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Abstract

We present EPIC (English Perspectivist Irony
Corpus), the first annotated corpus for irony
analysis based on the principles of data per-
spectivism. The corpus contains short conver-
sations from social media in five regional va-
rieties of English, and it is annotated by con-
tributors from five countries corresponding to
those varieties. We analyse the resource along
the perspectives induced by the diversity of the
annotators, in terms of origin, age, and gender,
and the relationship between these dimensions,
irony, and the topics of conversation. We vali-
date EPIC by creating perspective-aware mod-
els that encode the perspectives of annotators
grouped according to their demographic char-
acteristics. Firstly, the performance of perspec-
tivist models confirms that different annotators
induce very different models. Secondly, in the
classification of ironic and non-ironic texts, per-
spectivist models prove to be generally more
confident than the non-perspectivist ones. Fur-
thermore, comparing the performance on a
perspective-based test set with those achieved
on a gold standard test set, we can observe how
perspectivist models tend to detect more pre-
cisely the positive class, showing their ability
to capture the different perceptions of irony.
Thanks to these models, we are moreover able
to show interesting insights about the varia-
tion in the perception of irony by the different
groups of annotators, such as among different
generations and nationalities.

1 Introduction

A recent trend in Natural Language Processing
(NLP) postulates that the disagreement among an-
notators in a language resource is a valuable source
of knowledge, rather than noise that ought to be
minimized or discarded (Plank, 2022; Basile et al.,
2021b). Going one step further, the perspectivist
approach aims at leveraging the disagreement in
annotated data in order to model different points
of view on the same phenomenon (Basile et al.,

2021a). Applied to the study of natural language,
this approach is particularly effective when the fo-
cus phenomena belong to semantic and pragmatic
areas (Abercrombie et al., 2022) such as undesir-
able language detection, or irony and sarcasm.

Although related, the interpretation of irony in-
volves linguistic patterns, such as the reference
to an opposite or secondary meaning, and prag-
matic features (Karoui et al., 2017) which could
make it possible to recognize the phenomenon for
people with different social backgrounds. This
differs from the perception of abusive language,
proved to be highly affected by different subjectivi-
ties (Akhtar et al., 2019). Thus, a fundamental pe-
culiarity of irony is that it tends to be both strongly
dependent on the cultural background of the recipi-
ents (Joshi et al., 2018; Ortega-Bueno et al., 2019),
and, thanks to certain linguistic patterns, it may
be understandable regardless of their country of
origin.

In this paper, we present EPIC (English Perspec-
tivist Irony Corpus), a corpus of short social media
conversations annotated by taking into account the
perspective of the annotators. In our view, and
according to the perspectivist view, multi-faceted
annotation represents an instrument to explore how
demographic aspects may influence annotators’
opinions, rather than a source of risk of bias. We
created EPIC by collecting English messages and
their direct replies from public online platforms,
and annotated them by crowdsourcing. Crucially,
the texts are written in five varieties of English
from different countries (Ireland, the United King-
dom, the United States, India and Australia). The
annotators, from the same five countries and with
different demographic characteristics, expressed
their opinion on their perception of irony in texts
from all varieties.

We believe that a non-aggregated corpus of irony
analysis is a useful resource to train perspective-
aware models for irony detection, similarly to the
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approach of Akhtar et al. (2020) for hate speech
modelling. In this direction, we validate the quality
of this resource by creating various perspective-
aware models for irony detection encoding the per-
spective of annotators grouped according to their
demographic characteristics. These models prove
to be more confident in the recognition of irony in
comparison with a non-perspectivist model, show-
ing also an interesting increase of the precision
in the detection of ironic messages when the var-
ious perspectives are represented in the test set.
Moreover, the usefulness of EPIC as perspectivist
resource is confirmed by the variation in the per-
ception of irony captured through the created per-
spectivist models.

To sum up, the contributions of this paper are the
following: i) a non-aggregated resource for English
irony1; ii) an analysis of analogies and differences
in the annotation on the basis of demographic infor-
mation about annotators, and correlations between
these dimensions and ironic topics; iii) experiments
with supervised learning that validate both the qual-
ity of the resource and the need for multiple per-
spectives explicitly encoded in the corpus.

