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Abstract

Formulating selective information needs re-
sults in queries that implicitly specify set
operations, such as intersection, union, and
difference. For instance, one might search
for "shorebirds that are not sandpipers" or
"science-fiction films shot in England". To
study the ability of retrieval systems to meet
such information needs, we construct QUEST,
a dataset of 3357 natural language queries with
implicit set operations, that map to a set of en-
tities corresponding to Wikipedia documents.
The dataset challenges models to match multi-
ple constraints mentioned in queries with cor-
responding evidence in documents and cor-
rectly perform various set operations. The
dataset is constructed semi-automatically us-
ing Wikipedia category names. Queries are
automatically composed from individual cate-
gories, then paraphrased and further validated
for naturalness and fluency by crowdworkers.
Crowdworkers also assess the relevance of en-
tities based on their documents and highlight
attribution of query constraints to spans of doc-
ument text. We analyze several modern re-
trieval systems, finding that they often strug-
gle on such queries. Queries involving nega-
tion and conjunction are particularly challeng-
ing and systems are further challenged with
combinations of these operations.1

1 Introduction

People often express their information needs with
multiple preferences or constraints. Queries corre-
sponding to such needs typically implicitly express
set operations such as intersection, difference, and
union. For example, a movie-goer might be looking
for a science-fiction film from the 90s which does
not feature aliens and a reader might be interested
in a historical fiction novel set in France. Similarly,

∗Work done during an internship at Google.
1The dataset is available at https://github.com/

google-research/language/tree/master/language/
quest.
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Figure 1: The dataset construction process for QUEST.
First, (1) we sample Wikipedia category names and find
their corresponding set of relevant entities. (2) Then,
we compose a query with set operations and have this
query paraphrased by crowdworkers. (3) These queries
are then validated for fluency and naturalness. (4) Fi-
nally, crowdworkers mark the entities’ relevance by
highlighting attributable spans in their documents.

a botanist attempting to identify a species based
on their recollection might search for shrubs that
are evergreen and found in Panama. Further, if
the set of entities that satisfy the constraints is rela-
tively small, a reader may like to see and explore
an exhaustive list of these entities. In addition, to
verify and trust a system’s recommendations, users
benefit from being shown evidence from trusted
sources (Lamm et al., 2021).

Addressing such queries has been primarily stud-
ied in the context of question answering with struc-
tured knowledge bases (KBs), where query con-
straints are grounded to predefined predicates and
symbolically executed. However, KBs can be in-
complete and expensive to curate and maintain.
Meanwhile, advances in information retrieval may
enable developing systems that can address such
queries without relying on structured KBs, by
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matching query constraints directly to supporting
evidence in text documents. However, queries that
combine multiple constraints with implicit set op-
erations are not well represented in existing re-
trieval benchmarks such as MSMarco (Nguyen
et al., 2016) and Natural Questions (Kwiatkowski
et al., 2019). Also, such datasets do not focus on
retrieving an exhaustive document set, instead lim-
iting annotation to the top few results of a baseline
information retrieval system.

To analyze retrieval system performance on such
queries, we present QUEST, a dataset with natu-
ral language queries from four domains, that are
mapped to relatively comprehensive sets of entities
corresponding to Wikipedia pages. We use cate-
gories and their mapping to entities in Wikipedia
as a building block for our dataset construction
approach, but do not allow access to this semi-
structured data source at inference time, to simulate
text-based retrieval. Wikipedia categories represent
a broad set of natural language descriptions of en-
tity properties and often correspond to selective
information need queries that could be plausibly
issued by a search engine user. The relationship
between property names and document text is often
subtle and requires sophisticated reasoning to deter-
mine, representing the natural language inference
challenge inherent in the task.

Our dataset construction process is outlined in
Figure 1. The base queries are semi-automatically
generated using Wikipedia category names. To
construct complex queries, we sample category
names and compose them by using pre-defined
templates (for example, A ∩ B \ C). Next, we
ask crowdworkers to paraphrase these automati-
cally generated queries, while ensuring that the
paraphrased queries are fluent and clearly describe
what a user could be looking for. These are then
validated for naturalness and fluency by a differ-
ent set of crowdworkers, and filtered according to
those criteria. Finally, for a large subset of the data,
we collect scalar relevance labels based on the en-
tity documents and fine-grained textual attributions
mapping query constraints to spans of document
text. Such annotation could aid the development
of systems that can make precise inferences from
trusted sources.

Performing well on this dataset requires sys-
tems that can match query constraints with cor-
responding evidence in documents and handle set
operations implicitly specified by the query (see
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Query: Supernatural horror films set in Nevada
Entity: Willy’s Wonderland
Document Text: Willy’s Wonderland is a 2021
American action comedy horror film directed by
Kevin Lewis from a screenplay by G. O. Parsons.
The film stars Nicolas Cage, who also [...]
It follows a quiet drifter who is tricked into clean-
ing up an abandoned family entertainment center
haunted by eight murderous animatronic characters.
The project was announced in October 2019, [...]
When his car catches a flat tire on a remote country
road, a quiet drifter ends up stranded outside of
Hayesville, Nevada. Mechanic Jed Love picks [...]

