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Abstract

Automated coherence metrics constitute an im-
portant and popular way to evaluate topic mod-
els. Previous works present a mixed picture of
their presumed correlation with human judge-
ment. In this paper, we conduct a large-scale
correlation analysis of coherence metrics. We
propose a novel sampling approach to mine
topics for the purpose of metric evaluation, and
conduct the analysis via three large corpora
showing that certain automated coherence met-
rics are correlated. Moreover, we extend the
analysis to measure topical differences between
corpora. Lastly, we examine the reliability of
human judgement by conducting an extensive
user study, which is designed as an amalgama-
tion of different proxy tasks to derive a finer
insight into the human decision-making pro-
cesses. Our findings reveal some correlation
between automated coherence metrics and hu-
man judgement, especially for generic corpora.

1 Introduction

Topic modelling is an important tool in the anal-
ysis and exploration of text corpora in terms of
their salient topics (Blei et al., 2003). To evaluate
the effectiveness of topic models, the preponder-
ance of topic modeling literature rely on automated
coherence metrics. A key benefit is convenience, al-
lowing researchers to sidestep expensive and time-
consuming user studies. The basis for this reliance
is the assumption that the coherence metrics corre-
late with human judgement (Mimno et al., 2011;
Lau et al., 2014; Röder et al., 2015).

The presumed correlation with human judge-
ment should not be taken for granted. There are re-
cent works that challenge the assumption. Doogan
and Buntine (2021) highlight the inconsistencies of
automated coherence metrics via correlation anal-
ysis within each metric. In Hoyle et al. (2021),
they claimed some disagreement between human
judgement and automated coherence metrics.

We postulate that the reasons behind such a
mixed picture could be the differences in the topic
samples as well as the underlying corpora from
which the statistics were derived, resulting in lo-
calised “biases” that affect the conclusions reached
by respective studies. Given their importance, we
seek to conduct an extended analysis of automated
coherence metrics on a larger scale than anything
previously attempted. This study includes orders
of magnitudes greater than the number of topics
typically analysed, covering three large corpora,
employing a comprehensive user study with exten-
sive labels, across most of the widely used metrics.

There is a strong motivation for quantity. Given
a vocabulary, a combinatorially large number of
possible topics exist. If each topic is a vector of its
scores on different metrics, the resulting curse of
dimensionality (Bellman and Kalaba, 1959) neces-
sitates a larger sample size. We argue that evaluat-
ing thousands of topics might not be sufficient, and
a larger sample size is required to approximate a
diverse distribution, where sampled topics is repre-
sentative of the corpus and the metrics.

We surmise that the previous practice of using
topic models to generate topics could introduce
a bias in the analysis. Firstly, topic models vary
in performance, Hoyle et al. (2021) compiled a
lengthy list. There is also emerging debate on the
performance between traditional and neural topic
models (Doogan and Buntine, 2021). Additionally,
some neural models might be inconsistent, produc-
ing different topic sets in independent runs (Hoyle
et al., 2022). Conversely, topic model might be too
stable and generate similar topics (Xing and Paul,
2018). To objectively evaluate whether the coher-
ence metrics are usable, we propose to generate
candidate topics independently of topic models.

In this paper, our contributions are three-fold.
First, we begin by analysing the inter-metric cor-
relations (see Section 4). We propose a novel
approach to sample “topics” for the purpose of
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evaluating automated coherence metrics (see Sec-
tion 4.1). Compared to prior works, we sample
these topics free from topic model bias, and in a
meaningful diverse manner. Evaluated on three
large corpora, we reaffirm that certain selected met-
rics do not contradict each other, and highlight the
underestimated effects of ϵ (see Section 4.2).

Second, we extend our analysis to investigate
inter-corpora correlations (see Section 5). We ex-
amine the understated differences of corpora statis-
tics on the metrics by comparing the correlations
across corpora. While such correlations do exist to
some degree, the metrics are still dependent on each
corpus. Thus, any expectation that these metrics
would correlate uniformly with human judgement
on all possible corpora may be misplaced.

Finally, pivotal to any interpretability research,
we design and conduct a user study, which is the
keystone of our work (see Section 6). Compared to
prior work, its design is more complex as we seek
to benchmark human judgement at a finer granu-
larity across different random user study groups
(see Section 6.1). We analyse the user study results
via a few novel proxy measures, revealing that hu-
man judgement is nuanced and varies between indi-
viduals, metric correlation to human judgement is
corpus-dependant, with the average participant be-
ing attuned to the generic corpora (see Section 6.2).

Our implementation and releasable resources
can be found here1, and we hope that it will enable
convenient coherence evaluation of topic models
and to further advance interpretability research.

2 Related Work

Topic models. There are many approaches for
topic modelling Blei et al. (2003), from non-neural
based Zhao et al. (2017b); Hoffman et al. (2010),
to many other neural-based methods, via auto-
encoders (Kingma and Welling, 2014) such as Miao
et al. (2016); Srivastava and Sutton (2017); Dieng
et al. (2020); Zhang and Lauw (2020); Bianchi
et al. (2021), via graph neural networks (Yang et al.,
2020; Shen et al., 2021; Zhang and Lauw, 2022),
and hierarchical methods (Meng et al., 2020). A
common factor is the use of automated coherence
metrics to benchmark against baselines. We select
several popular metrics for evaluation as listed in
Section 3. Topic models are applied in downstream
tasks (Lau et al., 2017; Wang et al., 2019, 2020).

User studies in metric evaluation. Mimno et al.
1https://github.com/PreferredAI/topic-metrics

(2011) utilize expert annotators to independently
label 148 topics, using another 10 expert annotators
to evaluate the same topics via intruder word detec-
tion tasks. Röder et al. (2015) benchmark topics
against different permutations of metrics with the
largest evaluation set containing 900 topics with
human ratings aggregated from prior works (Ale-
tras and Stevenson, 2013; Lau et al., 2014; Rosner
et al., 2014). In Hoyle et al. (2021), a minimum of
15 crowdworkers were employed in simple rating
and word intrusion tasks evaluating 40 topic-model-
generated (Griffiths and Steyvers, 2004; Burkhardt
and Kramer, 2019; Dieng et al., 2020) and 16
synthetic random topics. In Doogan and Buntine
(2021), their largest user study required 4 subject
matter experts creating 3,120 labels across 390 top-
ics generated via topic models (Blei et al., 2003;
Zhao et al., 2017a). In comparison, our study has
both large quantities of topics and study partici-
pants, annotating 800 unbiased topics split between
40 study participants with at least an undergradu-
ate level of education, generating 180K word-pair
labels2. Our automated experiments deal with hun-
dreds of thousands of unique topics.

Human involvement. There are many interest-
ing research that examine linguistic problems via
the human lens. Card et al. (2020) investigates the
number of annotators required to achieve signifi-
cant statistical power. Plank (2022) examines the
variation in human labels. Ethayarajh and Juraf-
sky (2022) questions the authenticity of annotators.
Clark et al. (2021) tests the human ability to learn
how to differentiate between machine-generated
and human-generated texts. Human-in-the-loop
systems or processes, such as Li et al. (2022), are
also being actively explored.

3 Preliminaries

In this section, we define the automated coherence
metrics that we will be using, and describe the
corpora we use to obtain the word probabilities.

3.1 Coherence Metrics

We follow the definition styles of Röder et al.
(2015), where direct confirmation measure m is
a function of a word-pair statistic. Direct coher-
ence metrics is defined as a mean aggregation of m
between word-pairs (Equation 1), where t is a topic
which is a k-sized set of words. For our evaluations,

2Each question has 45 possible combinations of word-
pairs, each label is binary, denoting coherence relations.
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we set k = 10. Within t, the words are arranged
based on P (w|t) in descending order. Since our
approach does not produce P (w|t), we can locally
optimize the word positions within a topic to obtain
the best possible score for position-sensitive met-
rics CUMass and CP (See Appendix B). We use sub-
script s to denote alphabetical order and subscript
o to denote optimized positions. Let p = |t|·|t−1|

2 ,
which represents the number of word-pairs in a
topic.

C(t,m) =
1

p

∑

wi∈t

∑

wj∈t
i>j

m(wi, wj) (1)

CNPMI (Equation 2) is the mean aggregation of
mnlr, defined as Normalised Pointwise Mutual In-
formation (NPMI) (Bouma, 2009) value, between
word-pair statistics in a topic. We exclude CUCI as
it uses Point-wise Mutual Information (Church and
Hanks, 1990; Lau et al., 2014), which is correlated
to NPMI.

CNPMI(t) =
1

p

∑

wi∈t

∑

wj∈t
i>j

mnlr(wi, wj) (2)

mnlr(wi, wj) =
log

P (wi,wj)+ϵ
P (wi)·P (wj)

− log(P (wi, wj) + ϵ)
(3)

CUMass is the mean ordinal aggregation of mlc

(Mimno et al., 2011), which measures the log con-
ditional probability between ordered word-pair in
a topic:

CUMass(t) =
1

p

∑

wi∈t

∑

wj∈t
i>j

mlc(wi, wj) (4)

mlc(wi, wj) = log
P (wi, wj) + ϵ

P (wj)
(5)

CP is the mean ordinal aggregation of mf , Fitel-
son’s coherence (Fitelson, 2003), interpreted as the
degree to which wi supports wj , between ordered
word-pairs in a topic:

CP (t) =
1

p

∑

wi∈t

∑

wj∈t
i>j

mf (wi, wj) (6)

mf (wi, wj) =
P (wi|wj)− P (wi|¬wj)

P (wi|wj) + P (wi|¬wj)
(7)

CV (Equation 8) is the final metric that we are us-
ing. CV is considered as an indirect coherence met-
ric, as it uses word-group relations as opposed to
word-pairs relations like aforementioned direct co-
herence metrics. Intuitively, it measures the mean
cosine similarity (Equation 9) between each word’s
feature vector and the topic’s feature vector repre-
sented as the sum of all of its words’ feature vectors
(Equation 10).

