IC'

5: ¢ < compute similarity (a;,5)
6: if ¢ > ) then

7 IC] — ICJ +a;

8: else

9: ICW_H — a;, Cw—i—l — a;
10: end if
11: update IC
12:  end for
13: end for

14: return IC

algorithm (formally described in Algorithm 1) to
further assign these unmatched arguments accord-
ing to their semantic similarity to cluster centroids.
We compute the semantic similarity between each
unclassified argument and the cluster centre, by
calculating the vector product of embeddings and
the average of clusters.

To tackle the issue of determining the cluster
centers, we employ two different techniques: one
is by calculating the similarity of the candidates
to each sample in the cluster and then taking the
average distance, while the other is by taking the
centroid of each cluster as the anchor (Wang et al.,
2021). As a filtering step, each unmatched argu-
ment is compared to the anchor. We only assign the
argument to the cluster if the similarity is higher
than a hyper-parameter \; otherwise we create a
new cluster. Next, the clusters are updated at each
iteration until all arguments have been assigned to
a cluster.

3.3 Key Point Generation (KPG)

We model KPG as a supervised text generation
problem. The input to our model is as follows:
{Stance} {Topic} {List of Arguments in Cluster}?,
where the order of arguments in the list is deter-
mined by TextRank (Mihalcea and Tarau, 2004).
We train the model by minimising the cross-entropy
loss between generated and reference key points.

2For example: Positive We should abandon the use of
school uniforms. School uniforms are expensive and place an
unnecessary burden on the parents of students...
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The reference key points are drawn from a KPM
dataset, together with their matched arguments,
which serve as the input to the model.

During inference, we use the list of arguments
as provided by KPM as input. The generated KPs
are ranked in order of relevance using TextRank
(Mihalcea and Tarau, 2004). Duplicate KPs with
a cosine similarity threshold above 0.95 are com-
bined and the final list of KPs is ranked based on
the size of their clusters (for example, the yellow
key point with six arguments is ranked higher than
the pink key point with four arguments in Figure 1).
For combined KPs, we take the sum of the respec-
tive cluster sizes.

3.4 Data Augmentation (DA)

Many problems lack annotated data to fully ex-
ploit supervised learning approaches. For example,
the popular KPA dataset ArgKP-2021 (Bar-Haim
et al., 2020a) features an average 150 arguments
per topic, mapped to 5-8 KPs. We rely on data aug-
mentation to obtain more KPM training samples.
Specifically, we use DINO (Schick and Schiitze,
2021) as a data augmentation framework, that lever-
ages the generative abilities of pre-trained language
models (PLMs) to generate task-specific data by us-
ing prompts. We customised the prompt for DINO
to include task descriptions (i.e., “Write two claims
that mean the same thing) to make the model gen-
erate a new paraphrase argument. We then used
BERTScore (Zhang et al., 2020b) and BLEURT
(Sellam et al., 2020) to assess the difference in
quality between each generated sample and the cor-
responding reference, removing 25% of the lowest
scoring generated arguments.

3.5 Set-level KPG Evaluation

Other tasks with sets of predictions, such as infor-
mation retrieval, are evaluated by means of preci-
sion and recall, where a set of predictions is com-
pared against a set of references. Since the final
output of KPG and the reference KPs are sets, it
is desirable to follow a similar evaluation method.
However, it is not sufficient to rely on traditional
precision and recall, as these are based on direct
sentence equivalence comparisons whereby pre-
dictions and references might differ in wording
although they are semantically similar. Instead,
we rely on semantic similarity measures that as-
sign continuous similarity scores rather than equiv-
alence comparison to identify the best match be-
tween generated and reference KPs—we call these

metrics Soft-Precision (sP) and Soft-Recall (sR).
More specifically, for s P, we find the reference KP
with the highest similarity score for each generated
KP and vice-versa for sR. We further define Soft-
F1 (sF'1) as the harmonic mean between sP and
sR.

The final sP and sR scores is the average of
these best matches. Formally, we compute s P (and
sR analogously) as follows:

1
sP=—x
n

> max flai, f;) (D)
a; EA J

1
sR=— x Bzgggﬁf(ai,ﬁj) 2

where, f computes similarities between two indi-
vidual key points, .4, B are the set of candidates and
references and n = |A| and m = |B], respectively.
When ¢ iterates over each candidate, j iterates over
each reference and selects the pair with the highest
score as the reference for that candidate.