Figure 2: An example of a query and relevant entity
from QUEST. The attribution for different query con-
straints can come from different parts of the document.
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Figure 2: An example of a query and relevant entity
from QUEST. The attribution for different query con-
straints can come from different parts of the document.

Figure 2), while also efficiently scaling to large
collections of entities. We evaluate several re-
trieval systems by finetuning pretrained models on
our dataset. Systems are trained to retrieve multi-
document sets given a query. We find that current
dual encoder and cross-attention models up to the
size of T5-Large (Raffel et al., 2020) are largely not
effective at performing retrieval for queries with
set operations. Queries with conjunctions and nega-
tions prove to be especially challenging for models
and systems are further challenged with combina-
tions of set operations. Our error analysis reveals
that non-relevant false positive entities are often
caused by the model ignoring negated constraints,
or ignoring the conjunctive constraints in a query.

2 Related Work

Previous work in question answering and informa-
tion retrieval has focused on QA over knowledge
bases as well as open-domain QA and retrieval over
a set of entities or documents. We highlight how
these relate to our work below.

Knowledge Base QA Several datasets have been
proposed for question answering over knowledge
bases (Berant et al., 2013; Yih et al., 2016; Tal-
mor and Berant, 2018; Keysers et al., 2020; Gu
et al., 2021, inter alia). These benchmarks re-
quire retrieval of a set of entities that exist as nodes
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or relations in an accompanying knowledge base.
Questions are optionally supplemented with logical
forms. Lan et al. (2021) provide a comprehensive
survey of complex KBQA datasets.

Previous work has simultaneously noted that
large curated KBs are incomplete (Watanabe et al.,
2017). Notably, KBQA systems operate over a
constrained answer schema, which limits the types
of queries they can handle. Further, these schema
are expensive to construct and maintain. For this
reason, our work focuses on a setting where we do
not assume access to a KB. We note that KBQA
datasets have also been adapted to settings where a
KB is incomplete or unavailable (Watanabe et al.,
2017; Sun et al., 2019). This was done by either
removing some subset of the data from the KB or
ignoring the KB entirely. A key difference from
these datasets is also that we do not focus on multi-
hop reasoning over multiple documents. Instead,
the relevance of an entity can be determined solely
based on its document.

Open-Domain QA and Retrieval Many open-
domain QA benchmarks, which consider QA over
unstructured text corpora, have been proposed
in prior work. Some of these, such as TREC
(Craswell et al., 2020), MSMarco (Nguyen et al.,
2016) and Natural Questions (Kwiatkowski et al.,
2019) are constructed using "found data", using
real user queries on search engines. Thakur et al.
(2021) present a benchmark where they consider
many such existing datasets. Datasets such as Hot-
potQA (Yang et al., 2018), and MultiRC (Khashabi
et al., 2018) have focused on multi-hop question
answering. Other work has explored e-commerce
datasets (for example, (Kong et al., 2022)), but
these have not been released publicly. Notably, the
focus of these datasets differs from ours as we focus
on queries that contain implicit set operations over
exhaustive answer sets. Such queries are not well
represented in existing datasets because they occur
in the tail of the query distributions considered.

Multi-Answer Retrieval Related work (Min
et al., 2021; Amouyal et al., 2022) also studies
the problem of multi-answer retrieval, where sys-
tems are required to predict multiple distinct an-
swers for a query. Min et al. (2021) adapt existing
datasets (for example, WebQuestionsSP (Yih et al.,
2016)) to study this setting and propose a new met-
ric, MRecall@K, to evaluate exhaustive recall of
multiple answers. We also consider the problem of
multi-answer set retrieval, but consider queries that

implicitly contain set constraints.
In concurrent work, RomQA (Zhong et al., 2022)

proposes an open-domain QA dataset, focusing on
combinations of constraints extracted from Wiki-
data. RomQA shares our motivation to enable an-
swering queries with multiple constraints, which
have possibly large answer sets. To make attribu-
tion to evidence feasible without human annotation,
RomQA focuses on questions whose component
constraints can be verified from single entity-linked
sentences from Wikipedia abstracts, annotated with
relations automatically through distant supervision,
with high precision but possibly low recall (T-Rex
corpus). In QUEST, we broaden the scope of query-
evidence matching operations by allowing for at-
tribution through more global, document-level in-
ference. To make human annotation for attribution
feasible, we limit the answer set size and the evi-
dence for an answer to a single document.