2 Related work

Recent improvements in state-of-the-art language
models have shown that the quality of the anno-
tated data required for training automated systems
is significantly more important than the amount
of data itself (Swayamdipta et al., 2020). For this
reason, in NLP, it becomes particularly important
to devote special attention to benchmark datasets
created within shared tasks and freely available
to the research community, as their quality is as-
sessed and improved through multiple uses by re-
searchers. Within the last ~10 years, the amount
of irony-annotated resources and the organization
of shared tasks regarding figurative language pro-
cessing (among which, irony and sarcasm) for an
increasing amount of different languages has con-
siderably grown. The most resourced language for
irony detection is English (Filatova, 2012; Reyes
et al., 2012; Van Hee et al., 2016, 2018), but bench-
marks have been proposed for other languages, in-

1The corpus was exclusively created by the University of
Turin, in compliance with the terms and conditions of the
data sources. EPIC is made available for research purposes at
http://di.unito.it/multilingualperspectivistnlu.
Its distribution is governed by the Creative Commons licence.
Additionally, the data handling and usage adhere to current
regulations, such as the General Data Protection Regulation
(GDPR), to ensure the protection of users’ rights and privacy.

cluding Spanish (Ortega-Bueno et al., 2019), Ital-
ian (Barbieri et al., 2016; Cignarella et al., 2018),
Dutch (Van Hee et al., 2016; Maladry et al., 2022),
Chinese (Xiang et al., 2020), and Arabic (Alhaidari
et al., 2022).

Until 2016, the NLP community has mostly in-
vestigated irony as a “general way for describing
different kinds of humorous content”, (Reyes et al.,
2012), as one of the most specific cases of figura-
tive language (Ghosh et al., 2015), or as a “polar-
ity reverser” (Barbieri et al., 2016). Starting from
2017, more specific interest in the phenomenon
was deepened, so the community began to study its
relationship with sarcasm, hate speech (Van Hee
et al., 2018; Cignarella et al., 2018; Frenda et al.,
2022), also in different geographical variants of
the same language (i.e., Castilian, Mexican, and
Cuban variety of Spanish in Ortega-Bueno et al.,
2019), and its importance in spreading of stereo-
types as well as in author profiling tasks (Ortega-
Bueno et al., 2022). As for works on irony that
take a perspective approach, we think that the liter-
ature on this is not very extensive nowadays; ours
is one of the few attempts in this direction. In-
deed, after more than a decade of investigation
on this subject, it clearly emerged how irony is a
highly subjective phenomenon in natural language,
for which humans show divergent understanding
and interpretation. As with other subjective phe-
nomena, there is therefore an urgent need for the
release of datasets with annotator-level labels and
socio-demographic information about the annota-
tors (Prabhakaran et al., 2021). A disaggregated
dataset about humour in English (Simpson et al.,
2019) has been released on the occasion of Se-
mEval 2021 - Task 12 on Learning with Disagree-
ment (Uma et al., 2021). However, the currently
available lists of disaggregated datasets show that
no such kind of dataset exists for irony analysis.2,3

This paper addresses this issue, since the availabil-
ity of disaggregated data is a precondition to the
study of divergent perspectives on the perception of
natural language phenomena (Basile et al., 2021a).

3 Corpus

The corpus we are releasing is called EPIC and is
made of 3, 000 short social media text pairs (Post-
Reply) collected from Twitter (1, 500) and Reddit

2https://pdai.info/
3https://github.com/mainlp/awesome-human-lab

el-variation
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(1, 500). Each pair has been annotated by multiple
annotators that were asked to provide a binary label
(either Irony or not-Irony) for the Reply text given
the context provided by Post. In the following
sections, we describe in detail how we collected
the corpus (3.1) and conducted the annotation (3.2).

3.1 Data Collection

The original data was sourced from two popular
social media platforms, namely Reddit4 and Twit-
ter5. The goal was to collect an equal amount
of short conversations from social media across
the two sources and across five English-speaking
countries. To this aim, we collected data from
the following subreddits on Reddit, making an as-
sumption about the main origin of their content:
r/AskReddit (United States), r/CasualUK (United
Kingdom), r/britishproblems (United Kingdom),
r/australia (Australia), and r/ireland (Ireland). Fur-
thermore, we collected data from the r/india sub-
reddit, to capture English written by users in India.
We downloaded Reddit comments from the archive
available in the Pushshift repository6 selecting the
dates between January 2020 and June 2021. We fil-
tered all the comments in the interested subreddits,
and saved the (Post-Reply) pairs where the Post is
either a first-level or a second-level comment. Fol-
lowing the collection, we further processed the data
by removing all pairs where at least one between
Post and Reply is a deleted or removed comment,
and performing a language identification step with
the LangID Python library7, retaining only the in-
stances where both Post and Reply are identified as
English.