CV (t, γ) =

∑
wi∈t scos(v(wi, t, γ), v̄(t, γ))

|t| (8)

scos(v⃗i, v⃗j) =

∑
v⃗i · v⃗j

||v⃗i||2 · ||v⃗j ||2
(9)

v̄(t, γ) =
∑

wj∈t
v(wj , t, γ) (10)

v(w, t, γ) = {mnlr(w,wj)
γ ∀wj ∈ t} (11)

For indirect confirmation measure m̃, instead
of directly using word-word probabilities, it uses
m to create a vector of features v (Aletras and
Stevenson, 2013) that represent a word w from the
topic t it belongs to, distorted by hyper-parameter
γ (Equation 11). We will evaluate γ at 1 and 23.

3.2 Corpora

Corpus #Docs. Mean Doc. Size Vocab. Size
ArXiv 2.09M 75 26K

Pubmed 1.07M 1500 39K
Wiki 5.51M 217 40K

Table 1: Numerical descriptions of the corpora used.
Lemmatized variants are similar with the exception of
ArXiv-lemma where its vocabulary size is 22K.

We use word co-occurrences statistics obtained
from three large corpora:

ArXiv. We use ArXiv abstracts dataset4 where
we consider each abstract as a document. These
abstracts mainly comprise of research work related
to non-medical science disciplines.

Pubmed. We use PubMed Central (PMC) Open
Access Subset5 that contains journal articles and
pre-prints related to medical research and informa-
tion. We consider each article body as a document
and we remove citations within it.

3Prior to version 0.1.4 (released Sep 21, 2022), Palmetto’s
(Röder et al., 2015) γ was set to 2.

4Kaggle - Cornell-University/ArXiv
5ncbi.nlm.nih.gov/pmc/tools/openftlist
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Wiki. We use the English-Wikipedia dump6

of August’22 processed using Attardi (2015). We
consider the content of the article as a document.
To check for correctness, we also use the popular
benchmark Palmetto (Röder et al., 2015), which
uses a subset of Wikipedia’11.

For each corpus, we apply processing steps sug-
gested in Hoyle et al. (2021), retaining up to 40K
frequently occurring words. Moreover, we generate
a lemmatized (denoted with the suffix -lemma) and
unlemmatized variant (original) for further analysis.
More information on common vocabulary between
corpora can be found in Table 14, Appendix C.

4 Examining Inter-Metric Correlations

Intuitively, if two different metrics are to correlate
with human judgement, we would expect the scores
of these metrics to correlate. However, it is claimed
in Doogan and Buntine (2021) that these metrics
do not correlate well. For reasons described in
Section 1, we propose a new non-topic modelling
approach to sample topics to evaluate these metrics.

4.1 Approach: Balanced Sampling

There are few tested methods to generate topics:
from topic models (Aletras and Stevenson, 2013;
Lau et al., 2014), beam search optimized on co-
herence (Rosner et al., 2014), random sampling of
words (Hoyle et al., 2021). Considering only opti-
mized topics, or completely random topics (mostly
bad), would generate a skewed distribution. In
contrast, we seek to mine topics that emulates a
balanced distribution for a meaningful comparison.
We also desire uniqueness among topics, which
avoids repetition and is representative of the corpus.
Figure 1 illustrates an overview of our approach.

Mining topics of k words can be framed as
the classical k-clique listing problem (Chiba and
Nishizeki, 1985; Danisch et al., 2018). To generate
meaningful topics, we can map the corpus-level
information as a graph, treating each word from
its vocabulary set V as a vertex. Each word will
share an edge with every other word. We choose
mnlr to determine the value of the edges between
two vertices as its normalised range is intuitive al-
lowing us to easily identify the range of values for
sub-graph generation. In contrast, using mlc and
mf increases sampling’s complexity as they are
order-dependant resulting in bi-directional edges
in its sub-graph. Sampling using any m, not only

6dumps.wikimedia.org

Corpus neg pos mid random ext Total
ArXiv 66,007 2,120 14,436 10,000 49,777 142,340

Pubmed 10,450 3,310 8,218 10,000 61,035 93,013
Wiki 56,903 21,698 35,195 10,000 136,036 259,832

Table 2: Average quantity of topics mined by our bal-
anced sampling approach by segments per corpus from
the 5 independent sampling runs. Quantities of lem-
matized variants are similar with the exception of ext
segment, where it has half the numbers.

mnlr, might introduce bias, which our approach
seeks to mitigate.

The initial graph will be a complete graph of
|V | vertices. A topic of k words would be a k-
sized sub-graph. Combinatorially, there are |V |
choose k number of possible unique topics. It is
practically infeasible and unnecessary to list all k-
cliques. For a more tractable approach, we modify
the routine from Yuan et al. (2022) (pseudo-code
in Appendix A) to include:

Sub-graphs of varying quality. This routine
seeks to generate smaller graphs from the origi-
nal complete graph to cover the spectrum of topic
quality. We eliminate edges conditionally via their
value, and the remaining edges and connected ver-
tices constitute the new sub-graph. We generate
three different kinds of sub-graphs, pos where edge-
values are above a given lower-bound, mid where
edge-values are between threshold values, and neg
where edges are below an upper-bound7.

Topic extraction. Inspired by Perozzi et al.
(2014), instead of iterating through all the neigh-
bouring nodes or searching for the next best node,
we randomly select a neighbour, that has an edge
with all explored nodes, to explore. We extract the
explored k-path as our sampled topic.

Topic uniqueness. To attain a variety of topics,
we remove all edges in a mined clique, making it
impossible to sample a similar topic from the same
sub-graph. Figure 2 illustrates this feature.

Balance distribution of topics. For a given cor-
pus, we further introduce common topics sampled
from a different corpora, which differ in its word
distribution. We refer to this segment of external
topics as ext. Lastly, random is a segment, com-
prising of groups of random words, included to
represent topics that might not have been covered
via the other segments. Table 2 shows the result
from this mining approach. The total would thus
be more balanced, comprising topics of varying
scores along the spectrum.

7Hyper-parameters listed in Table 9, Appendix A
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Figure 1: Illustration of our Balanced Sampling

Figure 2: Illustration of the process of sampling a topic from a sub-graph.

4.2 Evaluation: Metric Correlations Analysis

ϵ Cγ=1
V Cγ=2

V CNPMI CP,o CUMass,o

Cγ=1
V - 0.09 0.69 0.64 0.11

Cγ=2
V 0.09 - -0.59 -0.63 -0.72

CNPMI 0.69 -0.59 - 0.91 0.58
CP,o 0.64 -0.63 0.91 - 0.71

CUMass,o 0.11 -0.72 0.58 0.71 -

(a) Correlation scores with ϵ = 1e−12
̸ ϵ Cγ=1

V Cγ=2
V CNPMI CP,o CUMass,o

Cγ=1
V - 0.87 0.95 0.81 0.45

Cγ=2
V 0.87 - 0.94 0.66 0.28

CNPMI 0.95 0.94 - 0.73 0.31
CP,o 0.81 0.66 0.73 - 0.65

CUMass,o 0.45 0.28 0.31 0.65 -

(b) Correlation scores with ϵ = 0

Table 3: Pearson’s r scores (Mean of 5 independently
sampled sets of topics) between coherence metrics mea-
sured on Wiki. Bold indicates the better value across
both tables. Error bars omitted as S.D ≤ 0.02.

We evaluate the correlation (Pearson’s r8) be-
tween different automated metrics measured on
Wiki (see Table 3), Pubmed, and ArXiv (see Ta-
ble 10, Appendix C). We expect a high positive
correlation score between metrics if they are both
purportedly measuring for coherence. Our first
inter-metric analysis (see Table 3a), with metrics
calculated at ϵ = 1e−12, shows the poor correla-
tion of CV metrics against other metrics. Theoreti-
cally, CV relies on mnlr as its features, and given

8Based on reasons provided in Doogan and Buntine (2021),
with the main argument that datasets (scores) are continuous
and have a bi-variate normal distribution.

an unrelated topic, where word-pair scored on mnlr

with ϵ = 1e−12 produces similar mnlr vectors
which scores highly on CV . This phenomenon of
high cosine similarity between the equally nega-
tive mnlr vectors, results in contradicting scores
between CV and other metrics.

Hence, for our second inter-metric analysis (see
Table 3b) we evaluate the metrics at ϵ = 0, denoted
with subscript ̸ ϵ. For the resulting undefined cal-
culations, we default to 0. Intuitively, the purpose
of setting ϵ = 1e−12 is to prevent and to penalise
word-pairs that produces undefined calculation. In
contrast, ϵ = 0 treats these word-pairs neutrally.
Comparing the new results in Table 3b to the pre-
vious results in Table 3a, we note that correlation
scores between CV metric and other automated
coherence metrics improved greatly, suggesting al-
leviation of the contradicting factor. Additionally,
we note that for CP and CUMass, ϵ is essential. We
then examine these metrics with their better ϵ mode
(see Table 4a), and most metrics (except CUMass)
have a decent correlation with other metrics, imply-
ing that they do not contradict each other.