3 Dataset Generation

QUEST consists of 3357 queries paired with up
to 20 corresponding entities. Each entity has an
associated document derived from its Wikipedia
page. The dataset is divided into 1307 queries for
training, 323 for validation, and 1727 for testing.

The task for a system is to return the correct
set of entities for a given query. Additionally, as
the collection contains 325,505 entities, the task
requires retrieval systems that can scale efficiently.
We do not allow systems to access additional infor-
mation outside of the text descriptions of entities at
inference time. Category labels are omitted from
all entity documents.

3.1 Atomic Queries

The base atomic queries (i.e., queries without any
introduced set operations) in our dataset are derived
from Wikipedia category names2. These are hand-
curated natural language labels assigned to groups
of related documents in Wikipedia3. Category as-
signments to documents allow us to automatically
determine the set of answer entities for queries with
high precision and relatively high recall. We com-
pute transitive closures of all relevant categories to
determine their answer sets.

However, repurposing these categories for con-
structing queries poses challenges: 1) lack of evi-

2We use the Wikipedia version from 06/01/2022.
3Note that these category labels can sometimes be conjunc-

tive themselves, potentially increasing complexity.
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Domain Template Example Num. Queries
A Biographical Italian bandits films 125

A ∪B Dutch crime comedy or romantic comedy films 135
A ∩B Italian crime films set in the 1970’s 143

Films A \B Indian sport films that are not about cricket 126
A ∪B ∪ C Dutch or Swiss war films, or war films from 1945 122
A ∩B ∩ C 2020’s drama films shot in cleveland 124
A ∩B \ C Epic films about Christianity not set in Israel 121

A 2004 German novels 125
A ∪B 1925 Russian novels or Novels by Ivan Bunin 125
A ∩B 1991 Novels set in Iceland 133

Books A \B Novels set in the 1900s not based on real events 123
A ∪B ∪ C Novels set in Nanjing, Hebei, or Jiangsu 125
A ∩B ∩ C English language Harper & Brothers Children’s fiction books 124
A ∩B \ C Novels that take place in Vietnam that aren’t about war 115

A plants only from Gabon 115
A ∪B Trees of Manitoba or Subarctic America 125
A ∩B Shrubs used in traditional Native American medicine 135

Plants A \B Trees from the Northwestern US that can’t be found in Canada 61
A ∪B ∪ C Moths or Insects or Arthropods of Guadeloupe 121
A ∩B ∩ C Plants the Arctic, the United Kingdom, and the Caucasus have in common 123
A ∩B \ C Orchids of Indonesia and Malaysia but not Thailand 122

A what are the Rodents of Cambodia 115
A ∪B Animals from Cuba or Jamaica that are extinct 121
A ∩B Neogene mammals of Africa that are Odd-toed ungulates 111

Animals A \B Non-Palearctic birds of Mongolia 110
A ∪B ∪ C Cenozoic birds of Asia or Africa or Paleogene birds of Asia 114
A ∩B ∩ C Birds of Chile that are also Birds of Peru and Fauna of the Guianas 104
A ∩B \ C mammals found in the Atlantic Ocean and Colombia, but not in Brazil 114

Table 1: Templates used for construction of queries with set operations and examples from the four domains
considered, along with the count of examples per each domain and template.

dence in documents: documents may not contain
sufficient evidence for judging their relevance to
a category, potentially providing noisy signal for
relevance attributable to the document text, 2) low
recall: entities may be missing from categories to
which they belong. For about half of the dataset, we
crowdsource relevance labels and attribution based
on document text, and investigate recall through
manual error analysis (§5).

We select four domains to represent some diver-
sity in queries: films, books, animals and plants.
Focusing on four rather than all possible domains
enables higher quality control. The former two
model a general search scenario, while the latter
two model a scientific search scenario.

3.2 Introducing set operations

To construct queries with set operations, we define
templates that represent plausible combinations of
atomic queries. Denoting atomic queries as A, B
and C, our templates and corresponding examples
from different domains are listed in Table 1. Tem-
plates were constructed by composing three basic
set operations (intersection, union and difference).
They were chosen to ensure unambiguous interpre-
tations of resulting queries by omitting those com-
binations of set operations that are non-associative.