We have chosen state-of-the-art semantic similar-
ity evaluation methods such as BLEURT (Sellam
et al., 2020) and BARTScore (Yuan et al., 2021) as

fmaw-

3.6 Implementation Details

KPM with Iterative Clustering: We first experi-
mented with thresholds at 0.2 intervals respectively,
but the results showed little variation in down-
stream KPA performance on ROUGE when the
threshold was less than 0.6. Therefore, we com-
pare the influence of key point quality on ROUGE
when the threshold was greater than 0.6 with 0.1
intervals. Preliminary experiments showed that
cluster sizes vary in length and contain irrelevant
or incorrectly assigned arguments. Following the
intuition that important sentences should be con-
sidered first by the KPG model, we order the input
sentences based on their centrality in the cluster.
Specifically, we use TextRank (Mihalcea and Ta-
rau, 2004), such that sentences receive a higher
ranking if they have a high similarity score to all
other sentences.

Key Point Generation: We choose Flan-T5
(Chung et al., 2022) as our KPG model, which is
fine-tuned on more than 1000 different tasks, and
it has received a lot of attention as a potential alter-
native of GPT-3 (Brown et al., 2020). To maintain
comparability to previous work, we only keep n
generated key points, where n is the number of key
points in the reference.
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Data Augmentation: We employ GPT2-XL
(Radford et al., 2019) as the data augmentation
model with default settings, setting the maximum
output length to 40. Finally, the arguments are
matched with the corresponding key points, stance
and topics to create a training set of 520k instances.
Example templates and the full dataset description
can be found in Appendix A.

4 Experimental Setup

Broadly speaking, we aim to investigate the effi-
cacy of our proposed KPM framework as well as
the evaluation metrics. Specifically, we ask: (i)
Does the proposed approach improve the perfor-
mance of the task? (ii) Does data augmentation
help with the lack of training data? (iii) Does the
re-clustering of outliers by using IC improve per-
formance on downstream tasks? (iv) Does the pro-
posed evaluation framework correlate better with
human judgments than raw ROUGE scores? To
answer question (i) we compare the performance
of our proposed approach to established previous
approaches on the task of KPA. For questions (i)
and (iii), we perform ablation studies to measure
the impact our using supervised and unsupervised
KPM pipelines (S-KPM and US-KPM) as well as
data augmentation (+DA) and iterative clustering
(+10C). For question (iv), we conduct manual evalu-
ation.

Baselines: We compare our approach with pre-
vious known and open-source work—FEnigma (Ka-
padnis et al., 2021) and Graph-based Summariza-
tion (GBS) (Alshomary et al., 2021)3, selecting
their best reported results as the baseline. Enigma
uses an abstract summarisation approach, employ-
ing PEGASUS (Zhang et al., 2020a) as the summari-
sation model, to generate candidate KPs by taking
a single argument and its corresponding topic as in-
put. Finally, the top-n highest ROUGE scores with
reference KPs were selected as the final result. Sim-
ilar to the work of Alshomary et al. (2020), GBS
constructs an undirected graph with arguments as
nodes. Nodes with sufficiently high argument qual-
ity scores (Toledo et al., 2019), and node matching
scores (Alshomary et al., 2021) are connected. The
importance score of each argument is then calcu-
lated based on PageRank (Page et al., 1999) and
ranked in descending order. Finally, only those

3Note that only key point matching is described in their
published paper, but their key point generation code can be

found on Github at https://github.com/manavkapadnis/
Enigma_ArgMining

arguments where matching scores are below the
threshold of the already selected candidates are
added to the final set of key points.