The data collection from Twitter is designed to
yield a result that is as similar as possible to the
Reddit section of the dataset. We use the geoloca-
tion service provided by the Twitter API to distin-
guish between English varieties, checking that the
country of the (Post, Reply) pairs corresponds to
the target one. We query the Twitter Stream API
for tweets in English from each of the five con-
sidered countries and retrieve “conversation start-
ing” tweets, i.e., tweets that are neither replies nor
quotes. In a second step, we collect the (Post, Re-
ply) pairs where the Post (tweet) is either the con-
versation starter or a direct reply to it.

After the data collection from Reddit and Twit-
4https://reddit.com/
5https://twitter.com/
6https://redditsearch.io/
7https://github.com/saffsd/langid.py

ter, we sampled 600 (Post, Reply) pairs (300 from
Twitter and 300 from Reddit) for each language va-
riety, for a total of 3, 000 instances. Along with the
texts, we collected as metadata the subreddit (for
the Reddit data), the original post and reply IDs,
and the geolocation information (for the Twitter
data).

3.2 Annotation

The annotation was conducted through crowdsourc-
ing using a custom-built annotation interface and
the service provided by the platform Prolific8. The
annotation interface is designed to draw instances
from a relational database, selecting a random in-
stance which i) has not been already annotated by
the current user, and ii) does not show more than
a predetermined number of annotations. Each in-
stance to annotate is composed of a Post and a
Reply, which are shown on screen in a way that
emulates message chats. When presented with an
instance, the user is simply asked to select whether
the Reply is ironic or not9, by clicking on one of
two buttons — see Figure 1 for a screenshot of
the interface seen by the annotators. The custom
software is integrated with the API provided by
Prolific, exchanging only an anonymized user ID,
and redirecting the user to the payment page once
the task is complete.

Figure 1: Screenshot of the annotation interface.

For the annotation of EPIC, we decided to hire a
total of 76 annotators, 16 from the United King-
dom, and 15 from each of the remaining interested
countries10. Each instance is annotated by five dif-
ferent annotators, and each annotator completed
200 annotations.

We selected the annotators so that they are native
speakers of English, and have a task completion
rate on other Prolific tasks of 99%, as a filter for
quality. We asked the crowdsourcing platform to

8https://prolific.co
9The instructions for the annotation process are shown in

Appendix A(1).
10The platform rejected one annotator from the UK based on

a time limit. However, since their annotation was completed,
we included it in the dataset (and paid the annotator).
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provide balanced sets of annotators with respect to
their gender, but left the other filters open, in order
to capture wider demographics.

We did however force a balance across the coun-
try of residence of the annotators.11 This choice
concerns the design of the resource, and it is funda-
mental for the aim of considering multiple perspec-
tives on the perception of irony. Annotators had to
annotate instances from all five varieties of English,
not just the one they speak as native speakers, and
we designed the software to balance the countries
of the annotators when assigning new instances to
them.

To further guarantee the reliability of the an-
notations, we included attention-check questions.
Together with the task completion rate, they have
been used to ensure the quality of the corpus while
keeping the data disaggregated, coherently with
the perspectivist approach. For each new question,
the annotators have a 1% probability of receiving
an attention check instead of an actual instance of
the dataset to annotate. The attention-check ques-
tions have the form “please reply [yes/no] to this
question”. We chose a threshold of 50% correct
answers in order to consider the annotator valid.
Among the 76 annotators, just two of them failed
the test, resulting in a total of 74 annotators.

4 Statistical analysis

EPIC contains 3, 000 unique annotated instances
(Post, Reply) collected and annotated as described
in sections 3.1 and 3.2. In this section, we provide
high-level statistics about annotators and annota-
tions and explore annotations at a deeper level. Sim-
ilarly to Prabhakaran et al. (2021), we prove that ag-
gregation by majority voting would introduce rep-
resentational biases of individual and group view-
points. In addition, we show how annotators’ per-
ceptions differ depending on the topic for which
irony is being labelled.