Below we describe the logic behind sampling
atomic queries (i.e., A, B, C) for composing com-

plex queries, with different set operations. In all
cases, we ensure that answer sets contain between
2-20 entities so that crowdsourcing relevance judge-
ments is feasible. We sample 200 queries per tem-
plate and domain, for a total of 4200 initial queries.
The dataset is split into train + validation (80-20
split) and testing equally. In each of these sets, we
sampled an equal number of queries per template.
Intersection. The intersection operation for a
template A∩B is particularly interesting and poten-
tially challenging when both A and B have large
answer sets but their intersection is small. We re-
quire the minimum answer set sizes of each A and
B to be fairly large (>50 entities), while their inter-
section to be small (2-20 entities).
Difference. Similar to intersection, we require
the answer sets for both A and B to be substantial
(>50 entities), but also place maximum size con-
straints on both A (<200 entities) and B (<10000
entities) as very large categories tend to suffer from
recall issues in Wikipedia. We also limit the inter-
section of A and B (see reasoning in Appendix B).
Union. For the union operation, we require both
A and B to be well-represented through the entities
in the answer set for their union A ∪ B. Hence,
we require both A and B to have at least 3 entities.
Further, we require their intersection to be non-zero
but less than 1/3rd of their union. This is so that A
and B are somewhat related queries.
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Films Books Plants Animals All

Num. Queries 896 870 802 789 3357
Num. Entities 146368 50784 83672 44681 325505
Avg. Query Len. 8.68 7.93 8.94 9.09 8.64
Avg. Doc. Len. 532.2 655.3 258.1 293.1 452.2
Avg. Ans. Set Size 8.8 8.6 12.2 12.6 10.5

Table 2: Statistics of examples in QUEST across different domains.

For all other templates that contain compositions
of the above set operations, we apply the same con-
straints recursively. For example, for A∩B\C, we
sample atomic queries A and B for the intersection
operation, then sample C based on the relationship
between A ∩B and C.

3.3 Annotation Tasks

Automatically generating queries based on tem-
plates results in queries that are not always fluent
and coherent. Further, entities mapped to a query
may not actually be relevant and don’t always have
attributable evidence for judging their relevance.
We conduct crowdsourcing to tackle these issues.
The annotation tasks aim at ensuring that 1) queries
are fluent, unambiguous and contain diverse nat-
ural language logical connectives, (2) entities are
verified as being relevant or non-relevant and (3)
relevance judgements are attributed to document
text for each relevant entity. Crowdsourcing is per-
formed in three stages, described below. More
annotation details and the annotation interfaces can
be found in Appendix C.

3.3.1 Paraphrasing
Crowdworkers were asked to paraphrase a tem-
platically generated query so that the paraphrased
query is fluent, expresses all constraints in the orig-
inal query, and clearly describes what a user could
be looking for. This annotation was done by one
worker per query.

3.3.2 Validation
This stage is aimed at validating the queries we
obtain from the paraphrasing stage. Crowdworkers
were given queries from the first stage and asked to
label whether the query is 1) fluent, 2) equivalent to
the original templatic query in meaning, and 3) rate
its naturalness (how likely it is to be issued by a
real user). This annotation was done by 3 workers
per query. We excluded those queries which were
rated as not fluent, unnatural or having a different
meaning than the original query, based on a ma-

jority vote. Based on the validation, we removed
around around 11% of the queries from stage 1.

3.3.3 Relevance Labeling
Next, crowdworkers were asked to provide rele-
vance judgements for the automatically determined
answer sets of queries. Specifically, they were
given a query and associated entities/documents,
and asked to label their relevance on a scale of 0-3
(definitely not relevant, likely not relevant, likely
relevant, definitely relevant). They were asked to
ensure that relevance should mostly be inferred
from the document, but they could use some back-
ground knowledge and do minimal research.

We also asked them to provide attributions for
document relevance. Specifically, we ask them
to first label whether the document provides suffi-
cient evidence for the relevance of the entity (com-
plete/partial/no). Then, for different phrases in the
query (determined by the annotator), we ask them
to mark sentence(s) in the document that indicate
its relevance. The attribution annotation is broadly
inspired by Rashkin et al. (2021). For negated con-
straints, we ask annotators to mark attributable sen-
tences if they provide counter-evidence. Since this
annotation was time-intensive, we collected these
annotations for two domains (films and books). We
found that relevance labeling was especially dif-
ficult for the plants and animals domains, as they
required more specialized scientific knowledge. In
our pilot study prior to larger scale data collection,
we collected 3 relevance ratings from different an-
notators for 905 query and document pairs from
the films domain. In 61.4% of cases, all 3 raters
judged the document to be “Definitely relevant” or
“Likely relevant” or all 3 raters judged the docu-
ment to be “Definitely not relevant” or “Likely not
relevant”. The Fleiss’ kappa metric on this data
was found to be K=0.43. We excluded all entities
which were marked as likely or definitely not rel-
evant to a query based on the document text from
its answer set. Around 23.7% of query-document
pairs from stage 2 were excluded.
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document corpus and a document relevance classifier for determining the final predicted document set.

3.4 Dataset Statistics
Basic dataset statistics are reported in Table 2. The
dataset contains more entities from the films do-
main, because this domain is more populated in
Wikipedia. The average length of queries is 8.6
words and the average document length is 452
words. Documents from the films and books do-
mains are longer on average, as they often con-
tain plots and storylines. Around ∼69% of entities
have complete evidence and ∼30% have partial
evidence. Evidence was labeled as partial when
not all phrases in the query had explicit evidence
in the document (i.e., they may require background
knowledge or reasoning). There are on average
33.2 words attributed for each entity with the max-
imum attribution text span ranging up to length
1837 words. Finally, the average answer set size is
10.5 entities.