There could be a concern that the neg and ran-
dom sampled sections would have an outsized in-
fluence in the previous analysis. In this ablation,
we restrict the same analysis to only topics where
CNPMI > 0. Comparing to the previous results (see
Table 4a), we derive a similar interpretation from
this constrained results (see Table 4b), suggesting
that our balanced sampling approach is effective as
the behaviour of the full set of data is similar to its
smaller subset.
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Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

Cγ=1
V,̸e - 0.87 0.95 0.74 0.81 0.33

Cγ=2
V,̸e 0.87 - 0.94 0.56 0.66 0.24

CNPMI,̸e 0.95 0.94 - 0.63 0.73 0.25
CNPMI 0.74 0.56 0.63 - 0.91 0.58
CP,o 0.81 0.66 0.73 0.91 - 0.71

CUMass,o 0.33 0.24 0.25 0.58 0.71 -

(a) Correlation scores of metrics measured on Wiki. Combined
results of Table 3 on selected metrics.

Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

Cγ=1
V,̸e - 0.92 0.98 0.95 0.99 -0.14

Cγ=2
V,̸e 0.92 - 0.95 0.94 0.90 -0.02

CNPMI,̸e 0.98 0.95 - 0.98 0.98 -0.14
CNPMI 0.95 0.94 0.98 - 0.95 -0.09
CP,o 0.99 0.90 0.98 0.95 - -0.20

CUMass,o -0.14 -0.02 -0.14 -0.09 -0.20 -

(b) Correlation scores of metrics on subsection of data used in
Table 4a where CNPMI > 0.

Table 4: Comparing correlations (Mean of 5 indepen-
dently sampled sets of topics) between selected auto-
mated coherence metrics with their better mode of ϵ
measured on Wiki. Error bars omitted as S.D ≤ 0.02.
The results on ArXiv and Pubmed are similar.

corpus-pairs |T | Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

ArXiv/Pubmed 267K 0.55 0.55 0.63 0.77 0.66 0.63
ArXiv/Wiki 338K 0.58 0.55 0.60 0.73 0.63 0.49

Pubmed/Wiki 341K 0.67 0.65 0.62 0.74 0.75 0.70

Table 5: Pearson’s r between exact automated coher-
ence metric measured on different corpus-pairs (inde-
pendent samples aggregated totalling |T | topics). See
Table 13, Appendix C for complete results.

5 Examining Inter-Corpus Correlations

A natural extension after inter-metrics comparison,
is to compare metrics measured on different cor-
pora. It is a common expectation that research
works would employ multiple corpora, with the dif-
ferences between corpora quantified superficially
(such as in Section 3.2). We propose an alternative
approach to quantify the differences, at a topical
level, using common topics measured using auto-
mated coherence metrics. If the corpora are themat-
ically similar, we would expect a high correlation.

Analysis. Using the common topics from the
paired corpora, we conduct a correlation analysis
on the scores measured on each corpus per metric.
Table 5 shows decent correlations between each
corpus. However, even as they are positive, these
correlations do not imply identical statistics in var-
ious corpora. Assuming that human judgement is
constant for a given topic, we posit that variance in
scores measured on different corpora could result
in a lower correlation due to the missing themes

Corpus |T̄ | Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

ArXiv 80K 0.98 0.98 0.98 0.98 0.97 0.92
Pubmed 27K 0.94 0.97 0.94 0.92 0.93 0.94

Wiki 143K 0.99 0.99 0.99 0.98 0.96 0.95

(a) Comparison of scores from selected topics measured on
both lemmatized and unlemmatized corpus.

Corpus |T̄ | Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

ArXiv 111K 0.97 0.98 0.95 0.94 0.94 0.95
Pubmed 60K 0.97 0.98 0.98 0.92 0.95 0.97

Wiki 150K 0.99 0.98 0.98 0.98 0.98 0.98

(b) Selected topics compared to its lemmatized variants, scores
from both variants are measured on unlemmatized corpus.

Corpus |T̄ | Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

ArXiv 126K 0.94 0.95 0.92 0.84 0.85 0.88
Pubmed 68K 0.93 0.95 0.91 0.82 0.83 0.82

Wiki 245K 0.98 0.98 0.97 0.92 0.93 0.92

(c) Selected topics, measured on the unlemmatized corpus, are
compared to its lemmatized variants, which are measured on
the lemmatized corpus.

Table 6: Pearson’s r (mean from 5 independently sam-
pled sets of size |T̄ |) of automated coherence metric
measured on different scenarios. Each selected topic
will have two variants that will produce two scores for
each metric. We compare the correlation of the two set
of scores for a set of topics. Error bars omitted as S.D
≤ 0.01. See Table 12 and Table 11, Appendix C for
additional quantitative data on the topics.

within the shared vocabulary space in either corpus.
We conduct a control analysis on pairs of simi-

lar corpus differing in lemmatization, originating
from the same documents, in Table 6a. These cor-
pora would be thematically similar whilst being
superficially different. Our previous analysis in
Table 5, comparing to the control analysis in Ta-
ble 6a, shows lower correlation scores suggesting
some topical difference between the various cor-
pora. This difference highlights the metrics’ strong
dependency on the corpus used, with a subset of
common topics disagreeing on the scores, revealing
that these metrics are not a one-size-fits-all solution
for coherence evaluation.

Ablations. While we know how lemmatiza-
tion affects topic modelling (Schofield and Mimno,
2016), its effect on evaluation is unclear. We car-
ried out two additional ablations simulating lemma-
tizing topics post-training. For the first ablation, we
shortlist topics that contain at least one unlemma-
tized word, where if lemmatized, the lemmatized
word can be found in the same unlemmatized cor-
pus. We compare the correlation of the original
and lemmatized topic, with their scores measured
on the same unlemmatized corpus. Their scores
have a strong correlation (see Table 6b), suggesting
that the difference between lemmatized topics and
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unlemmatized topics is small. For the second ab-
lation, the shortlisting process is similar, however,
with lemmatized topics measured on the lemma-
tized corpus. Our results (see Table 6c) show a
strong correlation across the various metrics and
imply that post-processing topics for evaluation is
a viable option.

6 User Study

Previous works measure human judgement through
simple evaluation tasks such as rating the coherence
of a topic on a few-point ordinal scale (Mimno
et al., 2011; Aletras and Stevenson, 2013), iden-
tifying the intruder word that introduced into the
topic (Chang et al., 2009), or both (Lau et al., 2014;
Hoyle et al., 2021). For word intrusion, the de-
tection of outliers signals the cohesiveness of the
topic, which is similar to rating topics on an ordi-
nal scale. However for both tasks, qualitative gaps
might exist. In word intrusion, study participants
are restricted to just one outlier per topic, assum-
ing perfect coding, it results in exponential drop
in scoring, i.e. 100% detection for a perfect topic,
50% for a topic with a clear outlier, and so forth.
For topic ratings, topics of differing qualities might
get the same score, i.e. a perfect topic and a topic
with a clear outlier might both get the same scores.

Additionally, while the decisions between hu-
man annotators might be equivalent, it is not evi-
dent if their thought processes are similar. The key
reason for this line of inquiry stems from the obser-
vation that everyone is different in some aspects,
such as knowledge, culture, and experiences. As-
suming our understanding of words is influenced
by our prior beliefs, what and how we perceive
similarity and coherence might differ from person
to person.

For these reasons, we decide to design a user
study that combines both word intrusion and topic
rating tasks but measured at a finer granularity such
that we can quantify the decision-making process.
Users are tasked to cluster word-groups which in-
dicate coherent and outlier word-groups. We then
examine the relationships between automated co-
herence metrics and different proxy tasks derived
from the user study.

6.1 User Study Design

For our study S, we recruit 8 user study groups
U , S = {U1, . . . , U8}, 5 study participants per
group. Majority of the participants recruited have

Figure 3: Format of question that is presented to study
participants. Each word is to be assigned to only one
group whose members are deemed coherent together.
The topic displayed in this example is manually created
to serve as a verification question and is not included
in the evaluation. Refer to Appendix D for a sample of
actual examples used.

at least a graduate degree or are undergraduates.
For each study group, we prepared 8 unique ques-
tion sets Q = {T1, . . . , T8}, each containing 100
10-word topics, Ti = {t1,i, . . . , t100,i} and t =
{w0,j,i, . . . , w10,j,i}. For each participant u ∈ Ui,
we present each tj,i ∈ Ti individually sorted alpha-
betically. We ask participants to cluster words in
tj,i that they deem similar to form coherent word
groups g, where their response Ru,j,i to tj,i is a
set of unique g. We constrain each word to only
belong to one coherent word group to limit the task
complexity. Additionally, a word considered to be
unrelated may form its group of one. We use Lik-
ert matrix9 as the response format (see Figure 3),
mandating a response for each word wk,j,i ∈ tj,i.
Actual instructions are shown in Appendix E.

Topic selection. We construct an initial pool
of 1000 topics. To achieve comparability between
corpus, we randomly sample 400 common topics
from Wiki, ArXiv, and Pubmed. To represent non-
scientific topics, we randomly sample 200 topics
from Wiki that do not appear in ArXiv/Pubmed.
For ArXiv/Pubmed exclusive topics, we randomly
sample 200 topics each, with these topics also ap-
pearing in Wiki. We sample in a 7:1:1:1 ratio of
pos/mid/neg/random segments of the corpus, seek-
ing to emulate a uniform score distribution. To
account for word familiarity, we select lemmatized
topics with words found in 20K most frequently
used words10. For each user study, we randomly

9There is no scaling.
10Corpus of Contemporary American English
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sampled 100 topics from the pool without replace-
ment. For topics not found in ArXiv or Pubmed,
we exclude them during evaluation of those corpus.