Annotators’ Summary Statistics We recorded
basic demographic information for the pool of 74
retained annotators. In particular, we observed:
Gender (39 Males, 35 Females), Age Group (38
Gen-Y, 22 Gen-X, 11 Gen-Z and 3 Baby Boomer, 1
Null12), Nationality (15 United Kingdom, 15 India,

11For contributors from India we used ‘nationality’ instead
of ‘residence’ since no annotators residing in India were avail-
able on Prolific.

12One of the annotators did not share this information. This
annotator was included in the statistical analyses, except for
the one related to ‘age’.

15 Ireland, 15 Australia, 14 United States), Eth-
nicity (47 White, 18 Asian, 3 Black, 6 Other or
Null), Student Status (46 No, 13 Yes, 15 Null) and
Employment Status (24 Full-Time, 11 Part-Time,
11 Unemployed, 4 Not in paid work, 24 Other or
Null). We recognize how 74 is not a huge number
for annotators. However, it is sufficient to observe
statistically significant differences among groups
(see section 4). In addition, perspectives consid-
ered later (in section 5) are modelled along axes
that are orthogonal to each other, leading to small
but sizeable enough subgroups. For instance, ‘gen-
der’ and ‘nationality’ (almost perfectly balanced),
together with ‘age’ (unbalanced, but with only the
boomer class being underrepresented).

Annotations Summary Statistics Overall, we
recorded 14, 172 annotations. Each instance has on
average 4.72 annotations, with the median being
5. The first remarkable fact is the disagreement
among annotators. More than 66% (2, 010) of the
instances have at least one annotator disagreeing
with the others, and 30% of texts with more than
four annotations (868 our of 2, 784) have at least
two annotators voting both Irony and two voting
not-Irony. Calculating the majority label for each
instance as the label that half or more annotators
who annotated that instance agreed on, results in
649 instances being labelled as Irony, 2, 118 as
not-Irony (233 remaining are ties).

Majority vote introduces Bias Prabhakaran
et al. (2021), showed that the majority vote under-
represents or ignores the perspectives of a sizeable
number of annotators, at least on datasets for 3
tasks on which they focused: Hate-speech, Senti-
ment and Emotions recognition. We proved that
their findings hold true for irony on EPIC. To this
end, we compute Cohen’s κ agreement score for
each annotator by comparing the list of labels pro-
vided by the individual, with the list of majority-
vote labels on the subset of instances for which
the annotator provided a label. Figure 2 represents
the histogram and Kernel Density Estimation of
annotators’ Cohen’s κ agreement score with major-
ity votes. While a certain level of disagreement is
expected, and can be attributed to noise (e.g. anno-
tators’ errors), the overall assumption of a majority
vote aggregation is that it captures the perspective
of the average annotator within a pool.

However, we observed that such a majority vot-
ing scheme will not uniformly represent all groups
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Figure 2: Histogram and kernel density estimation of the
distribution of Cohen’s κ agreement score of each annotator
versus the majority labels.

in the pool. Violin plots in Figure 3 show an es-
timate of the distribution of the Cohen’s κ score
with majority votes for annotators across different
classes: Gender, Age Group, Nationality, Ethnicity,
Student Status and Employment Status. These plots
suggest that there is a remarkable qualitative differ-
ence in how the groups are represented by the ma-
jority votes. For instance, even though Males and
Females almost have the same average agreement
(0.466 vs 0.478), there is an evident difference in
variance, with Females’ scores being more concen-
trated. We also observed that the perspective of an-
notators self-identifying as Asians (average 0.414)
is way less represented by the majority voting than
the perspective of annotators self-identifying as
White (average 0.493). A Welch’s t-test Welch
(1947) suggests a significant difference between
the two groups (p-values are 0.026). Similarly, an-
notators whose nationality is India (average 0.413)
are way less represented by majority labels than an-
notators from Ireland (average 0.500), even though
in this case the statistical test report a p-value on the
boundary of the conventional 0.05 threshold (pre-
cisely 0.062) suggesting a slightly higher chance
of type I error in considering the two groups as
different.