Evaluation metrics: We calculate ROUGE (Lin,
2004) scores on the test set, by comparing the con-
catenation of all generated key points to the con-
catenation of the reference, averaging for all topic
and stance combinations. Furthermore, in order to
evaluate the quality of the generated key points in-
variant to the order of sentences, we also compare
the performance based on the proposed set-level
evaluation approach. Similar to our idea, the earth
mover’s distance (EMD) (Rubner et al., 2000) is
a measure of the similarity between two data dis-
tributions. By combining Word Mover’s Distance
(WMS) (Kusner et al., 2015) and Sentence Mover’s
Similarity (SMS) (Clark et al., 2019), Sentence +
Word Mover’s Similarity (S+WMS) measures both
the word distribution of a single sentence and sim-
ilarity at the set level. However, an observable
shortcoming is that they consider a set of sentences
as a single paragraph, without splitting and using
GloVe embeddings (Pennington et al., 2014) in-
stead of fine-tuning on sentence-level similarity.

Human Evaluation: Taking into account the
wealth of problems arising from automatically eval-
uating generated texts, we further verify the relia-
bility of our obtained results,by means of human
evaluation. Seven annotators were selected, all of
whom are graduate students with a diploma from
a University in the UK. Before starting, all anno-
tators received task-oriented training, the specific
instructions can be found in Appendix C.1. After
an introduction, they had to answer a questionnaire
containing 66 questions for all topics and stances
in the test set. The annotators were asked to answer
on a Likert scale ranging from “very good” (5) to
“not good at all” (1).

The first evaluation task (HT1) investigates how
well the generated summaries of clusters serve as
KPs. Following Bar-Haim et al. (2021), we as-
sessed the quality of the key points in four require-
ments: VALIDITY, SENTIMENT, INFORMATIVE-
NESS and SINGLEASPECT. Annotators are asked
to read three sets of KPs separately (reference, our
best approach, previous work), assigning each of
the four dimensions above a single score, and then
ranking each of the three outputs the outputs from
best to worst.

The second task (HT2) evaluates how well the
generated set of key points summarises the corpus
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ROUGE BLEURT BARTScore
Approachgi,e(Setting) R-1 R-2  R-L sR sF1 P sR  sF1 S+WMS
SKPMy;p(DA+1C) 328 9.7 299 070 071 0.71 0.73 0.79 0.76 0.0416
SKPM;3p(DA + 1C) 322 9.0 279 0.68 0.67 0.67 058 071 0.64 0.0382
SKPMparge(DA+I1C) 314 9.1 281 057 0.62 0.60 054 0.75 0.63 0.0276
SKPMpase(DA+IC) 303 89 281 059 058 059 0.57 0.63 060 0.0320
SKPMgase(DA) 307 9.1 276 058 058 058 053 066 059 0.0304
SKPMpase(1C) 289 92 283 062 057 059 053 060 057 0.0332
SKPMpase 249 6.1 240 055 055 055 053 067 059 0.0279
USKPMpase(1C) 295 7.8 281 0.61 057 059 054 066 0.60 0.0318
KMeanspase 265 73 255 059 056 057 053 069 060 0.0264
USKPMp.ge 252 57 232 059 053 056 052 063 057 0.0306
- Enigma 200 48 180 0.58 057 057 054 069 0.61 0.0368

GBS (Baseline) 198 35 180 0.51 054 053 053 066 059 0.0258
GBS (Ours) 196 34 177 053 052 052 053 071 061 0.0250
Aspect Clustering 189 4.7 17.1 - - - - - -

Table 1: Test set ROUGE scores and the proposed set-based evaluation metrics. Soft-Precision, Soft-Recall, and
Soft-F1 are reported using BLEURT and BARTScore as f,4;- GBS is a graph-based summarisation method
and GBS (Ours) is the result when the number of references is the same as that generated. The results of Aspect
Clustering are reported directly from the paper (Alshomary et al., 2021), as their code is not open source. 115,
3B, Large and Base refer to Flan-T5-xx1, Flan-T5-x1, Flan-T5-Large and T5-effictive-base, respectively.
S+WMS stands for Sentence + Word Mover’s Similarity (Clark et al., 2019).

of arguments. In previous work crowdworkers eval-
uated how well generated key points represent a
given corpus of arguments (Friedman et al., 2021).
However, they only considered REDUNDANCY and
COVERAGE, as the outputs key points were ex-
tracted from a corpus, rather than generated. To
adapt their experiment to the generative setting, We
additionally define SIGNIFICANCE (i.e. how well
a KP uniquely captures a theme) and FAITHFUL-
NESS (i.e. no unfounded claims are conjectured).
We refer the reader to Appendix C.2 for the full
definition of all quality dimensions.