Proxy Tasks. Representing coherence as word-
clusters allows us to derive a deeper insight into
what we perceive as human judgement. From our
user study task, we further decompose this study
into a few proxy tasks, where we measure the corre-
lation (Spearman’s ρ11) of its results to automated
coherent metrics. We propose three topic-level hu-
man coherence measures. Using density of human
agreement, we define P1 as the mean agreement of
Ui on all possible word-pairs on any topic tj,i:

P1(tj,i) =

∑
u∈Ui

∑
g∈Ru

|g|(|g| − 1)

|Ui| |tj,i|(|tj,i|−1)
2

(12)

If tj,i has perfect agreement on coherence, we ex-
pect P1(tj,i) to have a value of 1, and for incoher-
ence, a value of 0.

Subsequently, we consider the largest selected
word group within tj,i, and define P2 as the mean
of this measure amongst Ui:

P2(tj,i) =
1

|Ui|
∑

u∈Ui

max({|g||g ∈ Ru}) (13)

A value of 1 will suggest that each word in tj,i
have no relations to each other and a value of |tj,i|
suggest perfect agreement on coherence.

Lastly, we define P3 as the mean number of
annotated word groups amongst Ui:

P3(tj,i) =
1

|Ui|
∑

u∈Ui

|Ru| (14)

The interpretation of P3 is the inverse of P2.
While these group-wise measures might seem sim-
ilar, they measure different nuances of human-
annotated data. P1 evaluates the sizes of multi-
word groups, weighted towards larger groups. P2

only accounts for the largest word group, which
ignores the properties of the other remaining group.
P3 ignores group sizes to a certain extent and in-
cludes single-word "outlier" groups. We evaluate
these measures’ correlation against various C(tj,i).

6.2 User Study Results
We find that the three different proxy tasks produce
similar results12, shown in Table 7a, 7b, and 7c re-

11We use Spearman’s ρ instead of Pearson’s r, as we gen-
erally obtain a better r (than ρ shown) through distortion of
scores. To ensure parity, we use ρ instead.

12We note that these results include outlier U3, whose neg-
ative results differ radically from other groups. Individual

ArXiv Pubmed Wiki
Cγ=1
V,̸e 0.319 ± 0.152 0.516 ± 0.067 0.651 ± 0.099

Cγ=2
V,̸e 0.356 ± 0.146 0.510 ± 0.095 0.652 ± 0.119

CNPMI,̸e 0.366 ± 0.136 0.521 ± 0.064 0.664 ± 0.094
CNPMI 0.304 ± 0.169 0.428 ± 0.111 0.624 ± 0.087
CP,o 0.266 ± 0.178 0.459 ± 0.093 0.634 ± 0.091

CUMass,o 0.243 ± 0.176 0.183 ± 0.161 0.329 ± 0.066

(a) Proxy Task I: Density of agreement among study partici-
pants. Full Breakdown in Table 16, Appendix C.

ArXiv Pubmed Wiki
Cγ=1
V,̸e 0.316 ± 0.159 0.511 ± 0.053 0.643 ± 0.110

Cγ=2
V,̸e 0.355 ± 0.153 0.507 ± 0.080 0.648 ± 0.130

CNPMI,̸e 0.369 ± 0.135 0.517 ± 0.049 0.654 ± 0.104
CNPMI 0.303 ± 0.175 0.421 ± 0.094 0.615 ± 0.090
CP,o 0.260 ± 0.182 0.454 ± 0.081 0.624 ± 0.103

CUMass,o 0.232 ± 0.182 0.170 ± 0.152 0.320 ± 0.060

(b) Proxy Task II: Mean of maximum coherent group between
study participants. Full Breakdown in Table 17, Appendix C.

ArXiv Pubmed Wiki
Cγ=1
V,̸e -0.382 ± 0.164 -0.547 ± 0.109 -0.645 ± 0.085

Cγ=2
V,̸e -0.415 ± 0.168 -0.541 ± 0.135 -0.648 ± 0.100

CNPMI,̸e -0.434 ± 0.171 -0.549 ± 0.118 -0.660 ± 0.084
CNPMI -0.342 ± 0.195 -0.453 ± 0.118 -0.627 ± 0.085
CP,o -0.320 ± 0.200 -0.484 ± 0.107 -0.631 ± 0.082

CUMass,o -0.277 ± 0.172 -0.202 ± 0.126 -0.354 ± 0.053

(c) Proxy Task III: Mean of coherent group counts between
study participants. For this task, stronger negative score is
better as a completely coherent topic gets P3(t) = 1 and an
incoherent topic gets P3(t) = 10. Hence, this proxy measure
is inversely related to the coherence metric score where a
larger score indicates coherence. Full Breakdown in Table 18,
Appendix C.

Table 7: Average Spearman’s ρ between automated co-
herence metrics and respective proxy measure. The
values shown are the mean correlation scores from the
8 study groups with error bars. The lemmatized version
of corpus are ommitted as its values are similar to the
original. CUMass,s and CP,s ommited as they are almost
identical to their o variant.

spectively, indicating correlations between human
judgement and some automated coherence metrics.
Since most of our study participants have some
science-related background, we are surprised by
ArXiv’s lower correlation scores relative to Wiki in
each proxy task. These results imply that our per-
ception of coherence might be biased towards the
word distribution of a generic corpus such as Wiki.
Lastly, in each proxy task, the higher variances in
ArXiv’s and Pubmed’s correlation scores compared
to Wiki’s might imply increased subjectivity.

Inter-rater reliability (IRR). There are many
factors that wil affect the variation for IRR (Belur
et al., 2021). For our user study, we attempted to
mitigate some of these factors. In terms of fram-

results detailed in Appendix C.
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ing and education, study participants were given a
short introductory primer as well as some example
questions prior to starting the tasks (Appendix E).
To mitigate fatigue effect, we allowed the study
participants a week to work on the task, pausing
and continuing at their own pace. We were not
concerned about learning effect, as our presented
topics spans across a plethora of themes and the
correctness of the task is subjective to their own
personal preference. As our objective is to poll
for their beliefs, with many possible valid answers,
there is not a need to review and enforce consis-
tency between study participants.

We use Krippendorf’s α (Krippendorff, 2011) ,
defining pair-wise rater similarity as Jaccard dis-
tance measuring common answers between raters.
We treat each wk,j,i ∈ tj,i as a multi-classification
question, comprising of other words (in tj,i) and
"not related" as categories, producing boolean vec-
tor representations. The mean ᾱ is 0.366 with a
standard deviation of 0.04, lowest α at 0.325 and
highest α at 0.464 (see Table 15, Appendix C). A
completely random study response will have an α
of 0.12, being significantly less than the study’s
ᾱ, giving us some confidence about the reliability
of the responses. Overall, considering that there
are many possible combinations for each topic re-
sponse, the α reported suggests some degree of
similarity between different responses.

ArXiv Pubmed Wiki
CP,s 0.115 ± 0.062 0.139 ± 0.043 0.285 ± 0.091
CP,o 0.201 ± 0.066 0.269 ± 0.036 0.447 ± 0.072

CUMass,s 0.119 ± 0.057 0.072 ± 0.039 0.128 ± 0.043
CUMass,o 0.185 ± 0.068 0.101 ± 0.037 0.209 ± 0.037

Table 8: Average Spearman’s ρ between automated
coherence metrics pair-wise proxy measure, similar
in evaluation and interpretation to Table 7. This ta-
ble shows the difference in correlation results between
sorted (s) and optimal (o) position-dependent metrics.
Full Breakdown in Table 19, Appendix C.

User study ablations. We examine if position-
ing affects position-dependent automated coher-
ence metrics via human pair-wise agreement proxy
task P4. We detail our optimizing approach in Ap-
pendix B. We define P4 as the percentage of agree-
ment between any word-pairs wa and wb from tj,i
from Ti evaluated by its corresponding Ui:

P4(wa, wb) =
1

|Ui|
∑

u∈Ui

∑

g∈Ru

wa ∈ g ∧ wb ∈ g

(15)

We measure the correlation of P4(wa, wb) in a
group to its pair-wise automated coherence metric
score via m(wa, wb) from different orderings. Our
results in Table 8 show some non-significant differ-
ences in correlation on the pair-wise level. How-
ever, that difference disappears when we evaluate
the topics as a group, with the sorted and optimized
variant achieving similar correlations (see Table 7).
Furthermore, this difference of coherence at the
pair-wise and group-wise levels, suggests that the
presence of other words in the topic has an influ-
ence on the human perception of word-pair coher-
ence. Finally, we replicate most experiments with
the corpus statistics from Palmetto (Röder et al.,
2015), which produced similar correlation results
to Wiki.