Agreement depends on the Topic In order to
verify if agreement, and therefore irony perception,
also depends on the topic of the corpus being anno-
tated, we classified instances into topics. Since our
primary goal here is interpretability, we adopted a
simpler but solid approach to topic modelling. First,
we selected the first level of the taxonomy of topics
of media news as defined by the International Press

Telecommunications Council13. This resulted in a
pool of 18 topics: arts, emergency, economy, edu-
cation, environment, health, human interest, justice,
labour, lifestyle, politics, religion, science, society,
sport, technology, war, weather. Then, we fol-
lowed the approach described by Yin et al. (2019)
and used a pre-trained Natural Language Inference
model as a zero-shot sequence classifier to classify
our instances into the above list of topics. In partic-
ular, we used facebook/bart-large-mnli, that
is the fine-tuned version of bart-large Lewis et al.
(2019) trained on the MultiNLI dataset Williams
et al. (2018). This is publicly available in the Hug-
ging Face14 repository. We then associated to each
text the top three topics proposed by the model
with a score > 0.515. Figure 4 shows the result-
ing distribution of topics, where human interest,
environment, and lifestyle are the more frequent
ones.

For each instance i, we considered the set of
annotators A providing a label for i and computed a
measure of agreement a between them on instance
i as:

ai = 1− χ2
i

|A|

where χ2
i is the value of the χ2 statistics to test

if labels assigned are from a uniform distribution.
This is inspired by Akhtar et al. (2019). Note how
ai will be 1 if annotators are in perfect disagree-
ment (50% annotated Irony and 50% annotated not-
Irony) while will be 0 if annotators are in perfect
agreement (all of them annotated Irony or all of
them annotated not-Irony). We do not use Cohen’s
κ agreement score to measure agreement, since this
is a property of each annotator. Rather, we com-
pute the agreement of multiple annotators on the
same instance (and topic). Therefore, we proceed
by computing the average polarization by topic —
the result is shown in Figure 5.

Some topics such as labour (p = 0.614), science
(p = 0.600), lifestyle (p = 0.575), emergency and
(p = 0.572) politics (p = 0.571) exhibit a remark-
ably higher polarization than others, such health
(p = 0.478) and arts (p = 0.459). These results
show the need to release perspectivist datasets.

13https://iptc.org/
14https://huggingface.co/
15Some examples are reported in Appendix A(2).
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Figure 3: Violin plots showing the distribution of the Cohen’s κ agreement score across different dimensions. We can appreciate
how in multiple cases the distributions are much different, revealing that majority voting aggregation would systematically
penalize certain groups of annotators. A global agreement measure is omitted as not meaningful in the perspectivist framework.

Figure 4: Distribution of topics per instances in the dataset.

Figure 5: Polarization across Topics.

5 Perspective-aware modelling results

In this section, we describe computational experi-
ments to detect irony using the EPIC dataset. As
described above, this dataset has been annotated

by different annotators coming from five English-
speaking countries and with different demographic
characteristics. Using the available information, we
designed several classifiers that take into account
the subjectivity of various groups of annotators
divided according to their demographic character-
istics.

Indeed, the EPIC dataset offers the opportunity
to explore perspectivist approaches for irony de-
tection, exploiting the information available about
annotators. In these experiments, we want to under-
stand the importance of a perspectivist approach
for irony detection compared to a standard non-
perspectivist approach, whose training and testing
are based on a gold standard dataset. In particu-
lar, we want to answer the following questions: (1)
What is the difference, especially in terms of confi-
dence, between perspectivist and non-perspectivist
models? (2) Along which dimension can we ob-
serve the highest variation in the perception of
irony?

The first step was the creation of specific datasets
to train and test the perspective-aware models,
grouping the annotated texts on the basis of age,
gender, and provenance of annotators as shown in
Table 1. To get a pair text-label in our datasets, we
applied the majority voting strategy to each slice
and discarded the instances for which we cannot
compute a majority vote with the available anno-
tations. A gold standard dataset (called here Gold-
Set) was also produced to create a non-perspectivist
model. In this dataset, the pair text-label was de-
signed employing a majority voting among all the
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decisions collected by annotators regardless of their
characteristics.

Dataset # Instances Annotators

GoldSet 2,767 All the annotators, only in-
stances with 5 or more anno-
tations with fully aggregated
labels.

FemSet 1,952 Self-identified as female.
MaleSet 2,023 Self-identified as male.
BoomersSet 441 Older than 58.
GenXSet 1,757 Older than 42 and younger

than 57.
GenYSet 1,964 Older than 26 and younger

than 41.
GenZSet 1,124 Younger than 25.
UKSet 1,365 With English nationality.
IndiaSet 1,175 With Indian nationality.
IrSet 1,296 With Irish nationality.
USSet 1,352 With American nationality.
AuSet 1,377 With Australian nationality.