Finally, in the third evaluation task (HT3), we
investigate how well automated evaluation metrics
correlate with human judgement. Here, the annota-
tors were asked to perform pair-wise comparison
between two sets of generated KPs for which the
difference between ROUGE scores and the soft-F1
metric was the highest.

5 Results and Analysis

Proposed approach improves performance on
KPA task: Our proposed two-step method out-
performs the reference implementations on the
full KPA task, with improvements of up to 12%
and 14% in ROUGE and Soft-F1, respectively, as
shown in Table 1.

Threshold 06 0.7 08 09

R-1 255 277 289 29.1
R-2 60 59 64 75
R-L 243 259 270 272

Table 2: ROUGE for different threshold values on IC

Overall, each proposed improvement (+DA and
+IC) contributes to achieve better scores. A ro-
bustness experiment was then performed on the
best-performing approach, with 10 runs, showing
that the overall performance is still up to 11% supe-
rior compared to the baseline according to ROUGE,
and up to 3% superior based on the proposed eval-
uation approach.

It is worth noting that unsupervised KPM with
IC (US-KPM+IC) yields increases of more then ten
points in ROUGE-L and two soft-F1 (BLEURT)
percent points compared to the best performing
baseline, demonstrating that the proposed method
outperforms previous state-of-the-art approaches
even without training the clustering model and re-
lying on data augmentation. Our human evaluation
further supports these findings: in the ranking task
T1, our method was ranked higher than the base-
lines, slightly behind human-written reference KPs.
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(Stance) Topic Sup-KPM+DA

Unsup-KPM+IC

(Con) Routine (1) The Routine child vaccinations should
child  vaccina- not be mandatory. (2) The parents should
tions should be decide for their child. (3) The vaccine can
mandatory cause harm to the child.

“(Pro)  Social (1) Social media platforms can be regulated

media platforms
should be reg-
ulated by the
government

to prevent terrorism. (2) Social media plat-
forms should be regulated to prevent hate
crimes. (3) Social media platforms can be
regulated to prevent spreading of false news.

(1) Child vaccinations should not be mandatory
because many times children cannot catch the
virus. (2) Parents should have the freedom to
choose what is best for their child. (3) Child
vaccinations can lead to harmful side effects.

(1) Social media platforms should be regulated to
prevent rumors/harming the economy. (2) Social
media platforms should be regulated to prevent
hate crimes. (3) Social media platforms should
be regulated to prevent inappropriate content.

Table 3: Examples of generated KPs from proposed approach. For the sake of brevity, only the top three key points

are shown.

As can be seen from Table 5, the annotators con-
sider our work to be slightly worse (4.5) than the
gold standard in terms of SENTIMENT, but compa-
rable in performance on the other dimensions (be-
tween 4.5 and 4.7). In comparison to other work,
our approach outperforms the baseline in all dimen-
sions. This is especially significant for COVERAGE
(4.6 vs 4.0) and REDUNDANCY (4.5 vs 3.2), as it
suggests that our approach to KPA better captures
unique themes across the corpus of arguments and
effectively reduces redundancy in the KPs. It is
worth noting that annotators generally preferred it
when the output consisted of a few general KPs
(Ref, S-KPM+IC+DA) rather than a higher num-
ber of specific ones (GBS). This contradicts the
conclusion made by Syed et al. (2021). However,
they suggested summarising long texts into a single
conclusion, whereas we focused on summarising
a body of short texts (i.e. arguments) in terms of
multiple key points.

Data augmentation helps: In the ablation ex-
periments, data augmentation in the supervised sce-
nario shows a significant improvement (S-KPM-
DA vs. S-KPM), by around 4 points on ROUGE-L
and up to 3 points on proposed evaluation met-
rics. A possible reason for this improvement is

Methods R-value P-value
Rouge 0.61 0.03
Soft-F1 0.72 0.01

S+WMS 0.60 0.04

Table 4: Spearman’s correlation between human-
assigned scores and the metrics ROUGE, soft-F1 and
EMD. The inputs used in the calculations are only those
systems included in the human evaluation.

likely because the original dataset is too small for
supervised models to learn task-specific representa-
tions. Employing prompt-based data augmentation
leverages the pre-training of language models, by
aligning the down-stream task (i.e. generating sim-
ilar data) to the pre-traing task (Liu et al., 2021).
As a consequence, the proposed data augmenta-
tion method can generate training data of sufficient
quality to improve downstream KPM performance,
even after training the DA model with only a lim-
ited amount of annotated data.