7 Conclusion

Our large-scale analysis reaffirms that these auto-
mated coherence metrics are still meaningful. We
are confident in using these metrics measured on
generic corpus such as Wiki, and specialised cor-
pora, Arxiv and Pubmed, for nicher tasks. Our
user study empirically supports this conclusion, as
our participants’ collective response correlates well
to metrics measured on Wiki, albeit weaker but
meaningful correlation on the specialized corpora.
This work shows that popular automated coherence
metrics, CNPMI , CV , and CP , are alive and well,
and works regardless of lemmatization. Further-
more, we stress that the selection of the reference
corpus is just as important as the selection of the
metric, with Wiki being the best reference corpus
that correlates with human perception of coherence.
Moving forward, when evaluating for coherence
aligned towards human interpretability, we recom-
mend future topic models to be evaluated against
Wiki-variants. We also recommend calculating CV

with ϵ = 0, to avoid the confusion from its contra-
diction of other metrics at ϵ = 1e−12.
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Limitations

User Study. Most, if not all, of the participants
are pursuing or have obtained at least a univer-
sity degree/bachelor’s. While we attempted to re-
cruit widely, majority of our participants’ education
background is science-related, with strong leanings
towards technology. Furthermore, we assume that
our participants are proficient in English from their
education level and the fact that they are based in a
city that uses English as the common language. It
is possible that there are some unknown common
bias such as culture or knowledge that might affect
the results. The tie-breaking constrain in our study,
where study participants are required to assign one
word to its most coherent group, might affect the
correlation scores for the user study.

Corpora. The selected corpora are constructed
from documents that are formal in prose, with the
purpose of being informative and instructional. We
do not know if the user study results are applica-
ble to a corpus with documents that are informal
in prose, such as that of a conversational nature.
However, one can always evaluate topics on a large
external generic corpus to determine coherence rel-
ative to human judgement.

Ethics Statement

User Study. Prior to carrying out our user study,
the survey methodology was reviewed and ap-
proved by our Institutional Review Board for ethi-
cal compliance. While unlikely, we examined each
question for its appropriateness. To ensure partic-
ipants’ anonymity, the responses are anonymized
and aggregated, and it is extremely unlikely that a
participant can be identified via their response. In
terms of fair compensation, we paid S$15 for each
complete response of 100 questions, assuming an
hour’s worth of work, it is higher than our insti-
tution’s prevailing rate for undergraduate student
work. To ensure their well-being, study participants
are allowed up to a week to complete the tasks, at
their own preferred pace and place.

Corpora. We select corpora that have open li-
censing agreements that allows for non-profit aca-
demic use, and the permissions allowing us to trans-
form and re-distribute the processed corpora as
word-pair counts.
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A Algorithm Pseudocode

ArXiv Pubmed Wiki
pos (>) 0.05, 0.1, 0.15

mid (−0.05, 0.15) (0, 0.15) (−0.05, 0.15)
neg (<) −0.2,−0.4 −0.2 −0.1,−0.4

Table 9: Hyper-parameter threshold for different sub-
graphs. Multiple thresholds are indicative of multiple
runs. random and ext are not hyper-parameter depen-
dant. When possible, hyper-parameters were chosen to
produce to control sub-graph density.

Pre-processing steps to reduce complexity, Algo-
rithm 1 and Algorithm 2, remain unchanged from
Yuan et al. (2022). These steps can be skipped
when the graph is large and dense, such as during
neg sub-graphs generation. Our modification in
Algorithm 3 and Algorithm 4 introduces random-
ness via permutations and early stopping, when
a k-clique is found in Algorithm 3 and a desired
number of k-cliques found in Algorithm 4. The sub-
graph reduction is implemented in Algorithm 3.

Algorithm 1 PRE-CORE(G, k)
Prune vertices with less than k edges from G

Input: A graph G and a positive integer k
Q← ∅, F ← ∅
for u ∈ G do

if du < k − 1 then
Q.push(u)
F ← F ∪ {u}

end if
end for
while Q ̸= ∅ do

u← Q.pop()
for node v ∈ neighbours Nu do

dv ← dv − 1
if dv < k − 1 ∧ v /∈ F then

F ← F ∪ {v}
Q.push(v)

end if
end for

end while

Algorithm 2 PRE-LIST(G,k)
Find exact k-cliques and remove them from G

for each connected components C ∈ G do
mc ← |E(C)|, nc ← |V (C)|
if mc = (nc − 1)nc then

remove C from G
output k-cliques C

end if
end for

A set of connected components refers to a set
of nodes where each node shares an edge with all

Algorithm 3 SDegreeList(k, R, C, G⃗)

for u ∈ Permutate(C) do
if |C| ≤ l − 2 then

continue
end if
if k < 2 then

return ∅
end if
Ĉ ← N+

u ∩ C
if k = 2 ∧ |Ĉ| > 0 then

O ← R ∪ {u}
remove (ui, uj) from G⃗ ∀ui, uj ∈ O
return O

end if
if |Ĉ| > l − 2 then

return SDegreeList(k − 1, R, Ĉ, G⃗)
end if

end for

other nodes in the set. Finding next connected com-
ponents Ĉ, requires a set intersection operation
between all possible neighbours of randomly se-
lected node u, denoted N+

u , and current connected
components C.

Algorithm 4 Main(G, k, target)

G← PRE-CORE(G, k)
G← PRE-LIST(G, k)
Generate DAG G⃗
O ← ∅
for u ∈ Permutate(G⃗) do

r ← SDegreeList(k − 1, {u}, N+
u , G⃗)

if |r| == k then
O = O ∪ {r}

end if
if target == |O| then

return O
end if

end for

The main algorithm gets invoked once per sub-
graph, we can generate multiple sub-graphs by se-
lecting a set of words that neighbours a randomly
chosen word. We then truncate the edges that do
not fulfill the edge-conditions.

B Optimizing Position-Based Scoring

Given a set of k words as a topic, our goal is to
optimize the position-based score. We can reduce
this problem to a weighted activity selection prob-
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lem, which is equivalent to finding a max-weight
independent set in an interval graph and can be
solved in polynomial time (Bar-Noy et al., 2001).

Consider a word w at the jth position, index
starting from 0, we can visualize the ordering as
having j incoming edges, indicating precedence of
other words, and k − j + 1 outgoing edges, indi-
cating w precedence to other ensuing words. An
activity will be defined by its start-time (position)
and its preceding and ensuing activities. Each ac-
tivity has an equal interval and the weight of the
activity is determined by the difference of outgoing
and incoming edges to all other words scored via
m. We can transform the activities into an interval
graph, with |C l

j | · |C l
l−j+1| combinatorial number

of possible instances for each word per time slot in
the schedule.

Our transformation will result in an interval
graph of k disjoint graphs. While the number of
activities might seem to be combinatorially explo-
sive, selecting the first activity at T = 0, only
involves k activities, and upon selection prunes
multiple branches, resulting in k − j choices at
T = j. Hence, we are only required to select the
best activity within each disjoint graph conditioned
on availability (word not selected before).

C Supplementary Tables

This section lists tables with quantitative supple-
mentary information.

Table 10 details the results for ArXiv and
Pubmed corpus for inter-metric correlation anal-
ysis in Section 4.2.

Table 11 provides additional information on the
similarity between control and treated topics for
the lemmatization effect ablation in Section 5.

Table 12 provides a detailed breakdown of sub-
graph segments that is shortlisted for the lemmati-
zation effect ablation in Section 5.

Table 13 details the full complete results for inter-
corpus correlation analysis, its partial table can be
found in Table 5, Section 5.

Table 14 has additional quantitative information
regarding the quantity of common topics in corpus-
pairs used in the inter-corpus experiments of Sec-
tion 5.

Table 15 has the individual Krippendorf’s α for
each user study group U for the user study in Sec-
tion 6.

Tables 16, 17, 18, and 19 has the individual cor-
relation scores of each user study group U to the

various coherence metrics for Proxy Task I, II, III,
and pair-wise ablation respectively. Its averages
are tabled in Tables 7a, 7b, 7c, and 8 in Section 6.

ϵ Cγ=1
V Cγ=2

V CNPMI CP,o CUMass,o

Cγ=1
V - 0.90 -0.87 -0.72 -0.42

Cγ=2
V 0.90 - -0.93 -0.81 -0.52

CNPMI -0.87 -0.93 - 0.91 0.60
CP,o -0.72 -0.81 0.91 - 0.83

CUMass,o -0.42 -0.52 0.60 0.83 -

(a) Correlation scores measured on ArXiv with ϵ = 1e-12

̸ ϵ Cγ=1
V Cγ=2

V CNPMI CP,o CUMass,o

Cγ=1
V - 0.84 0.85 0.75 0.06

Cγ=2
V 0.84 - 0.90 0.51 0.08

CNPMI 0.85 0.90 - 0.47 0.07
CP,o 0.75 0.51 0.47 - -0.10

CUMass,o 0.06 0.08 0.07 -0.10 -

(b) Correlation scores measured on ArXiv with ϵ = 0

ϵ Cγ=1
V Cγ=2

V CNPMI CP,o CUMass,o

Cγ=1
V - 0.21 0.60 0.40 -0.16

Cγ=2
V 0.21 - -0.56 -0.66 -0.81

CNPMI 0.60 -0.56 - 0.85 0.54
CP,o 0.40 -0.66 0.85 - 0.81

CUMass,o -0.16 -0.81 0.54 0.81 -

(c) Correlation scores measured on Pubmed with ϵ = 1e-12

̸ ϵ Cγ=1
V Cγ=2

V CNPMI CP,o CUMass,o

Cγ=1
V - 0.78 0.94 0.67 0.02

Cγ=2
V 0.78 - 0.85 0.54 0.02

CNPMI 0.94 0.85 - 0.56 -0.02
CP,o 0.67 0.54 0.56 - -0.13

CUMass,o 0.02 0.02 -0.02 -0.13 -

(d) Correlation scores measured on Pubmed with ϵ = 0

Table 10: Pearson’s r scores (Mean of 5 independently
sampled sets of topics) between automated coherence
metrics within ArXiv/Pubmed corpus. Bold indicates
better correlation score across both tables. Error bars
omitted as S.D ≤ 0.02.