3.5 Additional Training Examples
Beyond the annotated data, we generated additional
synthetic examples for training. We found includ-
ing such examples improved model performance,
and we include these examples for the experiments
in §4. To generate these examples, we sample 5000
atomic queries from all domains, ensuring that they
do not already appear as sub-queries in any of the
queries in QUEST and use their corresponding enti-
ties in Wikipedia as their relevant entity set.

4 Experimental Setup

We evaluate modern retrieval systems to establish
baseline performances. We also perform extensive
error analysis to understand patterns of model er-
rors and the quality of the labels in QUEST.

4.1 Task Definition
We consider a corpus, E , that contains entities
across all domains in the dataset. Each entity is ac-
companied with a document based on its Wikipedia
page. An example in our dataset consists of a query,

x, and an annotated set of relevant entities, y ⊂ E .
As described in §3, for all examples |y| < 20. Our
task is to develop a system that, given E and a query
x, predicts a set of relevant entities, ŷ ⊂ E .

4.2 Evaluation

Our primary evaluation metric is average F1, which
averages per-example F1 scores. We compute F1

for each example by comparing the predicted set
of entities, ŷ, with the annotated set, y.

4.3 Baseline Systems

We evaluated several combinations of retrievers
and classifiers, as shown in Figure 3. For the re-
triever component, we consider a sparse BM25
retriever (Robertson et al., 2009) and a dense
dual encoder retriever (denoted DE). Following
Ni et al. (2022), we initialize our dual encoder
from a T5 (Raffel et al., 2020) encoder and train
with an in-batch sampled softmax loss (Henderson
et al., 2017). Once we have a candidate set, we
need to determine a set of relevant entities. To clas-
sify relevance of each candidate document for the
given query, we consider a cross-attention model
which consists of a T5 encoder and decoder.4 We
train the cross-attention classifier using a binary
cross-entropy loss with negative examples based
on non-relevant documents in top 1,000 documents
retrieved by BM25 and random non-relevant doc-
uments (similarly to Nogueira and Cho (2019)).
As cross-attention classification for a large number
of candidates is computationally expensive, we re-
strict BM25 and the dual encoder to retrieve 100
candidates which are then considered by the cross-
attention classifier. As our T5-based dual encoder
can only efficiently accommodate up to 512 tokens,

4Scores from BM25 and dual encoders trained with a soft-
max loss are not normalized to provide relevance probabilities
for documents. We found that naively applying a global thresh-
old to these scores to produce answer sets did not perform as
well as using a classifier trained with a binary cross-entropy
loss to predict document relevance.
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Retriever (K=100) Classifier Avg. Precision Avg. Recall Avg. F1

BM25 T5-Base 0.168 0.160 0.141
BM25 T5-Large 0.178 0.168 0.150
T5-Large DE T5-Base 0.153 0.354 0.176
T5-Large DE T5-Large 0.165 0.368 0.192

Table 3: Average Precision, Recall, and F1 of baseline systems evaluated on the test dataset.

Avg. Recall@K MRecall@K

Retriever 20 50 100 1000 20 50 100 1000

BM25 0.104 0.153 0.197 0.395 0.020 0.030 0.037 0.087
T5-Base DE 0.255 0.372 0.455 0.726 0.045 0.088 0.127 0.360
T5-Large DE 0.265 0.386 0.476 0.757 0.047 0.100 0.142 0.408

Table 4: Average Recall and MRecall of various retrievers.

we truncate document text. We discuss the impact
of this and alternatives in §5. Further, since T5 was
pre-trained on Wikipedia, we investigate the impact
of memorization in Appendix D. Additional details
and hyperparameter settings are in Appendix A.

4.4 Manual Error Annotation

For the best overall system, we sampled errors and
manually annotated 1145 query-document pairs
from the validation set. For the retriever, we sam-
pled relevant documents not included in the top-100
candidate set and non-relevant documents ranked
higher than relevant ones. For the classifier, we
sampled false positive and false negative errors
made in the top-100 candidate set. This annota-
tion process included judgements of document rel-
evance (to assess agreement with the annotations
in the dataset) and whether the document (and the
truncated version considered by the dual encoder
or classifier) contained sufficient evidence to rea-
sonably determine relevance. We also annotated
relevance for each constraint within a query. We
discuss these results in §5.

5 Results and Analysis

We report the performance of our baseline systems
on the test set in Table 3. In this section, we sum-
marize the key findings from our analysis of these
results and the error annotation described in §4.4.