IC improves the clustering performance:
For unsupervised KPM, iterative clustering (US-
KPM+IC), performs significantly better than the
method with no such additional processing step
(US-KPM), showing an increase of 5 points in
terms of ROUGE-L. The gap closes for supervised
models (S-KPM), presumably due to the fact that
after supervision, the KPM model produces less
outliers to be further assigned with IC. Furthermore,
Table 2 demonstrates the relationship between the
threshold and the performance of the model. There
is a strong positive correlation—increasing the
threshold results in higher ROUGE scores (Spear-
man’s r = 0.94,p = 2.5¢7Y). We further im-
plemented an ablation experiment to compare the
performance of K-Means and HDBSCAN in order
to investigate the research question of whether the
IC step may be unnecessary if a different clustering
method was applied to the reduced embeddings.
The results show that K-Means performs better
than Unsup-KPM (ROUGFE = 25.5,sF1 = 0.57
vs. ROUGE = 23.2,sF'1 = 0.56) but worse than
Unsup-KPM+IC (ROUGE = 28.1, sF'1 = 0.59).
This supports our hypothesis that the arguments
labelled as “-1” are meaningful. K-Means assigns
them to an existing cluster which is better than dis-
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carding them completely (KPM without IC), while
IC is more accurate in finding (potentially new)
clusters for them. It also demonstrates that the
proposed iterative distance is useful.

The proposed evaluation framework better
reflects human judgement: We note several im-
portant differences between our proposed metrics
and ROUGE-based evaluation. For instance, S-
KPM+DA has higher ROUGE scores than Unsup-
KPM+IC, while Unsup-KPM+IC performs worse
than S-KPM+DA according to both Soft-F1 and
human evaluation. One possible explanation is that
ROUGE focusses on the overlap of n-grams rather
than on semantic similarity, resulting in the fact
that summaries that repeat words appearing in the
reference, but with a lower semantic similarity over-
all, may receive higher scores. Table 3 exemplifies
this assumption, as KPs generated by S-KPM+DA
are less informative and more concise than those
generated by US-KPM+IC. When directly compar-
ing two sets of KPs produced by Sup-KPM+DA
and Unsup-KPM+IC (HT3), 80% of the annotators
indicated that as a whole, the US-KPM+IC outper-
forms S-KPM+DA. The remaining 20% consdered
both to be of equal quality. In addition, we con-
ducted supplementary experiments to investigate
the difference with existing methods. Similar to
our set-based method, Clark et al. (2019) evalu-
ated texts in a continuous space using word and
sentence embeddings (S+WMS). As shown in Ta-
ble 1, the proposed methods are higher than the
baseline by 5 points, emphasising the superiority
of our approach. To further substantiate the claim
that our proposed metrics better correlate with hu-
man judgement than the prevalent methodology
based on ROUGE and S+WMS, we investigate
Spearman’s (Akoglu, 2018) correlation between
human-assigned scores (averaged for all dimen-
sions) and the metrics ROUGE (rrouak), soft-F1
(rsr1) and S+WMS (rs+wars), for all evaluated
models and test set topics. Table 4 demonstrates
our finding that Soft-F1 is indeed a more truth-
ful reflection of human judgment than ROUGE
(Tspl = 0.72,]9 = 0.01 vs. TROUGE = 0.61,]) =
0.03) and S+WMS (rsp1 = 0.72,p = 0.01 vs.
rs+wms = 0.60,p = 0.04).