Table 1: Datasets extracted from EPIC.

Our experiments consist of a fine-tuning of the
pre-trained BERT (Devlin et al., 2019) for English
language on each of these datasets to create dif-
ferent perspective-based models to detect irony in
English tweets and posts from Reddit. For the train-
ing phase of each model (perspectivist and not), we
selected a training and validation set16 correspond-
ing to the 80% of the dataset. For the testing phase,
we selected a GOLD TEST SET from the GoldSet
of 553 instances corresponding to 20% of the en-
tire GoldSet and a PERSPECTIVE-BASED TEST SET

from each subjective set of data (the 20% of each
dataset). According to this, all the perspective-
based datasets in Table 1 have been created ex-
cluding the instances of the GOLD TEST SET. The
training, validation, and test set have been balanced
on the basis of the source: Twitter and Reddit. The

16The validation set was employed to stop the fine-tuning
of the model in the frame of an early-stopping strategy.

employed language model, the description of the
input, the hyperparameters’ values and the func-
tions used in these experiments are presented in the
Appendix A(3). This experimental setting includes
the application of early-stopping strategy to avoid
the overfitting in the training phase of the models.

To answer the first question, we compare the per-
formance of perspective-aware models on both the
PERSPECTIVE-BASED TEST SET and GOLD TEST

SET. The performance on the latter are further com-
pared with the model obtained fine-tuning BERT
on the training set of GoldSet (the non-perspectivist
model). For the evaluation, we report the F1-score
measure, but we focus, especially, on the average
(avg) and standard deviation (std) of the confidence
scores of all the predictions in order to gauge the
degree of certainty/uncertainty of the models on
both test sets. In Table 2, we also reported the per-
centage of variation of model confidence in terms
of ∆. The confidence score of each prediction
is computed using the formula proposed by Taha
et al. based on the normalized difference between
the logits obtained for each class (ironic and not-
ironic). The logits have been rescaled by applying
the softmax function.

Looking at Table 2, firstly, we can notice that
Male-persp model performs better on the GOLD

TEST SET, even if: the distribution of annotations
on the basis of genre (between male and female
annotators) has been required to be balanced in
Prolific platform (see Section 3.2); the amount of
annotated data in FemSet and MaleSet is similar
(see Table 1); and even if the IAA among female
annotators show to be more consistent than male
annotators (see Figure 3). Along with Male-persp
model, also the GenY-persp reports a F1-score
greater than 0.60. These two perspectives seem

GOLD PERSPECTIVE-BASED
model TEST SET TEST SET

F1-score Confidence F1-score Confidence ∆% Confidence
std avg std avg std avg

non-perspectivist 0.681 0.301 0.509 – – – – –
Fem-persp 0.590 0.239 0.621 0.538 0.234 0.644 -2.09↓ 3.70↑
Male-persp 0.620 0.274 0.582 0.613 0.267 0.585 -2.55↓ 0.52↑
Boomers-persp 0.539 0.290 0.502 0.484 0.303 0.532 4.48 5.98↑
GenX-persp 0.516 0.269 0.603 0.483 0.261 0.612 -2.97↓ 1.49↑
GenY-persp 0.611 0.265 0.255 0.574 0.259 0.245 -2.26↓ -3.92
GenZ-persp 0.574 0.234 0.367 0.601 0.240 0.352 2.56 -4.09
Au-persp 0.497 0.173 0.748 0.435 0.165 0.746 -4.62↓ -0.27
US-persp 0.516 0.259 0.580 0.461 0.262 0.583 1.16 0.52↑
Ir-persp 0.535 0.273 0.319 0.521 0.293 0.340 7.33 6.58↑
In-persp 0.466 0.232 0.666 0.432 0.210 0.708 -9.48↓ 6.31↑
UK-persp 0.507 0.255 0.612 0.533 0.251 0.630 -1.57↓ 2.94↑

Table 2: Classification performance and confidence of perspective-aware models vs. non-perspectivist model.
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Figure 6: Precision performance on positive class of perspective-aware models.

to be present more than others in the GOLD TEST

SET. However, it is interesting to notice that none
of the perspectivist models perform better than the
non-perspectivist model on the GOLD TEST SET

because the gold labels are not representative of
each specific perspective. Another interesting point
is the high variability on the GOLD TEST SET of
the performance of the models built taking into ac-
count decisions of annotators with different traits.
That means that different annotators induce very
different models.