ArXiv Pubmed Wiki
Table 6b 7.2 7.9 7.7
Table 6c 7.7 8.5 8.6

Table 11: Accompanying statistics for respective lemma-
tization effect ablation experiments (see Section 5).
Value indicates mean number of similar words per topic.
While the variants contain similar words, we note that
the word probabilities differ and reflects the composi-
tion of lemmatized and base words in the vocabulary.
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anti pos middle random ext Total
ArXiv 63,648 1,262 12,055 9,169 25,546 111,680

Pubmed 7,675 2,161 6,839 9,616 33,776 60,067
Wiki 52,867 15,074 27,638 8,811 45,194 149,584

(a) Accompanying details for experiment results in Table 6b.
anti pos middle random ext Total

ArXiv 58,274 1,449 13,559 7,833 44,446 125,561
Pubmed 9,857 2,396 119 2,025 53,751 68,148

Wiki 52,435 16,965 33,788 8,967 132,840 244,995

(b) Accompanying details for experiment results in Table 6c.

Table 12: Quantity of segmentation of sampled topics for respective lemmatization effect ablation experiments (see
Section 5).

corpus-pairs |T | Cγ=1
V,̸e Cγ=2

V,̸e CNPMI,̸e CNPMI CP,o CUMass,o

ArXiv/Pubmed 267K 0.55 0.55 0.63 0.77 0.66 0.63
ArXiv/Wiki 338K 0.58 0.55 0.60 0.73 0.63 0.49

ArXiv/Palmetto 114K 0.51 0.54 0.57 0.50 0.44 0.44
Pubmed/Wiki 341K 0.67 0.65 0.62 0.74 0.75 0.70

Pubmed/Palmetto 130K 0.67 0.67 0.65 0.69 0.69 0.55
Wiki/Palmetto 447K 0.98 0.98 0.98 0.98 0.95 0.84
Wiki-l/ArXiv-l 114K 0.54 0.55 0.60 0.60 0.47 0.70

Pubmed-l/ArXiv-l 101K 0.59 0.57 0.70 0.76 0.59 0.78
Pubmed-l/Wiki-l 125K 0.70 0.68 0.71 0.78 0.74 0.78

Pubmed-l/Palmetto 125K 0.70 0.67 0.69 0.77 0.74 0.59
ArXiv-l/Palmetto 114K 0.54 0.55 0.58 0.58 0.49 0.49
Wiki-l/Palmetto 447K 0.99 0.99 0.99 0.99 0.97 0.91

Table 13: Pearson’s r (independent samples were aggregated) between exact automated coherence metric measured
on different corpus-pairs (independent samples were aggregated). Suffix -l. short form for -lemma.

corpus ArXiv ArXiv-l. Pubmed Pubmed-l. Wiki Wiki-l. Palmetto
Total 26,620 22,184 38,829 39,997 40003 40,009 16,567

ArXiv - 19,637 13,138 10,527 12,955 10,230 6,827
ArXiv-l 19,637 - 9,636 11,015 9,563 10,504 7,130
Pubmed 13,138 9,636 - 23,328 15,459 12,565 8,006

Pubmed-l 10,527 11,015 23,328 - 12,637 14,112 8,932
Wiki 12,955 9,563 15,459 12,637 - 31,047 13,136

Wiki-l 10,230 10,504 12,565 14,112 31,047 - 14,392
Palmetto 6,827 7,130 8,006 8,932 13,136 14,392 -

Table 14: Quantity of common vocabularies between corpus. Suffix -l. short form for -lemma. Palmetto was
re-constructed using 20K most frequent words excluding stop words.

Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D)
Kripp’s α 0.463 0.391 0.323 0.376 0.325 0.366 0.333 0.347 0.366 (0.04)

Table 15: Detailed Krippendorf’s α for each user study.
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Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D)
ArXiv
Cγ=1
V,̸e 0.464 0.448 -0.021 0.330 0.399 0.437 0.218 0.281 0.319 ± 0.152

Cγ=2
V,̸e 0.503 0.469 0.030 0.281 0.459 0.462 0.344 0.300 0.356 ± 0.146

CNPMI,̸e 0.475 0.426 0.073 0.392 0.516 0.470 0.304 0.270 0.366 ± 0.136
CNPMI 0.368 0.490 -0.110 0.309 0.386 0.394 0.251 0.348 0.304 ± 0.169
CP,o 0.372 0.455 -0.157 0.285 0.355 0.383 0.208 0.231 0.266 ± 0.178
CUMass,o 0.348 0.476 -0.162 0.256 0.309 0.261 0.152 0.305 0.243 ± 0.176
Pubmed
Cγ=1
V,̸e 0.609 0.560 0.372 0.550 0.462 0.511 0.526 0.535 0.516 ± 0.067

Cγ=2
V,̸e 0.662 0.622 0.356 0.465 0.415 0.543 0.492 0.521 0.510 ± 0.095

CNPMI,̸e 0.574 0.605 0.396 0.534 0.453 0.498 0.548 0.560 0.521 ± 0.064
CNPMI 0.479 0.447 0.165 0.531 0.442 0.368 0.453 0.537 0.428 ± 0.111
CP,o 0.519 0.511 0.231 0.531 0.482 0.409 0.502 0.488 0.459 ± 0.093
CUMass,o 0.252 0.177 -0.115 0.327 0.280 0.043 0.087 0.417 0.183 ± 0.161
Wiki
Cγ=1
V,̸e 0.692 0.715 0.413 0.758 0.607 0.670 0.692 0.664 0.651 ± 0.099

Cγ=2
V,̸e 0.719 0.739 0.348 0.727 0.631 0.673 0.702 0.678 0.652 ± 0.119

CNPMI,̸e 0.737 0.718 0.445 0.760 0.608 0.670 0.706 0.664 0.664 ± 0.094
CNPMI 0.718 0.679 0.451 0.734 0.556 0.582 0.641 0.630 0.624 ± 0.087
CP,o 0.658 0.695 0.422 0.737 0.585 0.671 0.684 0.621 0.634 ± 0.091
CUMass,o 0.405 0.322 0.226 0.427 0.381 0.272 0.272 0.326 0.329 ± 0.066
Palmetto
Cγ=1
V,̸e 0.696 0.690 0.401 0.740 0.614 0.715 0.696 0.668 0.653 ± 0.101

Cγ=2
V,̸e 0.726 0.705 0.363 0.739 0.646 0.726 0.706 0.685 0.662 ± 0.116

CNPMI,̸e 0.721 0.694 0.439 0.734 0.613 0.722 0.719 0.654 0.662 ± 0.093
CNPMI 0.647 0.610 0.464 0.697 0.562 0.666 0.699 0.638 0.623 ± 0.073
CP,o 0.635 0.628 0.404 0.703 0.573 0.690 0.663 0.656 0.619 ± 0.089
CUMass,o 0.409 0.205 0.210 0.324 0.290 0.201 0.200 0.317 0.269 ± 0.073

Table 16: Detailed breakdown of Proxy Task I, values are Spearman’s ρ of density of agreement and coherence
scores. CUMass,s and CP,s ommited as they are almost identical to their o variant.
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Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D)
ArXiv
Cγ=1
V,̸e 0.497 0.418 -0.028 0.308 0.383 0.463 0.200 0.289 0.316 ± 0.159

Cγ=2
V,̸e 0.534 0.438 0.027 0.263 0.448 0.497 0.332 0.305 0.355 ± 0.153

CNPMI,̸e 0.524 0.383 0.094 0.372 0.488 0.509 0.298 0.283 0.369 ± 0.135
CNPMI 0.400 0.465 -0.130 0.282 0.361 0.425 0.266 0.353 0.303 ± 0.175
CP,o 0.401 0.420 -0.175 0.260 0.315 0.415 0.209 0.235 0.260 ± 0.182
CUMass,o 0.352 0.469 -0.189 0.215 0.284 0.278 0.150 0.298 0.232 ± 0.182
Pubmed
Cγ=1
V,̸e 0.607 0.530 0.408 0.529 0.470 0.520 0.510 0.514 0.511 ± 0.053

Cγ=2
V,̸e 0.663 0.574 0.399 0.444 0.431 0.538 0.486 0.520 0.507 ± 0.080

CNPMI,̸e 0.579 0.572 0.432 0.505 0.456 0.516 0.534 0.546 0.517 ± 0.049
CNPMI 0.468 0.446 0.190 0.482 0.453 0.374 0.454 0.498 0.421 ± 0.094
CP,o 0.518 0.504 0.256 0.502 0.492 0.409 0.492 0.456 0.454 ± 0.081
CUMass,o 0.234 0.196 -0.130 0.280 0.290 0.028 0.096 0.367 0.170 ± 0.152
Wiki
Cγ=1
V,̸e 0.682 0.701 0.367 0.754 0.624 0.683 0.678 0.657 0.643 ± 0.110