Human evaluation is reliable: We measured
Krippendorft’s o (Hayes and Krippendorff, 2007)
to investigate inter-annotator agreement, reporting
an average of 0.61 across all test set topics and
quality dimensions, implying that the results are

Approach VL SN IN SA SG CV FF RD
Reference 50 49 49 49146 49 48 49
S-KPM+DA+IC 4.7 45 4.6 4.7 : 42 46 4.6 45
S-KPM+DA 48 44 34 30132 44 34 27
US-KPM+IC 49 49 45 43,41 46 45 40

" Enigma ¢ 46 42 30 25'27 40 30 22
GBS 47 43 47 35,40 39 37 32

Table 5: Performance of different approaches on each
dimension in human evaluation. Each score is aver-
aged over seven annotators on the dimension (HT1 and
HT?2 are on the left and right of the vertical broken
line, respectively). Reported are, from left to right, VA-
LIDITY, SENTIMENT, INFORMATIVENESS, SINGLEA -
SPECT, SIGNIFICANCE, COVERAGE, FAITHFULNESS
and REDUNDANCY

moderately reliable. The human evaluation is more
reliable for SENTIMENT, SINGLEASPECT and RE-
DUNDANCY with « of 0.69, 0.69 and 0.74, respec-
tively. One possible explanation is that these dimen-
sions are dichotomous, and thus are more likely for
annotators to produce definite results—for example
SENTIMENT measures whether KPs have a clear
stance towards the topic, while REDUNDANCY es-
sentially asks whether KPs are duplicated. Con-
versely, reliability scores are lower for SIGNIFI-
CANCE and FAITHFULNESS (a = 0.53 for both),
likely because these dimensions are susceptible to
annotator bias and rely on their knowledge. For
example, FAITHFULNESS measures how well the
KPs reflect arguments in the corpus. This requires
annotators to have a good understanding of the de-
bate topic which might be difficult to achieve in
practice. Evaluation scores and agreements for all
dimensions and test set topics are in Appendix C.3.

6 Conclusion

This paper contributes to the development of key
point analysis. Firstly, we proposed a two-step
abstractive summarisation framework. Compared
with previous work, our approach achieves per-
formance on par with a human without additional
training samples. Secondly, we developed a new
evaluation toolkit, whose effectiveness was demon-
strated with human annotators, presenting a more
realistic view of the generated KPs’ quality than
traditional automatic evaluation metrics. In future
work, we will address the issue that KPs with few
matching arguments are difficult to cluster, by us-
ing contrastive learning (Zhang et al., 2021) to facil-
itate better intra-cluster and inter-cluster distances.
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Limitations

Recruiting human subjects for annotation limits
the reproducibility of human evaluation. In addi-
tion, we have only tested the performance of the
proposed framework on the fixed dataset, ArgKP-
2021, that we described above, and not on a wider
range of data. This is because ArgKP-2021 was
the only dataset available for use in this task. Fi-
nally, we did not filter the arguments in the original
corpus, with the result that potentially offensive
arguments may come into the framework as input
and generate key points which some readers might
find offensive. It is worth noting, however, that the
identification of offensive language is not the aim
of this work.

Ethics Statement

For the present work, we used an existing
anonymised dataset without any data protection
issues. In addition, all annotators were systemati-
cally trained and explicitly informed that their work
would be used in the study before human evalua-
tion. The annotators’ work was only taken into
account if they clearly understood the task and con-
sented to how their work will be used. In addition,
we do not collect their names or personal infor-
mation, only their ratings. Therefore, institutional
ethical approval was not required.
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A Data Augmentation

A.1 Data Description

Data Set  Arg Single Arg-KP  Multiple Arg-KP

Train(24) 5583 3778 238(2)
Dev(4) 932 604 67(0)
Test(3) 723 454 46(6)

Table 6: Data Set Statistics.

In this work, we use the dataset ArgKP-2021,
which contains arguments obtained by crowd-
sourcing on 31 topics and key points written by
experts (Friedman et al., 2021). 27k samples are
present in the form of ( argument, key point, la-
bel ) triples, and are grouped by positive or neg-
ative stance. Labels are crowd-sourced judments
of whether a post is an argument, and which argu-
ments are represented by which key points. Table 6
shows that 5% of the arguments are matched with
multiple key points and 27% of the arguments do
not match any of the key points. The dataset was di-
vided at the topic level, with the training, validation
and test subsets corresponding to 24, 4 and 3 topics
respectively (where the topics across the subsets do
not overlap with each other).As mentioned earlier,
only 0.001% of the arguments (2 out of 238 in the
training set, 6 out of 46 in the test set and none
in the validation set) matched more than three key
points

A.2 Example of template

A.3 Result of data distribution of the data
augmentation dataset

Figure 3 illustrates the data distribution of the final
augmented dataset, with each topic containing an
average of 20,000 arguments and 7,500 arguments
matched to key points.