Secondly, two important trends are visible in the
GOLD TEST SET column: the standard deviation
and the average of confidence scores appear, re-
spectively, lowering (↓) and increasing (↑) in the
performance of perspective-aware models respect
to the performance of the non-perspectivist model.
That means perspective-aware models tend to take
a decision with less uncertainty than standard non-
perspectivist models. A similar result was expected
observing the percentage of ∆ between the avg and
std of confidence scores, where we can show that
perspective-aware models are inclined to be respec-
tively more confident and consistent when they are
tested on a test set representative of their perspec-
tive. To examine in depth this result, we look also
at the performance on positive class (ironic texts)
of perspective-aware models, reporting in Figure 6
the precision scores of ironic class obtained on the
PERSPECTIVE-BASED TEST SET (blue bars) and
on the GOLD TEST SET (red bars). In this figure,
the blue bars tend to be higher than the red ones in
the majority of the cases, suggesting that the differ-
ent perceptions of irony can be well recognized by
perspective-aware models. We observe an increase
in ∆ in a range from 3% with the Fem-persp model
to 72% with the UK-persp model.

To answer the second question, we compared
the different and similar predictions obtained from
perspective-aware models of the same category
(gender, age, and country). In the previous sec-
tions, we looked at the difference in IAA among
different groups of the same demographic category.
Now, we focus especially on the variation of their
perception of irony captured by perspective-aware
models. To this purpose, we computed the accu-
racy measure among the predictions obtained with
the various perspectivist models on the GOLD TEST

SET.

male
fem .85

genX genY genZ
boomers .73 .71 .81
genX – .80 .87
genY – – .79

Table 3: Variation among perspectives on ‘gender’ (left) and
perspectives on ‘age’ (right).

US Ir In UK
Au .96 .91 .97 .93
US – .91 .95 .92
Ir – – .89 .88
In – – – .89

Table 4: Variation among perspectives on ‘nationality’.

Looking at Tables 3 and 4 reporting the variation
among perspectives on the demographic categories,
we can observe some differences of perception of
irony (in a range from 3% to 29%), especially on
‘gender’ and ‘age’. For instance, contiguous gener-
ations seem to perceive irony in different way (i.e.,
boomers vs. genX, genX vs. genY, genY vs. genZ),
although boomers vs. genY results in the highest
variation. Interestingly, looking at the countries,
the highest variation, even if less strong than for
‘age’, is reported between the predictions of the
models trained on annotators’ decisions coming
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from United Kingdom and Ireland.

All these findings prove the necessity to take
into account the different perspectives of people to
create more confident and representative models,
even in a difficult task such as the recognition of
irony.

6 Conclusion

In this paper, we presented EPIC, a corpus of short
social media conversations from five English vari-
eties (Australian, British, Indian, Irish, American)
collected from Twitter and Reddit and annotated
with a binary label, Irony or not-Irony, by speakers
from the five countries. We performed statistical
analyses resulting in two key takeaways. The first
is that aggregating the dataset with a majority vot-
ing scheme would introduce biases, thus hiding
the perspective of some groups of annotators (e.g.,
those identifying as Asian). This confirms the hy-
pothesis that the perception of Irony is dependent
on the cultural background of the recipient. The
second is that polarization among annotators de-
pends on the topic. This means that though it is
true that cultural background influences the per-
ception of ironic content, there exist topics (such
as Arts and Health) on which the influence is less
evident than on others (such as Labour, Lifestyle
or Politics). Moreover, we performed predictive
experiments creating perspective-aware models for
irony detection, that show how different annota-
tors induce very different models, and how these
perspectivist models, trained on subsets of the an-
notation coming from identifiable perspectives, are
more confident at prediction time. Finally, looking
at the detection of irony, we believe that the best
approach is based on assembling perspective-aware
models plus perspective-based explanations. This
is beyond the scope of the current work, which
wants to present a solid basis on which to build
such models.