Cγ=2
V,̸e 0.715 0.726 0.310 0.724 0.652 0.695 0.690 0.675 0.648 ± 0.130

CNPMI,̸e 0.729 0.706 0.397 0.749 0.625 0.682 0.689 0.658 0.654 ± 0.104
CNPMI 0.708 0.672 0.413 0.712 0.568 0.594 0.635 0.616 0.615 ± 0.090
CP,o 0.645 0.679 0.373 0.733 0.598 0.677 0.670 0.613 0.624 ± 0.103
CUMass,o 0.397 0.311 0.210 0.398 0.365 0.278 0.288 0.311 0.320 ± 0.060
Palmetto
Cγ=1
V,̸e 0.680 0.679 0.364 0.736 0.629 0.722 0.690 0.661 0.645 ± 0.111

Cγ=2
V,̸e 0.716 0.692 0.328 0.735 0.663 0.742 0.700 0.680 0.657 ± 0.127

CNPMI,̸e 0.706 0.685 0.397 0.728 0.630 0.725 0.712 0.651 0.654 ± 0.103
CNPMI 0.630 0.605 0.428 0.688 0.577 0.662 0.707 0.633 0.616 ± 0.081
CP,o 0.617 0.618 0.373 0.695 0.591 0.691 0.662 0.649 0.612 ± 0.096
CUMass,o 0.392 0.206 0.218 0.283 0.289 0.194 0.245 0.310 0.267 ± 0.061

Table 17: Detailed breakdown of Proxy Task II, values are Spearman’s ρ of mean of maximum group counts and
coherence scores. CUMass,s and CP,s ommited as they are almost identical to their o variant.
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Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D)
ArXiv
Cγ=1
V,̸e -0.533 -0.529 0.007 -0.350 -0.485 -0.447 -0.336 -0.384 -0.382 ± 0.164

Cγ=2
V,̸e -0.563 -0.577 -0.026 -0.319 -0.520 -0.470 -0.454 -0.391 -0.415 ± 0.168

CNPMI,̸e -0.562 -0.584 -0.019 -0.428 -0.556 -0.499 -0.433 -0.388 -0.434 ± 0.171
CNPMI -0.429 -0.546 0.144 -0.330 -0.457 -0.376 -0.340 -0.405 -0.342 ± 0.195
CP,o -0.448 -0.536 0.169 -0.290 -0.446 -0.364 -0.325 -0.320 -0.320 ± 0.200
CUMass,o -0.387 -0.442 0.129 -0.299 -0.419 -0.229 -0.214 -0.352 -0.277 ± 0.172
Pubmed
Cγ=1
V,̸e -0.608 -0.649 -0.298 -0.636 -0.459 -0.589 -0.579 -0.556 -0.547 ± 0.109

Cγ=2
V,̸e -0.652 -0.720 -0.248 -0.549 -0.430 -0.586 -0.576 -0.565 -0.541 ± 0.135

CNPMI,̸e -0.594 -0.705 -0.280 -0.609 -0.474 -0.577 -0.591 -0.563 -0.549 ± 0.118
CNPMI -0.506 -0.457 -0.179 -0.590 -0.416 -0.434 -0.480 -0.560 -0.453 ± 0.118
CP,o -0.519 -0.562 -0.225 -0.589 -0.438 -0.492 -0.548 -0.499 -0.484 ± 0.107
CUMass,o -0.277 -0.155 0.004 -0.327 -0.234 -0.105 -0.114 -0.408 -0.202 ± 0.126
Wiki
Cγ=1
V,̸e -0.713 -0.655 -0.473 -0.756 -0.561 -0.691 -0.680 -0.632 -0.645 ± 0.085

Cγ=2
V,̸e -0.751 -0.679 -0.410 -0.722 -0.602 -0.686 -0.697 -0.641 -0.648 ± 0.100

CNPMI,̸e -0.759 -0.661 -0.496 -0.755 -0.572 -0.699 -0.693 -0.646 -0.660 ± 0.084
CNPMI -0.727 -0.623 -0.496 -0.764 -0.523 -0.627 -0.645 -0.608 -0.627 ± 0.085
CP,o -0.684 -0.636 -0.483 -0.742 -0.538 -0.697 -0.675 -0.596 -0.631 ± 0.082
CUMass,o -0.387 -0.358 -0.276 -0.455 -0.371 -0.342 -0.285 -0.357 -0.354 ± 0.053
Palmetto
Cγ=1
V,̸e -0.698 -0.641 -0.454 -0.745 -0.572 -0.739 -0.667 -0.637 -0.644 ± 0.089

Cγ=2
V,̸e -0.734 -0.648 -0.420 -0.736 -0.600 -0.745 -0.681 -0.644 -0.651 ± 0.100

CNPMI,̸e -0.733 -0.649 -0.489 -0.737 -0.582 -0.755 -0.684 -0.638 -0.658 ± 0.084
CNPMI -0.647 -0.579 -0.497 -0.719 -0.550 -0.720 -0.647 -0.625 -0.623 ± 0.073
CP,o -0.635 -0.587 -0.447 -0.718 -0.537 -0.714 -0.632 -0.625 -0.612 ± 0.084
CUMass,o -0.387 -0.242 -0.214 -0.365 -0.296 -0.267 -0.176 -0.340 -0.286 ± 0.070

Table 18: Detailed breakdown of Proxy Task III, values are Spearman’s ρ of mean of group counts and coherence
scores. CUMass,s and CP,s ommited as they are almost identical to their o variant. For this task, a stronger negative
value is better as a completely coherent topic have a group count of 1 and an incoherent topic will have a group
count of 10. Hence, the proxy measure is inversely related to the coherence metric score where a larger score
indicates coherence.
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Groups U1 U2 U3 U4 U5 U6 U7 U8 Mean (S.D)
ArXiv
Cγ=1
V,̸e 0.262 0.232 0.051 0.170 0.211 0.219 0.072 0.183 0.175 ± 0.071

Cγ=2
V,̸e 0.287 0.224 0.038 0.166 0.203 0.219 0.079 0.208 0.178 ± 0.076

CNPMI,̸e 0.257 0.215 0 .104 0.176 0.254 0.221 0.105 0.188 0.190 ± 0.056
CNPMI 0.272 0.231 0.110 0.209 0.262 0.225 0.123 0.259 0.211 ± 0.058
CP,s 0.299 0.238 0.079 0.193 0.230 0.242 0.120 0.202 0.201 ± 0.066
CP,o 0.218 0.152 -0.019 0.101 0.124 0.125 0.091 0.126 0.115 ± 0.062
CUMass,s 0.280 0.213 0.061 0.140 0.228 0.228 0.111 0.220 0.185 ± 0.068
CUMass,o 0.193 0.146 -0.007 0.118 0.133 0.155 0.076 0.137 0.119 ± 0.057
Pubmed
Cγ=1
V,̸e 0.328 0.321 0.221 0.335 0.269 0.256 0.280 0.340 0.294 ± 0.041

Cγ=2
V,̸e 0.314 0.281 0.213 0.295 0.272 0.235 0.261 0.331 0.275 ± 0.037

CNPMI,̸e 0.240 0.259 0.205 0.269 0.242 0.184 0.229 0.291 0.240 ± 0.032
CNPMI 0.274 0.261 0.188 0.305 0.257 0.201 0.225 0.305 0.252 ± 0.041
CP,s 0.294 0.286 0.206 0.306 0.261 0.225 0.256 0.316 0.269 ± 0.036
CP,o 0.183 0.160 0.063 0.140 0.109 0.112 0.134 0.210 0.139 ± 0.043
CUMass,s 0.114 0.086 0.087 0.132 0.116 0.061 0.044 0.167 0.101 ± 0.037
CUMass,o 0.078 0.090 0.009 0.111 0.098 0.056 0.016 0.121 0.072 ± 0.039
Wiki
Cγ=1
V,̸e 0.560 0.527 0.300 0.547 0.406 0.494 0.422 0.485 0.468 ± 0.082

Cγ=2
V,̸e 0.543 0.518 0.299 0.527 0.399 0.484 0.405 0.470 0.455 ± 0.077

CNPMI,̸e 0.524 0.495 0.295 0.510 0.397 0.433 0.405 0.440 0.437 ± 0.070
CNPMI 0.518 0.498 0.297 0.507 0.396 0.429 0.395 0.454 0.437 ± 0.069
CP,s 0.526 0.503 0.299 0.517 0.393 0.469 0.410 0.460 0.447 ± 0.072
CP,o 0.384 0.338 0.094 0.379 0.218 0.336 0.265 0.269 0.285 ± 0.091
CUMass,s 0.243 0.257 0.159 0.217 0.199 0.202 0.149 0.243 0.209 ± 0.037
CUMass,o 0.165 0.163 0.058 0.173 0.103 0.126 0.070 0.163 0.128 ± 0.043
Palmetto
Cγ=1
V,̸e 0.553 0.503 0.292 0.542 0.398 0.516 0.428 0.496 0.466 ± 0.083

Cγ=2
V,̸e 0.538 0.491 0.299 0.515 0.398 0.509 0.418 0.486 0.457 ± 0.075

CNPMI,̸e 0.524 0.479 0.294 0.508 0.394 0.472 0.424 0.454 0.444 ± 0.069
CNPMI 0.526 0.479 0.295 0.514 0.391 0.472 0.416 0.468 0.445 ± 0.071
CP,s 0.516 0.466 0.291 0.504 0.378 0.484 0.406 0.479 0.441 ± 0.072
CP,o 0.411 0.325 0.104 0.354 0.209 0.342 0.261 0.325 0.291 ± 0.091
CUMass,s 0.217 0.203 0.136 0.172 0.166 0.181 0.146 0.209 0.179 ± 0.028
CUMass,o 0.155 0.145 0.070 0.145 0.103 0.110 0.080 0.153 0.120 ± 0.032