B More details of the methodology

B.1 Parameters for DA

We set DINO’s num entries per input and label
to 50 which generates 50 data for each label (0,
0.5, 1) of each input example, top p to 0.9, top k
to 5 and other parameters follow the default. The
DINO (Schick and Schiitze, 2021) is trained on a
single NVIDIA Tesla 32G V100 GPU, with each
run taking up to twelve hours.

B.2 Filtering mechanism for KPM

By thresholding the unclassified arguments, we
take into account the second highest probability.
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Instruction: "Task: Write two claims that mean the same
thing."

Sentence 1: "People have the right to die on their own terms
and in their own time."

Sentence 2: "People have the right to die when and if their

suffering becomes intolerable."

Instruction: "Task: Write two claims that are somewhat similar."

Sentence 1: "People have the right to die on their own terms and
in their own time."

Sentence 2: "People should be able to decide what is best for
them."

Instruction: "Task: Write two claims that are on completely
different topics."

Sentence 1: "People have the right to die on their own terms and
in their own time."

Sentence 2: "People should be free to choose the type of life
they wish for themselves."

Figure 2: Continuation text generated by prompted
learning data augmented methods with three different
template descriptions. We chose to give input sentence
1 and generate only sentence 2, which helps to generate
sentence similarity datasets.

ROUGE BLEURT
Approach R-1 R-2 R-L sP sR sF1
Experiment | 30.7 9.1 28.3 0.61 0.59 0.60
Experiment 2 314 9.3 29.0 0.62 0.59 0.61
Experiment 3 29.7 9.8 279 0.57 0.55 0.56
Experiment 4 30.2 9.5 28.1 0.60 0.57 0.58
Experiment 5 31.1 8.7 28.9 0.61 0.59 0.60
Experiment 6 27.8 7.0 264 0.55 0.56 0.56
Experiment 7 31.1 8.7 29.0 0.61 0.58 0.60
Experiment 8 30.1 9.5 28.2 0.60 0.56 0.58
Experiment 9 30.3 8.9 28.1 0.59 0.58 0.59
Experiment 10 31.7 8.5 29.6 0.62 0.62 0.62

Average 29.8+2 84414 28.0£1.6 0.59+0.03 0.58+0.04 0.59+0.03

Table 7: 10 times running result of our best
approaches. The experiments were performed on
T5-effective-base.

Formally, this procedure is described as follows:

n

i=1 Psecond—max (ATgZ)
n

3

where ~ is the value of the threshold, Arg; €
InputText is an independent argument, ¢ iterates
over the second highest probability of each argu-
ment, and n is the number of arguments per stance
per topic. We average the sum of the second high-
est probabilities as the threshold for selecting the
arguments since only 0.001% of the arguments
matched more than two key points, and the third
highest probability was more different from the
top two (Data distribution details can be seen in
Appendix A.1).

B.3 Experimental parameters for KPG

We train the model for a total of 15 epochs on two
NVIDIA Tesla A100 80GB GPUs with and batch

Data distribution of the data augmented dataset
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Figure 3: Data distribution of the data augmented
dataset

size of 16, limiting input length to 512.

B.4 Second set-based automatic evaluation
Design

Due to their outstanding multiple task-based for-
mulation and ability to utilize the entirety of the
pre-trained model’s parameters, we propose two
different lines to use flexibly in different evaluation
scenarios. Specifically, the first consideration is
that the number of generated key points is likely
to be different from the number of reference key
points, presented as in evaluating them from differ-
ent directions, which are already explained in the
main page.