We plan to continue our research in two main
directions. Firstly, we intend to expand the dataset
beyond English (i.e., Spanish, German, French, Ital-
ian, Arabic, and others) in order to create the first
multilingual perspectivist dataset for irony detec-
tion. Secondly, we will employ EPIC as the basis
for more advanced perspective-aware models and
as a perspectivist benchmark for irony detection.

Limitations

While this work represents the first effort towards a
perspectivist language resource for irony detection,
it has to be noticed that the resource is monolingual
(English). Moreover, while we tried to maintain
a fair balance in terms of demographic profile of
the annotators, we limited the resource to five vari-
eties of English tied to five countries, while leaving
out other potential locations (e.g., New Zealand or
Nigeria) or even more nuanced distinctions among
language varieties. About the self-identified gender
dimension, we are aware of the wider spectrum of
genders. However, this information is provided by
the annotators only in a binary form. Another po-
tential limitation is that, in the spirit of constructing
a perspectivist corpus, we fully trusted the contrib-
utors. While the chosen crowdsourcing platform
(Prolific) is known for a high quality standard ob-
tained e.g. by vetting its contributors, and we added
a layer of checks through attention test questions,
random noise in the annotation may still be present
and undetected.

While this paper mainly presents a new language
resource, we also included the results of several
analyses and validation experiments. In this direc-
tion, a number of dimensions are still unexplored,
along which the data could be analysed. For in-
stance, the genre difference between the sources
of the data (Reddit and Twitter) and the distribu-
tion of different varieties of English were not yet
explored.

Ethics Statement

The research presented in this paper relies on the
labour of numerous contributors who annotated the
dataset. We recruited and rewarded our contrib-
utors through Prolific, a crowdsourcing platform
we selected specifically for its attention to fair and
ethic treatment of crowdworkers. The contribu-
tors were paid on average an hourly wage of 12.66
GBP (about 14.95 USD). Additionally, fixed bonus
payments were provided for contributors who aban-
doned the task but still provided valuable feedback.

The data perspectivist approach in general, and
this work in particular, aims at “giving voice to
the few who hold a minority view” (Basile et al.,
2021a). Applied to the creation of a language re-
source, this principle leads to resources (and there-
fore models) where bias is a controlled factor rather
than undesirable criticality.
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A Appendix

1. Instructions for the annotation process

Figure 7 shows the instructions as seen by the an-
notators in Prolific before they choose to undertake
the task.

2. Examples of topic classification

Table 5 reports some example of the topic classifi-
cation described in Section 4.

3. Language Model Parameters

Table 6 shows the values of the hyperparameters
used in the experiments presented in Section 5.
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Figure 7: Instructions for the annotators in Prolific.

Post Text Reply Text Topic 1 Topic 2 Topic 3
The NFL is rigged. I mean, there’s too
much money on the line per game for
there not to be someone wanting to fix it.
[..] Super Bowls are blowouts or close
games based on the highest payers’ time
slots in the game. [...]

All valid points. sports N/A N/A

Probably BoTW and Minecraft Yup technology N/A N/A

The Jews control Israel. I mean, you’re not wrong, but... religion politcs N/A

Travellers have been lobbying for a na-
tional health strategy, mental health strat-
egy for over a decade our State and its
organs failed us. Now look where we
are our children dying by suicide at a
shocking rate.

those poor children, it’s time for
some intervention

health emergency human interest

Table 5: A sample with 4 examples of (Post, Reply) instances in the dataset and their classification with our topic extraction
approach. Though not perfect, the resulting classification is satisfactory and being highly interpretable is adequate for our needs.

parameter value

model the uncased version of BERT (https://huggingface.co/bert-base-uncased) for Sequence
Classification, predicting 2 labels (ironic and not-ironic) for each text.

input the pair Post-Reply, reproducing the input of the annotation phase as shown in Figure 1 and
giving contextual information to the system.

max sequence length 100
learning rate [6e-5, 5e-5]
batch size 16
maximum number of
epochs

10

optimizer AdamW
scheduler the cosine scheduler without warmup (https://huggingface.co/transformers/main_cla

sses/optimizer_schedules.html) to define dynamic learning rates during the training phase.
early stopping a custom early stopping function to avoid the overtraining of the neural network, looking at the

values of the loss obtained on the validation set with a patience of 3 epochs.
seed a constant seed to make the results reproducible.
loss the default loss function defined for Sequence Classification by transformers library.

Table 6: Language model, parameters’ values and functions used for the fine-tuning process.
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