Table 19: Detailed breakdown of Pair-wise Proxy Task. Values are Spearman’s ρ.
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D Topic Examples (User Study)

This set of 100 topics belongs to T1, and were shown to U1:

1. ethic humanities intellectual interdisciplinary journal philosophical scientific social society sociology
2. automate behavior check computation correct fluid limitation numerical processing specify
3. behavioral differ differentiation extent furthermore interaction neural overlap similarity trait
4. accountant archdiocese citizenship compile cultivate enlarge ferry grab interim wield
5. care educate educational engage life pandemic participation preparedness social support
6. advent anatomy enhance harmless interfere mortality psychiatrist swallow terminate urine
7. agent buy buyer maximize profit risk sell seller social utility
8. benchmark effectiveness experiment extensive indoor outdoor performance real-world synthetic validate
9. bandwidth beam conversion generation laser photon pulse pump purity silicon

10. anxiety child depression distress illness mental parent parenting social stress
11. account activity audit employment fund provision public purpose resource security
12. acidity alcoholic biochemical compete fuse insulin pathological short-term smell spontaneous
13. access communication device hardware infrastructure management resource secure technology wireless
14. bladder blood cardiac cavity congenital gastrointestinal intestinal obstruction procedure surgical
15. assess assessment company industry maturity methodology organization quality research software
16. building conditional embryonic glacial hair multiplicity overly programming questionnaire renewable
17. adoption encryption insurance job minimal native nowadays predictor resilience visit
18. continued doubling feedback growing guideline hypothetical induction pad readiness worth
19. automated detect detection measurement observation optical radar real-time sensor spacecraft
20. advent bald deficiency household liquid museum parasite physique qualify rude
21. control evaluation framework implement level monitor optimal regulation response specific
22. dose gland hormone inflammation inject muscle secretion serum stimulate toxin
23. creative family handy lie mold rank residual semantic transmission weaken
24. broad hair irregular length longitudinal mature somewhat spore tooth yellow
25. appropriate behavioral combination condition define evaluate prescribe specify substance weight
26. astronomical binary celestial galactic gravitational orbital radiation stellar telescope velocity
27. cheese dish egg fruit layer leaf meat oven rice tray
28. appropriate authority case document guideline investigation legal necessary regulation submit
29. acid biological chromosome cluster determine interact observe similarity structure visualize
30. affect concern cost development environmental provision quality relate reproductive resource
31. care health licensed medical nurse provider qualified skilled specialty technician
32. binary decomposition infinite molecule parameter possible radiation ratio sphere unstable
33. attacker contract ensure identity malicious protect protection provider trust user
34. container functionality handle item lock normal optional slot thread type
35. acquire appraisal author baby device plentiful poor sandwich schizophrenia tailor
36. cancer cause genetic immune likely malignant occur patient syndrome viral
37. concern government information legal political public regard society technology topic
38. bubble gas interstellar medium outflow shock supersonic turbulence turbulent wind
39. cool heat load plate roof rotate stack tray underneath wrap
40. attempt collapse crush escape knock push save ultimate unable unconscious
41. automate benefit health human infrastructure life online public quality user
42. academic career degree graduate medicine nursing program science student university
43. amp award consultant deliver new radio scientist staff technology visual
44. abolish administer annex autonomy dominion mandate sovereign statute territorial treaty
45. duct ear genital insert lip muscle nerve nipple tissue vagina
46. align architecture benign command embryonic legal population strange superficial team
47. historical news perspective reader recommendation researcher science summarize summary try
48. barrel bolt flame knife metal needle rod rope thread wire
49. barbecue cuisine dish grill lamb meal pork potato spicy stew
50. adverse benefit decrease efficacy long-term prevent short-term stress surgery sustain
51. aftermath avalanche blast collapse damage earthquake explosion landslide massive tsunami
52. application component design different handle process quality technique typical use
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53. aim automation community document effort expert goal language machine vision
54. bring challenge engineering functionality practical protection safety threat usage vulnerability
55. abdominal anemia condition disorder liver lung pain suffer syndrome ulcer
56. book brother child early finally fine originally piano queen sir
57. attacker choose client cost decision game maximize objective selfish strategy
58. accept associate book early inscription middle parish queen seven valuable
59. build business company engineering intelligence methodology practitioner predictive student tool
60. atmospheric barrier conventional electron interference internal layer noise radiation thermal
61. act allow ban discrimination government legislation permit prevent refusal removal
62. chassis conventional diesel driver fit gear manual maximum speed vehicle
63. accelerator advance advanced facility offer optic physics promise science versatile
64. abdominal abnormality blood cardiovascular diagnostic gastrointestinal pain respiratory surgery tissue
65. argument civilization critique emphasize idea knowledge linguistic phenomenon religious understanding
66. behavioral institutional intervention nurse occupational practitioner prevention provider rehabilitation specialist
67. apt bother bounce catalog excuse portrayal respectable royalty smoke strive
68. drug fever lung paralysis polio prevent recover recovery suffer victim
69. apologize honest quote remark respond sad smile surprised tell truth
70. adversary broadcast internet node protocol route send service traffic transmission
71. expert health participant peer people preference public receive share topic
72. design enable equipment output package provide quality tool validate verification
73. atom decomposition determine energy fluid mechanism observe phase ratio substrate
74. contain core critical date distinct effectively hard mercury method true
75. billion corporate equity finance financial invest investor portfolio retail telecom
76. liver lung medication metabolism reduce renal respiratory secretion toxic urine
77. amphitheater bog combustion construction install lowering parachute populous successive youthful
78. automate detection electronic equipment measurement optical retrieval scan signal spacecraft
79. bread fry meat menu onion pie pizza potato specialty vegetable
80. broad irregular measure slight specimen spherical spore texture tip typical
81. acknowledge astronomy baseline chapter climate economics explosion movement prize thing
82. definition french industrial micro percentage post purity spot superior supplement
83. advance communication computing development device industry platform promising sensor thing
84. clean drink flush fresh kitchen pipe recycle supply wash waste
85. algorithm bit detect fast feedback hardware implementation minimize mode slow
86. characteristic characterize chemical condition diagnostic essential organism plasma precise understanding
87. adverse brain complication induce muscle pain pregnancy sleep spontaneous surgical
88. aesthetic criticism interpretation introduction lecture philosophy psychology study theoretical thesis
89. algorithm arithmetic binary cpu logic manipulate output processing processor programmer
90. application autonomous capability computing delivery modern networking resource smart software
91. final finish goal injury preseason raider regular score season squad
92. application capability desktop enable encryption hardware networking software technology wireless
93. asleep bed morning notice sleep sneak wake walk watch worry
94. advance analysis clinical develop high-quality method objective patient provide tool
95. care health healthy nurse quarantine sanitary sanitation surgeon vaccination veterinary
96. affordable availability development device hardware internet mobile need platform software
97. application automate component display install integrate menu monitor server window
98. aspect auditory behaviour emotional interaction learner psychology relate researcher understand
99. advantage allow collaboration collaborative construction facilitate open opportunity platform sharing

100. advantage analog camera card compatible converter modular processor storage use
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E User Study Instructions

E.1 Primer on Task

Evaluating the relations between words from a computational lens serves to further the research and
understanding of artificial intelligence linguistic research.

A group of words can be considered coherent if they share a similar theme. For example, the group
"apples banana coconut durian" can be considered coherent as most people would identify "fruit", "food"
or "tree" as the common theme or link.

However, some group of words might be more ambiguous and the common theme might not be as
straightforward. For example, "trees ore corn hydrogen" might be considered incoherent to some, while
others might identify the common theme as "resources".

Ultimately, it is up to one’s personal preferences and experiences to decide on whether a group of words
are coherent.

E.2 Task Instructions

You will be presented with 10 English words. These words belongs to the 20,000 most frequently used
words, so it is unlikely that you will encounter strange words. If you do encounter words that you have
never seen before, you are free to use a dictionary or search engine (e.g. Google).

You will then be asked to assign each word to groups, where each group contains words that you think
are coherent when grouped together.

Given an example: alcohol athlete breakfast drink eat habit intake meal obesity sleep
Some might divide the words into two groups identifying Group 1 is "alcoholic"-themed and Group 2

is "healthy"-themed.

Group 1 Group 2 Group 3 Group 4 Not Related
alcohol O
athlete O

breakfast O
drink O
eat O

habit O
intake O
meal O

obesity O
sleep O

In another example given: atom calcium component material reduction temperature titanium typical
weight yield

Some might group most of the words as "chemistry"-themed.

Group 1 Group 2 Group 3 Group 4 Not Related
atom O

calcium O
component O

material O
reduction O

temperature O
titanium O
typical O
weight O
yield O
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If you believe that certain word(s) do not belong in any group, select the "Not Related" option in the
last column. There can be multiple words that are not related to each other.

For example: animal bed carrot fungible great osmosis paradise star telcommunication water

Group 1 Group 2 Group 3 Group 4 Not Related
animal O

bed O
carrot O

fungible O
great O

osmosis O
paradise O

star O
telcommunication O

water O

We want to emphasise that there are no right or wrong answers for the tasks, we wish to capture your
beliefs on what you think is "correct". We understand that at times, you might encounter words that
belong to multiple groups, however to simplify the tasks, we ask that you be the tiebreaker and assign it to
the word-group with the strongest similarity.
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