Dual encoders outperform BM25. As shown
in Table 3, the best overall system uses a T5-
Large Dual Encoder instead of BM25 for retrieval.
The performance difference is even more signifi-
cant when comparing recall of Dual Encoders and
BM25 directly. We report average recall (average

per-example recall of the full set of relevant docu-
ments) and MRecall (Min et al., 2021) (the percent-
age of examples where the candidate set contains
all relevant documents), over various candidate set
sizes in Table 4.
Retrieval and classification are both challeng-
ing. As we consider only the top-100 candidates
from the retriever, the retriever’s recall@100 sets
an upper bound on the recall of the overall system.
Recall@100 is only 0.476 for the T5-Large Dual
Encoder, and the overall recall is further reduced by
the T5-Large classifier to 0.368, despite achieving
only 0.165 precision. This suggests that there is
room for improvement from both stages to improve
overall scores. As performance improves for larger
T5 sizes for both retrieval and classification, further
model scaling could be beneficial.
Models struggle with intersection and differ-
ence. We also analyzed results across different
templates and domains, as shown in Table 5. Dif-
ferent constraints lead to varying distributions over
answer set sizes and the atomic categories used.
Therefore, it can be difficult to interpret differences
in F1 scores across templates. Nevertheless, we
found the queries with set union have the highest
average F1 scores. Queries with set intersection
have the lowest average F1 scores, and queries with
set difference also appear to be challenging.

To analyze why queries with conjunction and
negation are challenging, we labeled the relevance
of individual query constraints (§4.4), where a sys-
tem incorrectly judges relevance of a non-relevant
document. The results are summarized in Table 6.
For a majority of false positive errors involving in-
tersection, at least one constraint is satisfied. This
could be interpreted as models incorrectly treating

14038



intersection as union when determining relevance.
Similarly, for a majority of examples with set dif-
ference, the negated constraint is not satisfied. This
suggests that the systems are not sufficiently sensi-
tive to negations.

Template Films Books Plants Animals All

A 0.231 0.436 0.209 0.214 0.274
A ∪B 0.264 0.366 0.229 0.271 0.282
A ∩B 0.115 0.138 0.049 0.063 0.092
A \B 0.177 0.188 0.216 0.204 0.193
A ∪B ∪ C 0.200 0.348 0.306 0.294 0.287
A ∩B ∩ C 0.086 0.121 0.07 0.065 0.086
A ∩B \ C 0.119 0.112 0.121 0.136 0.122

All 0.171 0.248 0.165 0.182 0.192

Table 5: F1 of our strongest baseline (T5-Large DE +
T5-Large Classifier) across templates and domains.

There is significant headroom to improve both
precision and recall. As part of our manual er-
ror analysis (§4.4), we made our own judgements
of relevance and measured agreement with the rel-
evance annotations in QUEST. As this analysis
focused on cases where our best system disagreed
with the relevance labels in the dataset, we would
expect agreement on these cases to be significantly
lower than on randomly selected query-document
pairs in the dataset. Therefore, it provides a fo-
cused way to judge the headroom and annotation
quality of the dataset.

For false negative errors, we judged 91.1% of
the entities to be relevant for the films and books
domains, and 81.4% for plants and animals. No-
tably, we collected relevance labels for the films
and books domains and removed some entities
based on these labels, as described in §3, which
likely explains the higher agreement for false neg-
atives from these domains. This indicates signifi-
cant headroom for improving recall as defined by
QUEST, especially for the domains where we col-
lected relevance labels.

For false positive errors, we judged 28.8% of
the entities to be relevant, showing a larger dis-
agreement with the relevance labels in the dataset.
This is primarily due to entities not included in the
entity sets derived from the Wikipedia category tax-
onomy (97.7%), rather than entities removed due
to relevance labeling. This is a difficult issue to
fully resolve, as it is not feasible to exhaustively
label relevance for all entities to correct for recall
issues in the Wikipedia category taxonomy. Future
work can use pooling to continually grow the set

# Constraints

1 2 3 Neg.

Retriever
A ∩B 63.5 36.5 — —
A ∩B ∩ C 56.5 37.0 6.5 —
A \B 80.3 19.7 — 59.1
A ∩B \ C 47.6 40.5 11.9 26.2

Classifier
A ∩B 83.3 16.7 — —
A ∩B ∩ C 73.2 22.0 4.9 —
A \B 81.0 19.1 — 38.1
A ∩B \ C 95.5 4.6 0.0 68.2

Table 6: Analysis of false positive errors from the T5-
Large classifier and cases where a non-relevant docu-
ment was ranked ahead of a relevant one for the T5-
Large dual encoder. For queries with conjunction, we
determined the percentage of cases where 1, 2, or 3
constraints in the template were not satisfied by the
predicted document (# Constraints). For queries with
negation, we measured the percentage of cases where
the negated constraint (Neg.) was not satisfied.

of relevant documents (Sparck Jones and Van Rijs-
bergen, 1975). Despite this, our analysis suggests
there is significant headroom for improving pre-
cision, as we judged a large majority of the false
positive predictions to be non-relevant.