In addition, we propose an evaluation idea specif-
ically for the scenario where the number of gen-
erated key points is the same as the number of
reference key points. For n generated and reference
key points find n pairs of (generated, reference)
with maximum score, such that:

* Each generated and reference key point ap-
pears in some pair

* Each generated and reference key point ap-
pears only once

B.5 Result of different methods

Table 8 shows the example generated KPs based
on different threshold. Table 1 demonstrates
the different work in sPsR and sF1 based on
BARTScore. Table 7 shows the overall perfor-
mance of S-KPM+IC+DA after 10 times running.
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Topic

Stance

Threshold 0.6

Threshold 0.9

The USA is a good
country to live in

Social media plat-
forms should be reg-
ulated by the gov-
ernment

Pro

Con

(1) United States is the best country to
live. (2) The United States has a lot
of diversity. (3) USA is the American
dream.

(1) Social media platforms cannot be
regulated by the government. (2) So-
cial media platforms are important to
freedom of expression. (3) Private com-

(1) United States offers many opportu-
nities. (2) The USA has a good stan-
dard of living. (3) The USA offers op-
portunities for everyone to achieve the
American dream.

(1) The social media platforms should
not be regulated because they are pri-
vate companies. (2) Social media
platforms should be regulated to pre-

panies should not be regulated.

vent crimes. (3) Social media plat-
forms should not be regulated because
it would be ineffective.

Table 8: Examples of key points generated from our proposed approach. For the sake of brevity, only the top three

key points are shown.

C Human Evaluation

C.1 Tutorial for human evaluation

The main aim of this evaluation is to assess the
quality of the argument summaries automatically
generated by the language model. Unlike sum-
maries of articles, this task is presented by a highly
condensed set of sentences as a summary. Each
of them is known as a key point. Following is an
example:

Topic: We should abandon the use of school
uniform

Stance: Con
Original text:

1. School uniform keeps everyone looking the
same and prevents bullying.

2. Having a school uniform can reduce bullying
as students who have no style or cannot afford the
latest trends do not stand out.

3. School uniforms can prevent bullying due to
economic background and appearance.

Key point: School uniform reduces bullying.
Task description

There are three tasks involved in this evaluation.
The first task concerns how well the summary itself
serves as a key point. The second task aims to
determine which of the two sets of generated key
points is more consistent with the way humans
produce summaries. The third task evaluates how
well the generated set of key points summarises the
corpus of arguments.

C.2 Dimensions of human evaluation

Annotators were asked to evaluate the gold anno-
tated key points as ground truth, followed by an
evaluation of the best performing set of generated
key points. Before starting, they were given task-
oriented training that explained in detail the def-
inition of arguments, key points and topics. The
following are the dimensions involved in the evalu-
ation task.

* VALIDITY: The key point should be an un-
derstandable, well-written sentence.

* SENTIMENT: It should have a clear stance
towards the debate topic (either positive or
negative).

* INFORMATIVENESS: It should discuss
some aspect of the debate topic and be gen-
eral enough. Any key point that is too specific
or only expresses sentiment cannot be consid-
ered a good candidate.

* SINGLEASPECT: It should not involve mul-
tiple aspects.

* SIGNIFICANT: Each key point should stand
out and capture a main point.

* COVERAGE: A set of KPs should cover the
most of semantic information in a given cor-
pus.

* FAITHFULNESS: KPs should actually ex-
press the meaning in the corpus. No conjec-
ture or unfounded claims arise.
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* REDUNDANT: Each KP expresses a distinct
aspect. In other words, there should be no
overlap between the key points.

C.3 Results of human evaluation

The following table shows the consistency between
the human annotators on a different topics.

Topic VL SN IN SA  SG CV FF RD

Routine-Con 046 056 049 0.84 ; 042 0.75 049 0.79
Routine-Pro  0.62 0.62 0.64 0.54 : 033 0.62 048 0.68
Media-Con 045 084 0.64 058040 0.67 043 054
Media-Pro 029 0.63 046 0.52:050 054 035 0.73
USA-Con 032 066 076 078,074 046 072 0.80
USA-Pro 025 082 0.77 0.70'0.80 0.60 0.72 0.85

Average 0.40 0.69 0.63 0.69,0.53 061 053 0.74

Table 9: Result of Krippendorff’s Alpha on each dimen-
sion. Each score is the average score of seven annotators
on the dimension (HT1 left and HT2 right). Reported
are, from left to right, VALIDITY, SENTIMENT, IN-
FORMATIVENESS, SINGLEASPECT, SIGNIFICANCE,
COVERAGE, FAITHFULNESS and REDUNDANCY
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