Truncating document text usually provides suf-
ficient context. In our experiments, we truncate
document text to 512 tokens for the dual encoder,
and 384 tokens for the classifier to allow for the
document and query to be concatenated. Based on
our error analysis (§4.4), out of the documents with
sufficient evidence to judge relevance, evidence oc-
curred in this truncated context 93.2% of the time
for the dual encoder, and 96.1% of the time for the
classifier. This may explain the relative success of
this simple baseline for handling long documents.
We also evaluated alternative strategies but these
performed worse in preliminary experiments5. Fu-
ture work can evaluate efficient transformer vari-
ants (Guo et al., 2022; Beltagy et al., 2020).

6 Conclusion

We present QUEST, a new benchmark of queries
which contain implicit set operations with corre-
sponding sets of relevant entity documents. Our
experiments indicate that such queries present a

5For the dual encoder, we split documents into overlapping
chunks of 512 tokens, and aggregated scores at inference (Dai
and Callan, 2019). For the cross-attention model, we evaluated
using BM25 to select the top-3 passages of length 128.
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challenge for modern retrieval systems. Future
work could consider approaches that have better
inductive biases for handling set operations in natu-
ral language expressions (for example, Vilnis et al.
(2018)). The attributions in QUEST can be lever-
aged for building systems that can provide fine-
grained attributions at inference time. The potential
of pretrained generative LMs and multi-evidence
aggregation methods to answer set-seeking selec-
tive queries, while providing attribution to sources,
can also be investigated.

7 Limitations

Naturalness. Since our dataset relies on the
Wikipedia category names and semi-automatically
generated compositions, it does not represent an
unbiased sample from a natural distribution of
real search queries that contain implicit set opera-
tions. Further, we limit attention to non-ambiguous
queries and do not address the additional challenges
that arise due to ambiguity in real search scenarios.
However, the queries in our dataset were judged to
plausibly correspond to real user search needs and
system improvements measured on QUEST should
correlate with improvements on at least a fraction
of natural search engine queries with set operations.

Recall. We also note that because Wikipedia cat-
egories have imperfect recall of all relevant enti-
ties (that contain sufficient evidence in their docu-
ments), systems may be incorrectly penalised for
predicted relevant entities assessed as false positive.
We quantify this in section 5. We have also limited
the trusted source for an entity to its Wikipedia
document but entities with insufficient textual ev-
idence in their documents may still be relevant.
Ideally, multiple trusted sources could be taken
into account and evidence could be aggregated to
make relevance decisions. RomQA (Zhong et al.,
2022) takes a step in this latter direction although
the evidence attribution is not manually verified.

Answer Set Sizes. To ensure that relevance la-
bels are correct and verifiable, we seek the help
of crowdworkers. However, this meant that we
needed to restrict the answer set sizes to 20 for the
queries in our dataset, to make annotation feasible.
On one hand, this is realistic for a search scenario
because users may only be interested in a limited
set of results. On the other hand, our dataset does
not model a scenario where the answer set sizes are
much larger.
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A Experiment Details and
Hyperparameters

All models were fine-tuned starting from T5 1.1
checkpoints 6. We fine-tune T5 models on 32 Cloud
TPU v3 cores7. Fine-tuning takes less than 8 hours
for all models.

Dual Encoder. We used the t5x_retrieval li-
brary 8 for implementing dual encoder models. We
tuned some parameters based on results on the val-
idation set. Relevant hyperparameters for training
the dual encoder are:

• Learning Rate: 1e-3

• Warmup Steps: 1500

• Finetuning Steps: 15000

• Batch Size: 512

• Max Query Length: 64

• Max Candidate Length: 512

Classifier. For negative examples, we sampled
250 random non-relevant documents and sampled
250 non-relevant documents from the top-1000 doc-
uments retrieved by BM25. We also replicated
each positive example 50 times. We found an ap-
proximately even number of positive and negative
examples lead to better performance than training
with a large class imbalance. We found a com-
bination of random negatives and negatives from
BM25 performed better than using only either in-
dividual type of negative examples. Additionally,
selecting negative examples from BM25 performed
better than selecting negative examples from the
T5-Large dual encoder.

For the T5 input we concatenated the query and
truncated document text. The T5 output is the
string “relevant” or “not relevant”. To classify doc-
ument relevance at inference time, we applied a
threshold to the probability assigned to the “rel-
evant” label, which we tuned on the validation
set. When classifying BM25 candidates we used
a threshold of 0.9 and when classifying the dual
encoder candidates we used a threshold of 0.95.

Other relevant hyperparameters for training the
classifier are:

6https://github.com/google-
research/t5x/blob/main/docs/models.md

7https://cloud.google.com/tpu/
8https://github.com/google-research/t5x_retrieval

• Learning Rate: 1e-3

• Warmup Steps: 1000

• Finetuning Steps: 10000

• Batch Size: 1024

• Max Source Length: 512

• Max Target Length: 16

B Set Difference and Recall

Notation and Assumptions Let us assume we
have two sets derived from the Wikipedia category
graph, Â and B̂. The Wikipedia category graph
can be missing some relevant entities, such that
Â ⊂ A and B̂ ⊂ B, where A and B are inter-
preted as the hypothetical sets containing all rel-
evant entities. We quantify the degree of missing
entities by denoting recall as rA and rB , such that
|Â| = rA ∗ |A| and |B̂| = rB ∗ |B|. We quan-
tify the fraction of elements in A that are also in
B as r∩, such that |A ∩ B| = r∩ ∗ |A|. For sim-
plicity, we also assume that the overlap between
Â and B̂ is such that |Â ∩B| = rA ∗ |A ∩B| and
|Â ∩ B̂| = rA ∗ rB ∗ |A ∩B|.
Derivation What is the recall (r) and precision
(p) of Â \ B̂ relative to A \B as a function of rA,
rB , and r∩?

First, we derive this function for recall:9

r =
|(A \B) ∩ (Â \ B̂)|

|(A \B)|

r =
|(Â \B)|
|(A \B)|

r =
|Â| − |Â ∩B|
|A| − |A ∩B|

r =
rA ∗ |A| − rA ∗ r∩ ∗ |A|
|A| − (r∩ ∗ |A|)

r =
rA ∗ (1− r∩) ∗ |A|

(1− r∩) ∗ |A|
r = rA

And for precision:

p =
|(A \B) ∩ (Â \ B̂)|

|(Â \ B̂)|
9We note some useful properties of pairs of sets X and Y :

X \ Y = X ∩ Y c, |X \ Y | = |X| − |X ∩ Y |, if X ⊂ Y then
X ∩ Y = X , and if X ⊂ Y then Y c ⊂ Xc.
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p =
|(Â \B)|
|(Â \ B̂)|

p =
|Â| − |Â ∩B|
|Â| − |Â ∩ B̂|

p =
rA ∗ |A| − rA ∗ r∩ ∗ |A|

rA ∗ |A| − rA ∗ rB ∗ r∩ ∗ |A|

p =
rA ∗ (1− r∩) ∗ |A|

rA ∗ (1− rB ∗ r∩) ∗ |A|

p =
(1− r∩)

(1− rB ∗ r∩)
Discussion While recall is simply equal to rA,
precision is a more complicated function of rB
and r∩, and can be very low for large values of
r∩. Intuitively, if subtracting B̂ from Â removes
most of Â, then the precision of the resulting set
will be dominated by the relevant entities missing
from B̂. This motivates limiting the intersection of
the two sets used to construct queries involving set
intersection. For example, if rB = 0.95, then with
r∩ < 0.8, we can ensure p > 0.83.

C Annotation Details

The annotation tasks in QUEST were carried out by
participants who were paid contractors. They are
based in Austin, TX and either have a bachelor’s
degree (55%) or equivalent work experience (45%).
They were paid by the hour for their work and were
recruited from a vendor who screened them for
knowledge of US English. They were informed of
how their work would be used and could opt out.
They received a standard contracted wage, which
complies with living wage laws in their country of
employment. The annotation interfaces presented
to the annotators are shown in Figures 4, 5 and 6.

D Impact of Memorization of
Pre-training Data

Since the T5 checkpoints we use to initialize our
models were pre-trained on the C4 corpus (which
includes Wikipedia), we investigate whether these
models have memorized aspects of the Wikipedia
category graph. We compare recall of the T5-based
dual encoder model for Wikipedia documents that
were created prior to the pre-training date of the
T5 checkpoint compared with documents that were
added after pre-training. We report these in Ta-
ble 7, along with the recalls for the same sets of
documents with a BM25 retriever, for a baseline

Avg. Recall@100

Retriever Before After

BM25 0.183 0.050
T5-Large DE 0.466 0.171

Table 7: Average recall@100 on the subsets of docu-
ments created before vs after T5 pre-training.

comparison. We note that the ratio of scores be-
tween the documents added before pre-training to
documents added after pre-training is similar for
both systems, which suggests factors other than
memorization may explain the difference. For ex-
ample, the documents created before vs. after the
pre-training date have average lengths of 759.7 vs.
441.2 words, respectively.
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Figure 4: Annotation interface for the paraphrasing stage.

Figure 5: Annotation interface for the validation stage.

Figure 6: Annotation interface for the relevance labeling stage.
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